

Expert Panel Report on Oyster BMP for Restoration & Harvest

Water Quality GIT
April 2023 Meeting
April 24, 2023

Olivia Caretti
Oyster Recovery Partnership

Oyster BMP Approval Timeline

Jan 30 – Report posted

February – Roll-out Webinars

March 1 – Present at Fisheries GIT Meeting

March 2 – Present Technical Appendix to WTWG

March 10 – Feedback due

April 6 – present revised Technical Appendix to WTWG

April 24 – present revised BMP to WQGIT

May 2 – Seek Technical Appendix approval from WTWG

May 22 – Seek BMP approval from WQGIT

Elements of the Oyster BMP Toolset

Aquaculture-Assimilation Approved

Harvest-Assimilation *Under Review*

Restoration-Denitrification *Under Review*

Restoration-Assimilation *Under Review*

Oyster BMP Approach

- Oyster biomass required to estimate reduction
 - Restoration: Biomass increases on reef
 - Harvest: Biomass harvested
- Qualifying conditions ensure that reduction occurs at BMP site
- Default estimates use data representative of Bay
- Guidelines provided for when and how to develop site-specific estimates
 - Restoration: Large substrates

Restoration-Enhanced Denitrification

Practices: Oyster reef restoration using hatchery-produced oysters & substrate addition

- Oyster tissue biomass is used to help estimate removal of N and N₂ under different conditions
- Default rates apply to subtidal reefs restored with small substrate
- Denitrification is an ongoing process, credit is continuous
- Post-restoration tissue biomass > baseline

				Post	t-resto	ration	Oystei	Biomo	ass Rai	nge (g	DW m	⁻²)		
R	ced Nitrogen emoval acre ⁻¹ yr ⁻¹)	15 - 24.9	25 - 34.9	35 - 44.9	45 - 54.9	55 - 64.9	65 - 74.9	75 - 84.9	85 - 94.9	95 - 104.9	105 - 114.9	115 - 124.9	125 - 134.9	135 - 144.9
	0 - 14.9	29	51	74	97	120	143	165	169	172	176	179	183	186
و	15 - 24.9		23	46	68	91	114	137	140	144	147	151	154	158
guz	25 - 34.9			23	46	68	91	114	118	121	124	128	131	135
s Re	35 - 44.9				23	46	68	91	95	98	102	105	109	112
าสระ	45 - 54.9					23	46	68	72	75	79	82	86	89
yster Bion (g DW m ⁻²)	55 - 64.9						23	46	49	53	56	59	63	66
w.	65 - 74.9							23	26	30	33	37	40	44
ste	75 - 84.9								3	7	10	14	17	21
0 0	85 - 94.9									3	7	10	14	17
line	95 - 104.9										3	7	10	14
Baseline Oyster Biomass Range (g DW m ⁻²)	105 - 114.9											3	7	10
B	115 - 124.9												3	7
	125 - 134.9													3

Restoration-Assimilation

Practices: Oyster reef restoration using hatchery-produced oysters & substrate addition

- Oyster tissue & shell biomass are used to estimate removal of N & P
- Net removal at reef-scale occurs if oyster biomass is stable or increasing
- Only appreciated biomass is credited
- Credit can be received incrementally when biomass is assessed

Harvest-Assimilation

Practice: Licensed oyster harvest using hatchery-produced oysters

- Oyster tissue biomass is used to estimate removal of N & P
- Total N & P removed depends on oyster harvest size
- Challenging to assess baseline biomass
- The Panel developed strict qualifying conditions outlining (1) how many and (2) when oysters can be harvested

Table 6.4. Recommended default nitrogen and phosphorus content of diploid oyster tissue. Oyster size class based on shell height measurements.

Oyster size	Midpoint	Midpoint	Tissue dry	Content in oy	ster tissue (g oyster ⁻¹)	
class (in)	(in)	(mm)	weight (g oyster ⁻¹)	Nitrogen	Phosphorus	
3.00-3.49	3	76	1.06	0.09	0.01	
3.50-4.49	4	102	1.81	0.15	0.02	
4.50-5.49	5	127	2.70	0.22	0.02	
≥ 5.50	6	152	3.74	0.31	0.03	
•		•				

Table 6.5. Default nutrient reductions

Oyster size class	Nitrogen	Phosphorus (lbs./million oysters)		
(in)	(lbs./million oysters)			
3.00-3.49*	198	22		
3.50-4.49	331	44		
4.50-5.49	485	44		
≥ 5.50**	683	66		

Oyster BMP Feedback Summary

12 responses on BMP report 1 response on Technical Appendix

Oyster BMP Feedback Summary

12 responses on BMP report 1 response on Technical Appendix

- Eligible Practices
- Definitions
- Clarification & Grammar
- Approach & Data
- Biomass Assessment
- Future Research
- Regulations
- Implementation

Oyster BMP Feedback Summary

- Eligible Practices Pending Panel input
- Definitions Adjusted (minor)
- Clarification & Grammar Addressed (minor)
- Approach & Data No changes, adding some justification
- Biomass Assessment No changes
- Future Research Added
- Regulations Beyond scope
- Implementation Beyond scope

Oyster BMP Feedback: Eligible Practices

- General agreement with Panel on Restoration practices
 - Question about whether in situ setting of oyster larvae could be eligible –
 needs Panel discussion
- Concern that verification and accounting associated with Harvest practice too difficult
 - Do not believe should move forward for approval unless alterations to oyster fishery management made.

Oyster BMP Feedback: Approach & Data

- Geographic scope could be larger for developing Bay-wide default regression equations (Restoration-Assimilation BMP - oyster shell)
- Concerns about extrapolating survival data from planting to harvest from large-scale restoration area to harvest areas (Harvest BMP default spat survival rate)
- Suggestions about how to improve statistical power of regressions and sensitivity tests
- Concerns and confusion about why the Panel not providing default DNF rates for reefs restored using "large structures"

Oyster BMP Feedback: Biomass Assessment

- Direct measurement of parameters (e.g., biomass) may be difficult depending on scale of restoration program. Suggest using proxies
- Concerns about destructive sampling methods

Oyster BMP Feedback: Future Research Suggestions

Harvest BMP

- Collect at least 5 years of data on spat survival data in harvest areas
- Determine potential negative consequences of increased biodeposition and phosphorus dynamics on harvested reefs

Restoration BMPs

 Investigate advantages/ disadvantages of additional alternate substrates in restoration

Oyster BMP Praise

- Support for Panel's endorsement of crediting oyster restoration
- Satisfaction that sufficient science was used to generate estimates and recommendations
- Several general, positive comments

Oyster BMP Approval Timeline

April 24 – present revised BMP to WQGIT

May 2 – Seek Technical Appendix approval from WTWG

May 22 – Seek BMP approval from WQGIT

Thoughts? Questions?

oysterBMPresponse@oysterrecovery.org