CBP Estuary Model

Mesh improvement

- We further refined the MBM mesh in Potomac River and eastern shore based on VIMS shoreline
- Also corrected errors made in a few islands and added some minor access channels (e.g. Baltimore)

Mesh improvement: eastern shore & Lynnhaven

- Used a preliminary version of new shoreline from Karinna for the Bay including eastern shore
- Simplified the shoreline to keep the mesh size modest

Striped Bass Squeeze

In warmer summer months, elevated surface water temperatures and increasing amounts of oxygen poor bottom waters force striped bass into a very narrow band of cooler water with adequate oxygen.

Revised Striped Bass Categories and Thresholds for Dissolved Oxygen (DO) & Water Temperature (WT)

- Suitable Supports "normal" occupancy and growth potential DO ≥4 mg/l, WT ≤82.4°F (28°C)
- **Tolerable** Supports occupancy for a modest period of time with limited growth potential (~1 month)
 - DO <4 mg/l & ≥3 mg/l, WT >82.4°F(28°C) & ≤84.2°F (29°C)
- Marginal Supports occupancy for a short period with little or no growth potential (Just passing through)
 - DO <3 mg/l & ≥2 mg/l, WT >84.2°F (29°C) & ≤86°F (30°C)
- Unsuitable Not suitable conditions experiencing either hypoxia or excess water temperature
 - DO <2 mg/l, WT >86°F (30°C)

Step 1: ID major communities of Chesapeake Bay

seagrass and vegetation

Step 3: SAV Community Climate change predictions | New dominants respond most positively to ALL REDUCTIONS

CBP Airshed Model

CMAQ Integrated Source Apportionment Method (ISAM)

Geographic emission source regions

Emission source categories

CMAQ Integrated Source Apportionment Method

Total Oxidized N 69,633 metric tons N

- Oxidized N deposition is largely unchanged
- Mobile on-road is the dominates deposition source of the tracked emissions
- The existing airshed appears to still capture the emission region for 75% of the deposition for oxidized N

Global Change Analysis Model

GCAM documentation: http://jgcri.github.io/gcam-doc/

Global Change Analysis Model

Scenario assumptions

Population growth

Economic growth

Resource availability

Climate change

Technology development

Behavior and preferences

Policies

GCAM

Lead developer: Pacific Northwest National Lab

Time Horizon: 2010–2100, 5-yr increments

Spatial Resolution:

GCAM (core): 32 global regions

GCAM-USA: 31 global regions, 50 states + DC

GCAM-China: 31 global regions, 23 provinces

GCAM-Canada, GCAM-Korea, GCAM-India ...

GHGs: CO₂, CH₄, N₂O, HFCs

Air pollutants: NOx, SO₂, PM_{2.5}, VOCs, CO, NH₃

Runtime: 1 to 5 hours for EPA's GCAM-USA v5.4

Requirements: Desktop PC, Mac, Linux, or Cloud

Availability: Public domain, open source, free

GCAM documentation: http://jgcri.github.io/gcam-doc/

End points

Energy

Technology penetrations

Fuel use and prices

Economic

Policy cost

Cost of energy services

Land and food prices

Climate

GHG emissions

Global mean temperature

Environmental

Air pollutant emissions

Water use

Health impacts

Scenario Design

- *Reference*: A baseline scenario that includes:
 - limited GHG mitigation and no additional air pollutant control requirements
- StateTargets: A mitigation scenario that includes:
 - State GHG reduction goals, implemented as regional CO2 targets
 - New CA light-duty electrification targets adopted by Section 177 states
 - Medium- and Heavy-Duty Electrification MOU adopted by signatory states
- NetZeroZEV: A mitigation scenario that includes:
 - A national, economy-wide declining CO2 cap reaches Net-Zero by 2050
 - Transportation electrification targets in *StateTargets* adopted nationally

National CO2 and NOx projections from GCAM

	2023	2026	2028	2032	2050
StateTargets	-1.2%	-2.9%	-4.5%	-8.4%	-28%
NetZeroZEV	-1.9%	-5.6%	-11%	-22%	-79%

	2023	2026	2028	2032	2050
StateTargets	-1.2%	-2.0%	-1.8%	-2.2%	-7.0%
NetZeroZEV	-0.9%	-2.7%	-5.3%	-10%	-21%

Additional NOx reductions from StateTargets

Scenario	2026	2028	3032	2050								
Reference	-9%	-14%	-21%	-30%								
StateTargets	-10%	-14%	-21%	-34%								

Stat	e-level l	VOx vs	. 2023	
	2026	2028	2032	2050
NY	-10%	-15%	-23%	-47%
NJ	-12%	-17%	-27%	-50%
PA	-10%	-14%	-24%	-47%
СТ	-13%	-18%	-27%	-51%
ОН	-10%	-14%	-21%	-38%
WV	-6%	-8%	-12%	-38%
VA	-11%	-16%	-25%	-45%
MD	-13%	-19%	-32%	-55%
MI	-10%	-17%	-29%	-44%
KY	-9%	-14%	-21%	-36%
IN	-8%	-12%	-18%	-33%
Other	-1%	-2%	-3%	-5%
Total	-6.4%	-9.3%	-15%	-28%

CBP Optimization

Current status of the project

Calendar Year		020		2021				2022	2			2023	}			2024	1			2025	15			2026
Calendar Quarter	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1
Project Year		Υe	ar 1			Υe	ar 2			Ye	ar 3			Ye	ar 4			Ye	ar 5			Ye	ar 6	
Task 1: Development of an efficient single-objective hybrid optimization procedure																								
1.1: Understanding CAST modules and effect of BMPs on objectives and constraints																								
1.2: Development of a simplified point-based structured single- objective optimization procedure																								
1.3: Development of a hybrid customized single-objective optimization procedure																								
1.4: Verification and validation with CBP users and decision-makers and update of optimization procedure																								
Task 2: Development of efficient multi-objective (MO) optimization procedures																								
2.1: Develop generative MO optimization using hybrid optimization procedure developed at Task 1																								
2.2: Develop simultaneous MO customized optimization using population-based evolutionary algorithms																								
2.3: Comparison of generative & simultaneous procedures and validation with CBP users & decision-makers																								
2.4: Develop an interactive multi-criterion decision-making aid for choosing a single preferred solution																								$oxed{oxed}$
Task 3: Scalability Studies and Improvements using Learning Engine and Parallel Computing																								
3.1: Comparative study to choose a few best performing methods		+-	+		\vdash				╫	+			\vdash								-	1		+
3.2: Scalability to State and Watershed level Scenarios							1			T			1											\top
3.3: "Innovization" approach for improving scalability																								\top
4.4: Distributed computing approach for improving scalability																								\bot
Task 4: User-friendly and routine applications with enhanced optimization procedures																								
4.1: User-friendly optimization through a dashboard																								
4.2: Surrogate-assisted optimization procedures																								
4.3: Robust optimization method for handling uncertainties in variables and parameters																								
4.4: Sustainable watershed management practices													1											

Nitrogen Reduction

