

Final Report

Scope #9: A Population Simulation Model for Blue Crab Stock Assessment

Submitted By:	University of Maryland Center For Environmental Science
	Office of Research Administration and Advancement
	PO Box 775
	Cambridge, MD 21613-0775
	P: 410-221-2014 or 2015
	Email: oraa@umces.edu
	DUNS: 021463831
Principal Investigators	Drs. Dong Liang, Michael Wilberg and Thomas Miller
	Univ. Maryland Center for Environmental Science
	Chesapeake Biological Laboratory
	Solomons, MD 20688
	Miller contact: miller@umces.edu / 410-326-7276
	Liang contact: dliang@umces.edu / 410-326-7452
	Wilberg contact: wilberg@umces.edu /410-326-7
Submitted to:	Ms. Whitney Vong
	Contract Officer
	Chesapeake Bay Trust
	108 Severn Avenue
	Annapolis, MD 21403
	Email: jdavis@cbtrust.org
	Tel: (410) 974-2941 x 106
Project Dates	July 1, 2022 – June 30, 2024

Section 1

Background

The blue crab (*Callinectes sapidus*) is widely distributed in estuarine and coastal lagoonal habitats from Argentina to Maine (Williams 1974). It occupies an important trophic link within ecosystems throughout its native range (Baird and Ulanowicz 1989, Frisk et al. 2011, Allen 2022). Blue crab also supports important commercial and recreational fisheries in many of these ecosystems. More recently, blue crab have invaded ecosystem outside of its natural range. The most high profile of these invasions is in the Mediterranean basin (Türeli et al. 2016). Blue crab was first observed in the early years of the 20th Century close to Mediterranean terminal of the Suez Canal. Since then, the species has spread widely throughout the basin, disrupting native ecosystems and affecting fisheries (Mancinelli et al. 2017).

Blue is an iconic species in the Chesapeake Bay. Its physiology, ecology and phenology in the Chesapeake have been extensively studied. Growth rates have been determined in laboratory (Brylawski and Miller 2006), mesocosms (Ju et al. 2001b) and field studies (Davis et al. 2005). It is an important epibenthic predator, potentially serving as a keystone species in seagrass and oyster reef habitats (Mansour and Lipcius 1991, Eggleston et al. 1992, Seitz et al. 2003, Lipcius et al. 2005). Tagging studies have revealed the timing of sex-specific seasonal movements (Semmler et al. 2021).

As in other regions, the blue crab supports important commercial and recreational fisheries in the Chesapeake Bay (Fogarty and Lipcius 2007). Management of these fisheries in the Chesapeake Bay has advanced dramatically in the last 25 years. During this period, the winter dredge survey (WDS), which is the principal tool for estimating the abundance of blue crabs of all ages in the Bay, has matured(Sharov et al. 2003), and its analysis was enhanced(Liang et al. 2017). The first stock assessment was conducted in the late 1990s (Rugolo et al. 1997, Rugolo et al. 1998). Rugolo and colleagues attempted to fit surplus production models and DeLury depletion models to estimate stock status. But at this time, fishery independent surveys were too limited in duration to allow for reliable estimation. Miller developed stagebased models (Miller and Houde 1999, Miller 2001, 2003) that used a discrete size classes to model crabs for the first time. These authors also developed target and threshold reference points for management. Miller et al. (2005) developed a catch-multiple survey model that built on from the previous stage-based models. These authors parameterized the models by fitting them to the Maryland trawl survey, the Virginia Institute of Marine Science (VIMS) trawl survey and the WDS. Reference points were developed using an individual-based yield per recruit model (Bunnell and Miller 2005). This model served as the basis for management for six years. Miller et al (2011) extended the previous assessment to include a sexspecific catch multiple survey model and integrated estimation of reference points. This was also the first assessment that underwent external peer review with the Center for Independent Experts. This model has provided the foundations for management of blue crab for the last 12 years. It utilizes survey data from the Maryland summer trawl program, the VIMS trawl program and the WDS as well as commercial catch data from all three jurisdictions to estimate the abundance of juvenile, adult male and adult female crabs. The model also estimates management reference points, thereby providing a foundation for the determination of stock status. This assessment was updated in 2017.

Despite the substantial progress in the management of blue crab made in the last 25 years, we still lack the ability to assess the performance of previous and future stock assessments. Are the estimates

produced by the stock assessment reliable? Are they accurate? Such questions can be answered by developing an operating model (Butterworth and Punt 1999 - Figure 1).

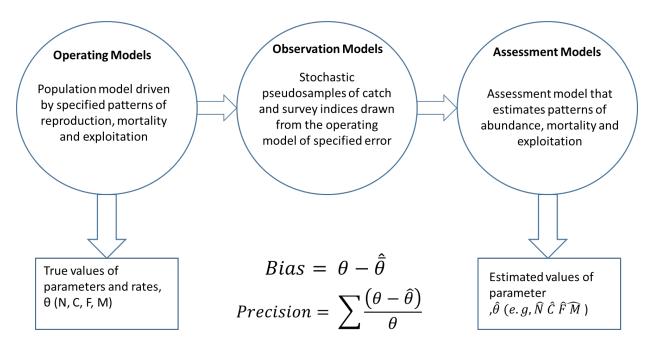


Figure 1. Relationship between operating, observation and assessment models in assessing the performance of an assessment model

Operating models are mathematical representations or hypotheses reflecting the dynamics of the exploited population. The operating model is parameterized with known values of vital rates of the species such as natural mortality and reproductive output and estimates of the action of fisheries thought be exploiting the stock including the pattern of fisheries selectivity and mortality. Indeed, the prior stage-based models (Miller 2001, 2003) can be thought of as operating models. Importantly however, an observation model is also developed. The observation model "samples" abundances, survey indices and catches from the operating model (Butterworth and Punt 1999). These sampled datasets can be used as inputs into the assessment model. Estimates of abundances, survey indices and catches from the assessment model can be then compared to the "true" values of these parameters from the operating model to estimate both the bias and precision of estimates from the assessment model.

Here we summarize our work to develop and evaluate operating models for the blue crab fishery in Chesapeake Bay. Our objectives are

Objective 1. Prepare an open, fully documented population model for blue crab that can serve as an operating model to test the performance of any subsequent stock assessment and to evaluate the potential impacts of sources of error in input data sources.

Objective 2: Conduct extensive simulation testing of the operating model to validate parameterization and model performance to ensure it provides a suitable foundation from which to evaluate the performance of current and future stock assessment models under different suites of assumptions regarding the state of nature, uncertainties in specific input data and management uncertainty.

First, we describe a general operating model that can be used to assess performance of the current stock assessment models. This general operating model must be of sufficient flexibility such that the observation model can draw pseudo samples appropriate to the different assessment models that have been used since 1997. Subsequently, we built upon this general operating model to include additional temporal and spatial complexity that has been envisioned in the next generation of blue crab assessment models. It is possible to develop operating models of any desired level of complexity. However, it is a best practice to consider whether the structure this complex model can yield observations that can be provided to an assessment model to produce estimable parameter values. Accordingly in the second phase of this report we present complex operating models and assess the extent to which they yield estimable parameters.

Section 2

Data Sources

The research team entered into binding data confidentiality agreements with two state agencies and one inter-state program to access data required for development and testing of the operating model. Specifically, we requested the following information on available surveys and harvest data streams.

Surveys:

1. Winter dredge survey data:

The winter dredge survery (WDS) has been conducted collaboratively by the Maryland Department of Natural Resources and the Virginia Institute of Marine Sciences. Designed and initially implemented by Rothschild and colleagues (Volstad et al. 2000, Sharov et al. 2003), the baywide winter dredge survey has been conducted cooperatively by the states of Maryland and Virginia since the winter of 1989/1990. The survey is designed as a stratified random sample. Stations are allocated randomly each year in proportion to stratum area. Sampling is restricted to waters > 1.5 m depth. On average about 1200 stations are visited each winter. A single tow of 1.83-m wide Virginia crab dredge is taken at each station. The dredge is towed along the bottom at a fixed speed and the beginning and ending coordinates are recorded with a differential GPS. All crabs collected during a tow are measured for carapace width and sexed. Crabs are categorized as age-0, or age-1+ based on size-age conventions. Temperature, salinity and water depth are recorded. During each survey year, trials are conducted to estimate vessel- and year-specific catchability coefficients. These catchability coefficients are used, together with tow-specific area, to estimate the absolute density of crabs caught at each station. Standard design-based statistical approaches are used to expand station abundances to a total baywide abundance (Sharov et al. 2003).

The data are managed by Glen Davis (Maryland Department of Natural Resources, MDNR). WDS data are central to the management of blue crab in the Bay. The time series is at the heart of annual Chesapeake Bay Stock Assessment Committee status of the stock updates. We have used these data in a number of analyses (Jensen and Miller 2005) We have accessed these data in a previous Fisheries GIT-funded projects (Liang et al. 2017, Liang et al. 2021). Accordingly, we were familiar with the data structure, data dictionary and many of the inherent concerns in using these data. We submitted a data request to Mr. Davis on 2022.11.23. The formal data request is provided in Appendix 1.1. Data were provided in a spreadsheet format for the years 1990-2022. Requested data included tow ID, date, time, strata, latitude, longitude, #crabs (by carapace width, sex, and maturity), depth, temprerature, and salinity.

2. Maryland summer trawl survey

Beginning in 1977, Maryland DNR instituted a trawl survey of Eastern Shore sites and tributaries. The survey was expanded in 1984 to include the Patuxent and Chester Rivers, and again in 2003 to include the Nanticoke, and Little Choptank Rivers as well as Fishing Bay. The survey is conducted from May - November. However, coverage is inconsistent temporally and spatially from year to year. Sites within each stratum are fixed and were selected based on patterns of commercial activity and habitat. The survey has used a consistent gear throughout: a 16' semi-balloon otter trawl. The trawl has 1 1/4" stretch mesh body, a 1 1/8" stretch mesh cod end with a ½" stretch mesh liner. Additionally, the trawl has a 3/16" footrope and a 3/16" tickler chain. Data from the survey were recorded in two different ways. Prior to

1989, crabs caught in a tow were counted and binned into predetermined size categories representing age-0, age-1 and age-2+ crabs. No size measurements were taken. From 1989 onward, size measurements of individual crabs were taken.

A request for data was submitted to Mr. Glenn Davis at Maryland DNR on 2022.11.23 at the same time as we requested the WDS data (Appendix 1.1). We received data in two spreadsheet files. One file covered the period 1977-2009 and included data on tow ID, date, time, location, latitude, longitude, #crabs (by age group, sex, and maturity), depth, temprerature, and salinity. A second file includes the years 1989-2021 and included data on tow ID, date, time, location, latitude, longitude, #crabs (by carapace width, sex, and maturity), depth, temprerature and salinity

3. <u>Viriginia juvenile finfish and blue crab survey</u>

Since 1955, the Virginia Institute of Marine Sciences (VIMS) has conducted a trawl survey to monitor abundance trends in selected finfish and invertebrate species in the southern portion of Chesapeake Bay. Originally, the survey sampled only the York River, but it has expanded steadily. Currently, seven strata are recognized that cover an area from the mouth of the Bay to the VA/MD border, and up to the freshwater interfaces of the York, James and Rappahannock Rivers. Samples are collected monthly from about 60 stations within the strata. Both fixed and random station assignments have been employed. All blue crabs collected in the VIMS survey are enumerated, sexed and measured. The trawl used in the survey has changed over the survey time series. The most important changes were the addition of a tickler chain and a net liner in 1973 and 1979, respectively. Published calibration factors are available (Hata 1997).

The trawl survey data were used in both the 2005 and 2011 benchmark stock assessments and all subsequent updates. The data are managed by Dr. Troy Tuckey (VIMS). We submitted a data request on 2023.11.23 that included a request for detailed meta-data and data dictionaries (Appendix 1.2). The data request was approved by and data were supplied in a spreadsheet that included tow ID, date, time, location, station (fixed or random), gear, effort (e.g., tow distance or time), latitude, longitude, #crabs (by carapace width, sex, and maturity), depth, temperature, and salinity.

4. Chesapeake Bay Multispecies Monitoring and Assessment Program (ChesMMAP).

The Chesapeake Bay Multispecies Monitoring and Assessment Program, ChesMMAP, began in 2002 and was developed to assist in filling data gaps, and ultimately to support Bay-specific, stock-assessment modeling activities at both single and multispecies scales. ChesMMAP was designed to maximize the biological and ecological information collected for several recreationally, commercially, and ecologically important species in Chesapeake Bay. The survey uses a large-mesh bottom trawl to sample juvenile-to-adult fishes from the head of Chesapeake Bay at Poole's Island, MD to the mouth of the Bay just outside the Chesapeake Bay Bridge Tunnel. The principal goals of the survey are to estimate population sizes for priority species and quantify their geographic and seasonal distribution. The survey has not been used in previous assessments.

The data are managed by Dr. Robert Latour (VIMS). We submitted a data request on 2023.11.23 that included a request for detailed meta-data and data dictionaries (Appendix 1.3). The data request was approved, and data were supplied in a spreadsheet that included tow ID, date, time, location, gear, effort (e.g., tow distance or time), latitude, longitude, #crabs (by carapace width, sex, and maturity), depth, temprerature, and salinity.

Harvest time series

1. Maryland

The state of Maryland recognizes both commercial and recreational fishery sectors. This executive function is devolved to the Maryland Department of Natural Resources. Currently, in the commercial fishery Maryland prescribes seven legal methods for harvesting blue crab: scrapes, dipnets, trotlines, handlines, seines, bank traps and pots. However, the fishery is dominated by the hard crab pot fishery, and the trotline fishery. There are numerous temporal and spatial regulations that limit when, where and how these gear types can be used.

Maryland maintains two data streams that were of potential utility for this study. The first is the commercial harvest report. Licensed watermen are required to submit harvest reports to DNR. These reports include the region fished, the amount of gear and the number of crabs harvested by market category. Additionally, MDNR has managed a sentinel fishery since 2002. Participants in the sentinel fishery report additional biological characteristics of the catch, including maturity state, sex and condition. We submitted a data request to Ms. Genine Lipkey of MDNR on 2022.11.23 (Appendix 1.4). Data and related meta-data were provided in spreadsheet form for commercial harvest for the period 1985 – 2021. Reported parameters included catch by sex, market category, NOAA code, month, and gear (when nonconfidential). The sentinel survey data were provided in spreadsheet format and included parameters for date, location, gear, the size, maturity status, condition and sex of crabs caught.

2. Virginia

Commercial fishing for blue crab in the Commonwealth of Virginia is regulated by the Virginia Marine Resources Commission (VMRC). There are a variety of gear types that can be legally used to harvest crabs within the Commonwealth, but crab pots, peeler pots and dredges predominate. Crab pots can be fished in both the mainstem of Chesapeake Bay and in the tributaries. No person may place, set or fish more than a combined total of 500 hard crab pots in Virginia tidal waters. Peeler pots are fished on a more seasonal basis and can be "baited" with live adult crabs. Crab dredges were restricted historically to the mainstem of the bay during winter months, and have been banned by regulation since 2008.

We submitted a request to Mss Alexa Galvin and Brooke Lowman at VMRC on 2022.11.23 for theVA harvest up through the most recent year (2022). We requested catch data by sex, market category, reporting area, month, and gear (if this ends up being non-confidential). We are requesting the data by reporting area (Appendix 1.5). Subsequent to this informal request, we submitted a formal data request to Ms. Stephanie Iverson at VMRC on 2022.12.18 (Appendix 1.5). VMRC required project staff to sign confidentiality agreements with the Commission (Appendix 1.5). Data confidentiality agreements were in place by early January 2023 (Appendix 1.5). Commission staff provided the data for the 1993-2021 period in a spreadsheet format. Reported data included catch by sex, market category, NOAA code, month, and gear (if non-confidential).

3. <u>Potomac River Fisheries Commission</u>

Under the Maryland and Virginia Potomac River Compact of 1958 (Compact), fisheries in the Potomac River are managed by the Potomac River Fisheries Commission which is charged with the establishment and maintenance of a program to conserve and improve the fisheries resources in the river. The Commission is responsible for adopting the rules, regulations and licenses for the recreational and commercial taking, catching or attempting to take or catch fish, crabs, oysters and clams from the

Potomac River. Using this authority, the PRFC has established regulations limiting the number of crab pots that can be used in both the hard crab and peeler pot fisheries. The Potomac River was historically closed to crabbing from 1 December to 31 March each year. However, as with other jurisdictions, the PRFC has implemented late season bans on female harvest. Commercial data for blue crab harvested in the Potomac River have been used in previous assessments

Access to Potomac River commercial harvest data was requested from Mr. Marty Gary, Executive Director of the PRFC on 2022.11.23 (Appendix 1.6). Data and full metadata were provided by the PRFC in spreadsheet format at a monthly resolution for the years 1990-2022 for the number of #1, and #2 males and all females estimated in pounds. A second dataset provided annual harvest for 2007-2022 by NOAA code for the same categories.

Data management and archving

The research team gratefully acknowledges the provision of data for development of the operating model. These data have generally been made freely available, although harvest data time series are confidential and we had to enter into confidentiality agreements before we could access information.

The research team undertook QA/QC protocols on the data supplied. We note that data in all of the time series supplied are routinely updated and errors removed, such that it is a strong recommendation that any future analysis re-engage with the original data holders to support new analyses.

We have made the data collected for this project available to the research team undertaking the 2026 benchmark stock assessment.

Section 3

Modelling approach

We adopted a stepwise approach to developing operating models for blue crab. The first step in the sequence of model development sought to develop a sex-specific, length-specific model that operated at a broad, Bay-wide scale. The justification for this decision is based on the need to provide an operating model that can be used to evaluate the current sex-specific catch multiple survey assessment model (SSCMSAM) that is at the heart of the last benchmark assessment (Miller et al. 2011), and would permit the evaluation of a new assessment model that had a more highly resolved length structure. We term this model a sex-specific length-based assessment model (SSLAM). These two assessment models differ in the temporal resolution and in the resolution of population structure. The SSCMSAM operates on an annual time step, and represents the population as existing in either a pre-recruit or fully recruited size class. In contrast the target of the SSLAM is to operate on a monthly time step with a more highly resolved population structure. We have been encouraged by management considerations to develop this higher resolution model as it would allow: (i) recruitment to be modeled better, ii) environmental impacts on growth and other life history parameters to be represented, iii) the impacts of differences in the timing of different fisheries to be incorporated and iv) potentially assess the efficacy of size-based management (Chesapeake Bay Stock Assessment Committee 2022).

To meet these two goal, any operating model would have to track the higher resolution dynamics. The operating model can be sampled at a monthly interval in an observation process (Fig. 1). When appropriately specified, these samples become fishery-independent and fishery-dependent data streams that are fed into the SSLAM. Similarly, the operating model could be sampled monthly during the fishing season. When appropriately specified, these samples become monthly harvest data that are aggregated to estimate annual catches used in the SSCMSAM. Samples from the operating model during appropriate months could be converted based on size criteria to counts of pre-recruit and fully recruited that are used in SSCMSAM. Thus the one highly resolved model provides estimates that can used to assess the performance of both assessment models.

A central challenge in developing size-based population models is determining how growth propagates an initial size distribution forward to represent variation. Growth is an inherently multiplicative process (Caswell 2001). An initial state in which all crabs are "recruited" at say 10 mm must elaborate size distributions over time that have the appropriate size distributions observed in real populations. Based on the blue crab data workshop sponsored by the NOAA Chesapeake Bay Office in 2022 (Chesapeake Bay Stock Assessment Committee 2022), managers advised that the model should include the impacts of environmental factors on the rate of increase in mean size and the change in the moments of the distribution. It was felt this was important to account for potential changes in overwinter behavior (Glandon et al. 2019), and what is known about the effects of temperature and salinity on growth (Smith 1997, Brylawski and Miller 2006). We adopted an approach originally developed by Cao et al. (2017a) for Nortern Shrimp.

Thus development of a single region, sex-specific length-based operating model was the highest priority activity in the project. A detailed description of this work is provided in Section 4. Model code is provided in Appendix IX. We have not undertaken thorough testing of the performance of either SSCMSAM or SSLAM based on the operating model.

The 2022 Data workshop identified many processes of interest that have an explicit spatial component (Chesapeake Bay Stock Assessment Committee 2022). We made exploring development of a spatially-explicit operating model the second priority. In this work, we started with state-specific models. We developed a MD operating model that followed male crabs, and a parallel VA operating model that followed female crabs. Our work started off with informing the state-specific operating models with recruitment, a single state-specific fishery independent surveys and state-specific harvest data. This work is described in Section V. Full model code is provided in Appendix IX

Initial work on the state specific operating models generated continuous monthly time series of fishery-independent and fishery-dependent data. These data were sampled through an observation process (Fig. 1). The resultant samples were provided to the proto-SSLAM to determine the precision and accuracy of subsequent results. When we had satisfied ourselves with the performance of the operating / assessment model combination when perfect information was available, we moved to challenge the operating / assessment model with data more representative of the real world. Our goal was to build incrementally from the single survey starting point to one in which multiple surveys were generated by the observation process and fit according to the assessment model. Ultimately, we sought to link the two state-specific models into a single Bay-wide model that would allow us to represent reproductive movements of female crabs to spawning areas.

Section 4

General Blue Crab Operation Model

Model structure

The core of the operating model is a length-specific, sex-specific population model operating on a monthly time step. This general blue crab operating model can be observed to provide length-specific, sex-specific monthly samples of abundance, survey indices and catches. Observations can also be aggregated to provide annual estimates of abundance, survey indices and catches. The length structure and separation of sexes can be aggregated to provide the pre-recruit and recruited abundances and survey indices required by the catch-multiple survey assessment model (Miller et al. 2005). Alternatively, discrete sex-specific data can be retained, while the length data are aggregated into the pre-recruit and recruited stages required by the sex-specific catch multiple survey model (Miller et al. 2011). Finally, the operating model can be observed as a fully sex-specific, length specific population which will be the likely starting point for future stock assessments.

The operating model simulates the population abundance-at-length in three sex categories: males, immature females, and mature females. The model is flexible such that it can represent the different life history and fishery dynamics. The model can simulate any number of years of blue crab dynamics. It is currently specified for a 10-month year in which January-March are pooled as the first month to represent the overwinter period. All other months are kept as individual calendar months. This aggregation of winter months can be relaxed in future operating models, given the expectation that climate change-driven warming of the Bay will reduce the likelihood that blue crab will overwinter by the end of the 21st Century (Glandon et al. 2019).

Recruitment

The model is initiated through recruitment of young blue crab. Recruitment at length (R_l) in each year (y) and sub-annual time step (t) will be the product of the proportion at length for recruits (p) and the estimated total recruitment $(R_{y,t})$, $R_{l,y,t} = p_{l,t}R_{y,t}$. We used the sex-specific Ricker stock-recruitment function from Miller et al. (2011),

$$R_{v,t} = \omega_t \alpha S_f e^{-\beta(S_{f,y} + S_{m,y}) + \varepsilon_y},$$

where $S_{f,y}$ is female spawners, $S_{m,y}$ is adult males, ω_t is the proportion of recruits in month t, α and β are parameters, and ε_y is a normally distributed random error. We used the stock-recruitment parameter estimates from the 2011 stock assessment so that the recruitment would match the observed recruitment in the WDS. Similar to the 2011 stock assessment, we assumed that recruitment occurred at the time of the WDS. We note that this initial formulation of recruitment includes strong assumptions about sex ratios (Miller 2001), and as currently parameterized does not incorporate potential sperm limitation (Ogburn et al. 2014, Rains et al. 2016, 2018). The importance of both assumptions on the reliability of assessment results could be evaluated within the framework proposed here.

Abundance at length

The population is divided into three sex-maturity stages (x): male (m), immature female (f), and mature female (n). Male abundance by size (N) is the sum of recruitment and the abundance of individuals that survive and grow to that size class,

$$N_{m,l',y,t+1} = \kappa_m R_{l,y,t} + \sum_{l} P_{m,t,l,l'} N_{m,l,y,t} e^{-Z_{m,l,y,t} + \delta_{m,l,y,t}},$$

where κ_m is the proportion of recruits that are male, P is the probability of growing from bin 1 to 1', and Z is the total instantaneous mortality rate. This representation follows standard approaches in size-based population models (Caswell 2001). A normally distributed process error (δ) is also included in the population dynamics, $\delta_{m,l,v,t} \sim N(0,\sigma_{\delta}^2)$.

Growth in the operating model is discrete and probabilistic. The details of the molt cycle are not represented in the model. Growth for males follows a stochastic von Bertalanffy growth model that uses a normal distribution to estimate the probability of moving from one length bin (i.e., carapace width) to the next,

$$P_{m,l,l'} = \Phi\left(l' - l + w, \Delta_{t,l}, \sigma_{\Delta,t,l}^2\right) - \Phi\left(l' - l, \Delta_{t,l}, \sigma_{\Delta,t,l}^2\right),$$

Where w is the bin width, Φ is the cumulative normal density function, Δ is the mean growth increment for an individual in a size bin with lower limit l, $\Delta_{t,l} = (L_{\infty} - l)(1 - e^{-k})$, L_{∞} , is length at maximum size is based on earlier reviews of growth (Miller et al. 2005) and $\sigma_{\Delta,t,l}^2$ is the variance of the growth increment (Cao et al. 2017):

$$\sigma_{\Delta,t,l}^2 = \sigma_{L_{\infty}}^2 \left(1 - e^{-K_t} \right)^2 + \left(L_{\infty} - l \right) \sigma_{K_t}^2 e^{-2K_t} + \sigma_{L_{\infty}} \sigma_{K_t} \rho_{L_{\infty},K} \left(1 - e^{-K_t} \right) \left(L_{\infty} - l \right) e^{-K_t} .$$

The standard deviation for L_{∞} , $\sigma_{L_{\infty}} = L_{\infty}CV_{L_{\infty}}$, was the product of L_{∞} and its coefficient of variation (CV). Similarly, the standard deviation of K_t was the product of K_t and its coefficient of variation, $\sigma_{K_t} = K_t CV_K$. Growth intervals decline from their maximum for the smallest size bin, to zero at the L_{∞} . The mean growth increment is shown in Figure 2.

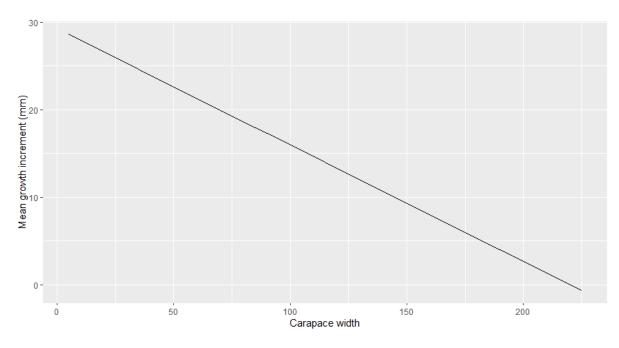


Figure 2 Mean growth as a function of starting length in August for blue crab in Chesapeake Bay

The smallest length bin represents individuals in that range and smaller,

$$P_{m,l} = \Phi\left(w/2, \Delta_{t,l}, \sigma_{\Delta,t,l}^2\right).$$

The largest length bin is a "plus" group representing all individuals that carapace width and larger,

$$P_{m,l,l'} = 1 - \Phi\left(l' - l, \Delta_{t,l}, \sigma_{\Delta,t,l}^2\right).$$

Negative growth (i.e., individuals shrinking in their carapace width) is not allowed.

The total instantaneous mortality (Z) in the operating model is the sum of natural mortality (M) and fishing mortality (F) summed over fleets (ζ), $Z_{x,l,y,t} = M_{x,l} + \sum_{\zeta} F_{x,l,y,t,\zeta}$.

The fishing mortality is the product of length-based selectivity for each fleet (s) and the fishing intensity during each sub-annual time step t for a fleet (F^*), $F_{l,y,t,\zeta} = s_{l,f} F_{y,t,\zeta}^*$.

Currently, two fleets are included in the model: a hard crab and peeler fleets. For now, fishing mortality is constant over time for each fleet, but in future version of the operating model, it can be dynamic over time. In the example results shown, the hard crab fishing mortality rate is 1.05 per year, and the peeler fishing mortality rate is set to zero. Natural mortality of each length bin is set to 0.9 per year to match the assumptions of the 2011 stock assessment (Miller et al. 2011).

The operating model includes a process error, δ . The standard deviation for the process error is set to a small value for these simulations to more clearly show the dynamics of the model. However, the importance of this parameter can be evaluated in subsequent analyses if desired.

The combined dynamics for males described above produces simulated length distributions that reflect what is known about size distributions of males in the population (Figure 3).

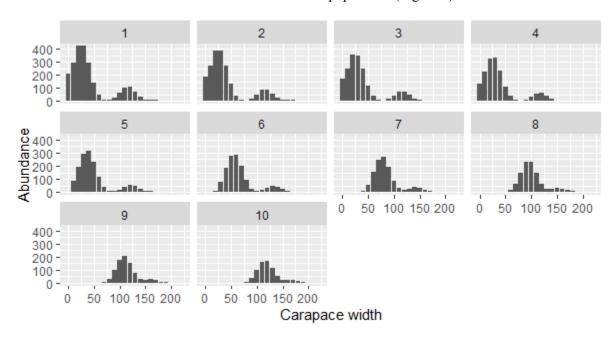


Figure 3. Simulated length composition of male blue crabs during a simulate year by month. The first month represents January-March, and months 2-10 represent April-December.

Females, both immature and mature, are modelled in a broadly similar way as males, except the model has to account for the molt to maturity, which serves as a functional terminal molt (Smith and Chang 2007). For immature females, abundance-at-age follows similar dynamics as males except for the inclusion of maturation in P, which causes transition to the category of mature females. For immature females the dynamics of abundance at length is given by,

$$N_{f,l',y,t+1} = \kappa_f R_{l,y,t} + \sum_{l} P_{f,t,l,l'} N_{f,l,y,t} e^{-Z_{f,l,y,t} + \delta_{f,l,y,t}} .$$

The probability of an immature female crab moving from one size bin to another and remaining immature is described by

$$P_{f,l,l'} = \left(\Phi\left(l'-l+w,\Delta_{t,l},\sigma_{\Delta,t,l}^2\right) - \Phi\left(l'-l,\Delta_{t,l},\sigma_{\Delta,t,l}^2\right)\right)\left(1-\psi_l\right),$$

where ψ is the probability of maturation.

For mature females, the model is similar to immature females, but it does not include recruitment, and *P* includes females that mature,

$$N_{n,l',y,t+1} = \sum_{l} P_{n,t,l,l'} N_{n,l,y,t} e^{-Z_{n,l,y,t} + \delta_{n,l,y,t}} + \sum_{l} P_{fin,t,l,l'} N_{f,l,y,t} e^{-Z_{f,l,y,t} + \delta_{f,l,y,t}}.$$

Females that mature transition to mature females at length with probability,

$$P_{\mathit{fn,l,l'}} = \left(\Phi\left(l' - l + w, \Delta_{\mathit{t,l}}, \sigma_{\Delta,\mathit{t,l}}^2\right) - \Phi\left(l' - l, \Delta_{\mathit{t,l}}, \sigma_{\Delta,\mathit{t,l}}^2\right)\right)\psi_l.$$

This equation is only applied for l > l, which indicates that a female grew during that time step (i.e., a female to grow during the month in which she matures). Once a female reaches maturity, she will no longer grow, which is represented by an identity matrix. The female maturity curve is shown in Figure 4.

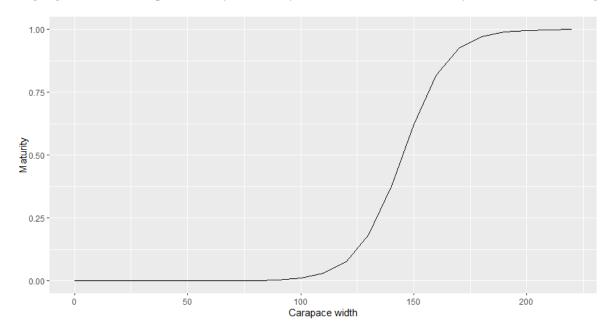


Figure 4. Female maturity-at-length curve used in the operating model.

The operating model explicitly links growth to environmental conditions. The model includes environmental drivers for the growth parameters (K) over time,

$$K_{y,t} = g(env_{y,t}).$$

We are modeling K as a linear function of average cumulative growing degree days during a time step (Figure 5).

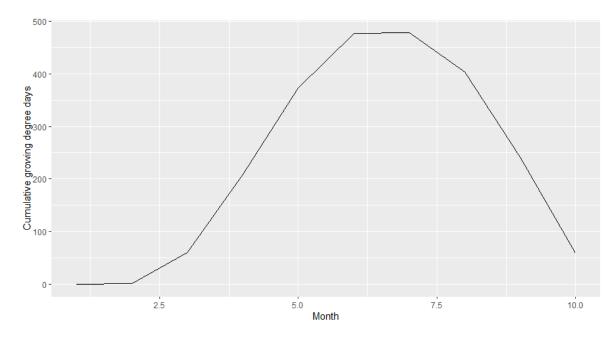


Figure 5. Cumulative growing degree days per month based on interpolated water temperatures in the Chesapeake Bay.

Catch at length

Catches in the operating model are length-, sex-, and time-specific. Catch (C) for each fleet and sex category follows the Baranov catch equation,

$$C_{l,y,t,f} = \frac{F_{l,y,t,f}}{Z_{l,y,t}} \left(1 - e^{-Z_{l,y,t}} \right) N_{l,y,t}.$$

Where all parameters are as described previously.

Indices at length

Expected survey indices (I) are calculated as the product of catchability (q), survey selectivity (s^v), and abundance, $I_{l,y,t} = qs_l^v N_{l,y,t}$. We included surveys to represent the WDS, Maryland Trawl Survey, VIMS Trawl Survey, and the ChesMMAP Trawl Survey. The selectivity functions are shown in Figure 6.

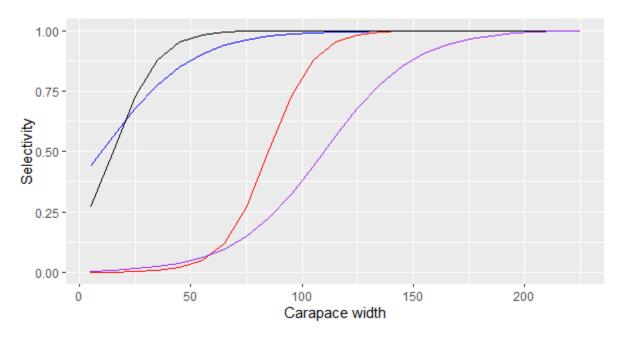


Figure 6. Selectivity curves used in the operating model for the male hard crab fishery (red) and the surveys. The blue line represents the Winter Dredge Survey, the black line represents the Maryland Trawl Survey and the VIMS Trawl Survey, and the purple line represents the ChesMMAP Trawl Survey.

Lognormal errors are applied to generate observed catch and indices, and multinomial error functions are used to generate the size composition data. Size composition in the model is generated.

The model has been implemented in the R programming environment. Full model code is provided in Appendix 2.

Results

The operating model simulated recruitment that matched reasonably well with the range estimated in the 2011 stock assessment (Figure 7), but this is expected because we used the same stock-recruitment parameters as the 2011 stock assessment (Miller et al. 2011).

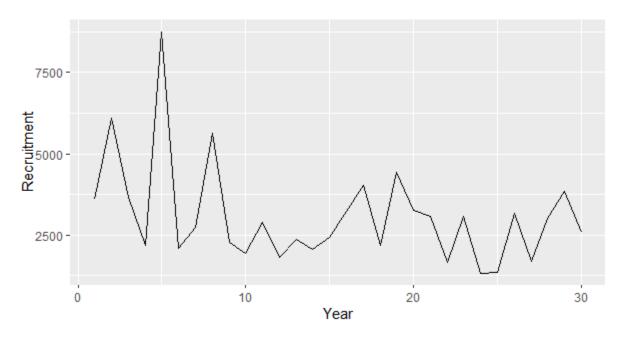


Figure 7. One realization of simulated recruitment during a 30-year period from the operating model.

Total male abundance (Figure 8) and female abundance (not shown) also fluctuated in similar ranges as has been previously observed.

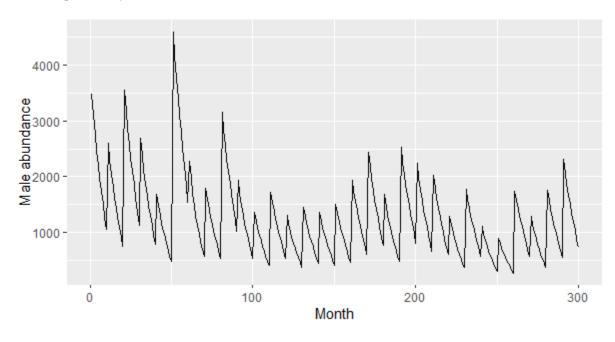


Figure 8. Simulated monthly male abundance during a 30-year period from the operating model.

The pattern of abundance shows annual peaks in recruitment, followed by declines in abundance driven by the combination of natural and fishing mortality. Female abundance demonstrates a similar saw tooth pattern.

The model was able to simulate the length structure of the population observed in the WDS during month 1 very well for mature females, reasonably well for males, and fairly for immature females (Figure 9). The model exhibited one clear peak in the length composition for mature females and two modes for males and immature females. In particular, the operating model had larger age 1+ immature females than the data.

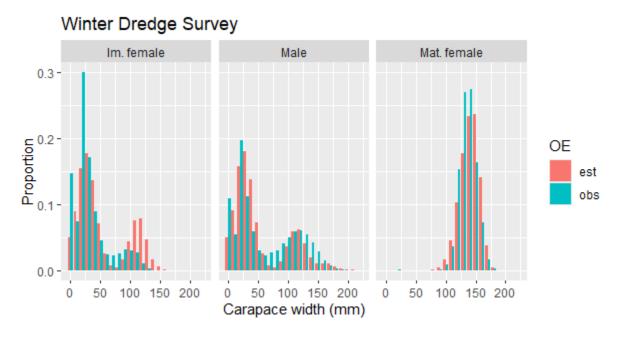


Figure 9. Comparison of operating model simulated length composition to the average length composition of the Winter Dredge Survey. Blue bars are the observed proportions-at-length and the red bars are the simulated proportions-at-length.

We caution that the close similarity of results of the combined operational / observational model does not reflect any sort of statistical fitting of model parameters to data. Rather they closeness reflects judicial choices of parameter estimates in the operating model. Considerable work remains to evaluate parameter values for the operating model and how these affect the potential bias and precision of the assessment model.

For the other surveys, the operating model's ability to match the survey length composition data depended on the sex and month. In all months and surveys, the operating model generated length compositions that were very close to those observed in the surveys for mature females (Figures 10, 13, and 16). For immature females and males, the operating model was able to match the length compositions reasonably well during the spring, fall, and winter, but struggled to match the length compositions during the spring and summer (Figures 11-12, 14-15, 17-18). The fall length compositions only differed because they include small young-of-the year that are observed before our recruitment time in the model. The observed summer length compositions typically became unimodal, whereas our model predicted continued bimodal distributions until the fall. This may indicate that we need to allow for increased growth variability in the model.

MD Trawl Survey Mature Females

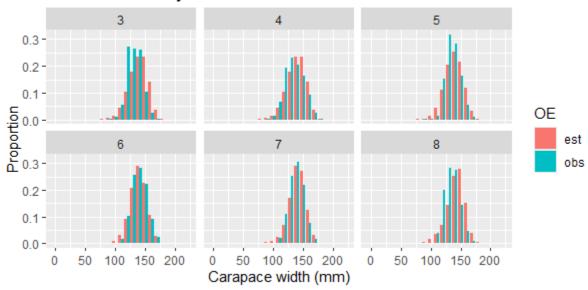


Figure 10. Monthly simulated and observed proportions-at-length from the Maryland Trawl Survey for mature females. Colors are as defined in Figure 9.

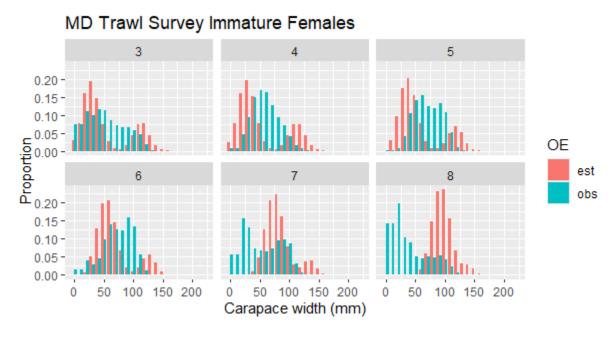


Figure 11. Monthly simulated and observed proportions-at-length from the Maryland Trawl Survey for immature females. Colors are as defined in Figure 9.

MD Trawl Survey Males

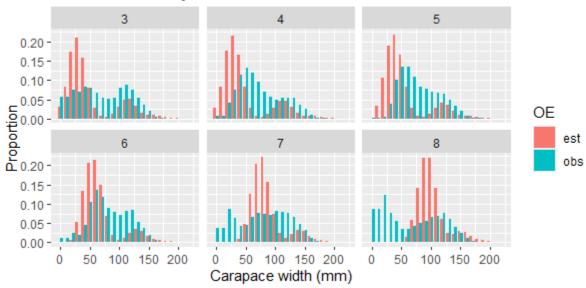


Figure 12. Monthly simulated and observed proportions-at-length from the Maryland Trawl Survey for males. Colors are as defined in Figure 9.

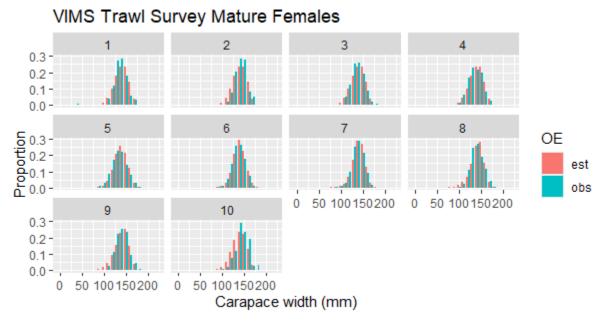


Figure 13. Monthly simulated and observed proportions-at-length from the VIMS Trawl Survey for mature females. Colors are as defined in Figure 9.

VIMS Trawl Survey Immature Females

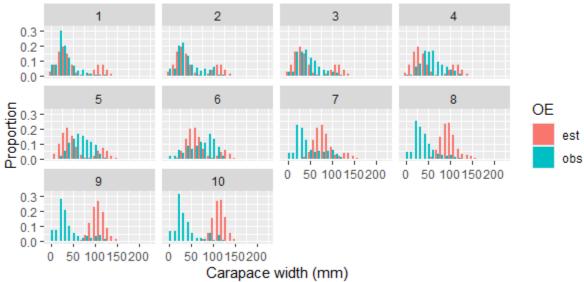


Figure 14. Monthly simulated and observed proportions-at-length from the VIMS Trawl Survey for immature females. Colors are as defined in Figure 9.

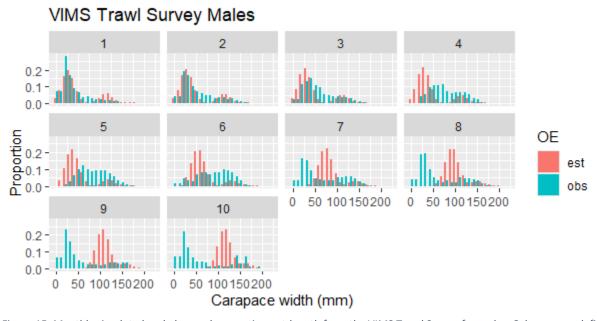


Figure 15. Monthly simulated and observed proportions-at-length from the VIMS Trawl Survey for males. Colors are as defined in Figure 9.

ChesMMAP Trawl Survey Mature Females

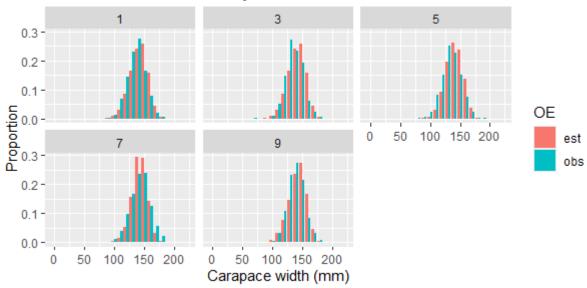


Figure 16. Monthly simulated and observed proportions-at-length from the ChesMMAP Trawl Survey for mature females. Colors are as defined in Figure 9.

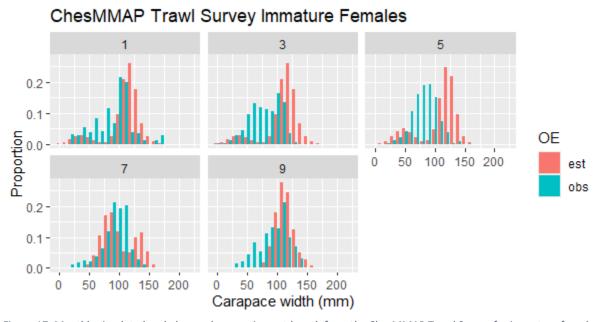


Figure 17. Monthly simulated and observed proportions-at-length from the ChesMMAP Trawl Survey for immature females. Colors are as defined in Figure 9.

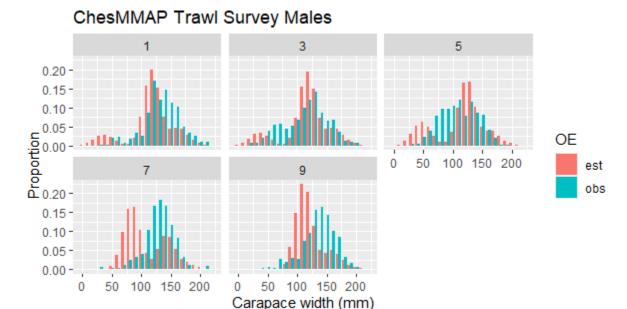


Figure 18. Monthly simulated and observed proportions-at-length from the ChesMMAP Trawl Survey for males. Colors are as defined in Figure 9.

Challenges

We had two main challenges that caused us to deviate from our initial modeling plan. The first challenge was that the length-based dynamics model development took substantially longer than expected. This was partially due to the complexity of the length- and sex-structured model, which required substantially different models for growth of females and males. We attempted to develop statistical fitting approaches to estimate the growth parameters within the population model, which took a considerable amount of time. However, we were unable to find a stable version of the model for estimation of the growth parameters. Additionally, because we were unable to statistically estimate the growth parameters, we also gave up on attempting to statistically estimate movement parameters for a spatial version of the model. That said, this project has allowed us to make substantial progress toward a length-structured blue crab assessment model and a spatial operating model.

Conclusions

We developed an operating model that is able to simulate dynamics of blue crabs in the Chesapeake Bay. The model included recruitment, growth, mortality, and observation processes and can be tailored to represent specific scenarios about growth, recruitment, or mortality. In many ways the model was able to replicate the observed interannual and intra-annual dynamics of blue crabs. It was best at representing mature females, but the current growth model was not able to match the length compositions in the spring-summer. This likely points to a mismatch in our assumed growing degree day threshold, or it may indicate that the effect of temperature on growth changes during the year. These hypotheses will be explored in the upcoming benchmark stock assessment for blue crabs. Additionally, the operating model will be extremely useful for testing versions of stock assessment models to determine their accuracy and bias under known conditions.

Section 5

Toward a spatial blue crab assessment model

We developed also as a part of this project more detailed operating / observation models to support a highly resolved assessment model (Figure 1). These models were used to explore both assumptions underlying the observation model, include more fine-scaled spatial population dynamic processes in the operating model and assess the performance of a prototype assessment model. This assessment model is simpler than the operation model. This effort focuses on development of models that are estimable from the incomplete survey and fisheries data. The resulting model can be expanded into a simulation model and used to test the assessment model. These efforts are not complete, but have provided considerable insight that will guide the upcoming blue crab stock assessment model.

This secondary modelling initiative focused only on male crabs. We made this simplifying assumption because it eases estimation challenges associated with the terminal molt in female crabs. Other than this distinction, the operating model follows closely the format of the general operating model presented in the previous section. The model was parameterized for a number of spatial regions (Fig 19).

Population dynamic model

The model represents the life history and fishery dynamics of the male blue crab in the Chesapeake Bay. It is a discrete model with a monthly time step. As in the general operating model, the months of January – March are combined to represent winter, during which no growth occurs. Thus the model is based on a 10-month year. In all subsequent equations, y is the year, and t is the month

The abundance of crabs is given by the number of crabs in discrete size bins, defined by a parameter l, at time t

Recruitment

Recruitment is modelled to occur from May to November in each year. Some recruitment is possible in each of these months. Each monthly cohort experiences natural mortality between recruitment and the first winter. Recruitment is modeled via the proportion of recruits at length (P_l) and monthly recruitment parameter (R_t) :

$$R_{l,t} = P_l R_t \tag{1}$$

There is no stock-recruitment function in the model. R_t is a random variable.

Model initialization

A recursive relationship is used to establish the initial population abundance and distribution at size. The male abundance at length $N_{l,t+1}$ is the sum of the recruitment and the abundance of individuals that survive and grows to a specific size bin. We define a monthly growth matrix $G_{t,l,l'}$ as the

probability of growing from size bin l' to l during month t. The total instantaneous mortality rate is defined as $\mathbf{Z}_{l,t}$.

$$N_{l,t+1} = \exp\{\delta_{l,t}\} \sum_{l'} G_{t,l,l'} N_{l',t} \exp\{-Z_{l',t}\} + R_{l,t}$$
 (2)

A Normally distributed process error $\hat{\delta_{l,t}} \sim N(0,\sigma_\delta^2)$ is included in the population dynamic. The model assumes growth occurs after mortality.

The population abundance and distribution at length in the initial time step is determined by running Eq. (2) for ten years. During this phase, only natural mortality, $M_{l,t}$ contributes to $Z_{l,t}$. Natural mortality is assumed constant and fixed over time. However, natural mortality is size dependent (Figure 20). There is no fishing mortality ($F_{l,t}$) during this phase. A seasonal growth matrix $G_{m,l,l'}$ is used during the initialization stage.

Growth and Survival

The abundance and size composition are calculated using Eq. 2, but with a variable G matrix and fishing mortality.

Growth for males follows a stochastic von Bertalanffy growth model that uses a normal distribution to estimate the probability of moving from one length bin (i.e., carapace width) to the next,

$$G_{t,l,l'} = \Phi(l' \times w) - \Phi(l \times w), \tag{3}$$

where w is the bin width, l is the length bin, and Φ is a cumulative normal density function with mean $\Delta_{t,l}=(L_{\infty}-l)(1-e^{-K_t})$ and variance of the growth increment (Cao et al. 2017b),

$$\sigma_{\Delta,t,l}^2 = \sigma_{L_{\infty}}^2 (1 - e^{-K_t})^2 + (L_{\infty} - l)\sigma_{K_t}^2 e^{-2K_t} + \sigma_{K_t,L_{\infty}} (1 - e^{-K_t})(L_{\infty} - l)e^{-K_t}$$
(4)

where σ_{K_t,L_∞} is the covariance between the L_∞ and K_t parameters in the von Bertalanffy model. The smallest length bin represents individuals in that range and smaller,

$$G_{t,l=1} = \Phi\left(\frac{w}{2}\right) \tag{5}$$

The largest length bin is a "plus" group representing all individuals that carapace width and larger,

$$G_{t,l=L} = 1 - \Phi(L \times w) \tag{6}$$

Negative growth is not allowed. The parameterization of the seasonal growth model is shown in Figure 21

We include an environmental driver for the annual growth coefficient of the von Bertalanffy model over time.

$$K_t = k_p \text{GDD}_t \tag{7}$$

Initially, we are modeling K as a linear function of cumulative growing degree days during a time step.

Following initialization, the total instantaneous mortality (Z) is the sum of natural mortality at length (M_l) and fishing mortality at length for a single fleet $(F_{l,t,f})$ specific to each time step.

$$Z_{l,t} = M_l + F_{l,t,f} \tag{8}$$

The fishing mortality is the product of the length-based selectivity ($fsel_1$) and fishing intensity ($Fmult_t$).

$$F_{l,t,f} = fsel_l \times Fmult_{t,f} \tag{9}$$

Fishing occurs between March and November each year. Limited winter catches are ignored in this model.

Catch (C) for each fleet and time step follows the Baranov catch equation,

$$C_{l,t,f} = \frac{F_{l,t,f}}{Z_{l,t}} \left[1 - \exp(-Z_{l,t}) \right] N_{l,t}$$
(3)

Observation model

The WDS is treated as the beginning of the year survey, with no catchability adjustment. Size specific abundances in the WDS is given by,

$$I_{1,l,t} = ssel_l \times N_{l,t} \tag{4}$$

The WDS occurs only once in the year during the winter time step.

The Maryland trawl survey is a monthly survey that operates during April – September. The Maryland trawl survey is subject to a constant catchability over time. Size specific abundances in the Maryland trawl survey is given by

$$I_{2,l,t} = q \times ssel_l \times N_{l,t} \tag{5}$$

where ssel₁ is the survey selectivity at length. Catchability is calculated internally

$$q \propto \sum_{l,t} \left[\log(\operatorname{ssel}_{l} \times N_{l,t}) - \log(n_{l,t}) \right] \tag{6}$$

where the sum is taken over all length bins with a positive catch.

The lognormal likelihood is used for observation errors in total catch from both survey indices,

$$n_{s,t} \sim \text{lognormal}(I_{s,t}, w_1),$$
 (7)

where n is the total catch and w_1 is the assumed known standard deviation for each index s.

Multinomial errors are used for size composition data from the survey

$$p_{s,l,t} \sim \text{Multinomial}(P_{s,l,t}, n_1),$$
 (8)

where P is the proportion of abundance at length for each time step, and n_1 is the assumed known number of stations for both surveys.

The lognormal likelihood is used for the errors in total fishery catch,

$$c_t \sim \text{lognormal}(C_t, w_2).$$
 (9)

Size composition in the model is pooled into total catch to match the data source. Additionally, random effects are estimated for the recruitment parameters, and the process error for abundance at length.

Estimation

Parameters from the model were estimated in TMB. The full model code is provided in Appendix 3.

Informative priors were derived for the von Bertalanffy parameters based on literature values(Ju et al. 2001a). The reported L_{∞} and K from six studies were re-sampled using bootstrap to derive the lognormal prior distribution for their mean and standard deviation. Informative priors were derived for the survey selectivity parameters based on expert knowledge (Figure 22).

Informative priors were derived for the fishing intensity and recruitment based on cross-validation. An initial set of mean and standard deviations for the lognormal priors on the log standard deviation of the recruitment were selected based on the prior assessment. The priors that lead to optimal cross-validation errors for the WDS index were selected. Detailed prior specifications can be found in the supplementary codes.

The model was fit iteratively to 5-13 years of data. Considerable supervision was required to improve model performance.

Results

In the results, observations and estimates for regions were aggregated at the state level. The Main 1, Main 2, Choptank, Patuxent, Potomac and Tangier 3 regions were defined as Maryland (Figure 19). The Main 3, Main 4, Tangier 5, Rappahannock, York and James regions were defined as Virginia (Figure 19).

Overall, the model demonstrated the ability to generate the pattern and scale of catches in the male fisheries (Figure 23). However, the model rarely predicted catches as high as those observed, and there is some evidence for a mismatch in the timing of peak catch between the modelled and observed catches.

The model was less able to estimate catches in the WDS correctly (Figure 24). There appears no consistent pattern of match of observed and estimated data. This is made more challenging by the fact that the observation model predicts WDS abundance for all 10 months of the year – providing the saw tooth nature of the estimated survey abundance, in which recruitment during summer is acted upon by mortality. A more appropriate comparison might be to compare just estimated survey abundance for the aggregate winter month to that observed in the WDS. This may reflect either incorrect specification of error in the observation model, or problems with estimated uncertainty in the assessment model.

The model also did not estimate the size distribution in the WDS well (Figures 25 - 26). The model did much better in estimating the size distributions in Virginia than in Maryland. We have shown previously that the operating model was able to forecast the size distribution in surveys to a reasonable degree of accuracy. However, the assessment model in our simulations was not able so to do. This suggests tension in the data that are entered into the model.

The model appeared to estimate the scale and pattern of catches in both the Maryland trawl and the VIMS trawl surveys (Figure 27). As was the case with the WDS, the model does not estimate survey indices as high as those observed in the field. This difference is evident most in the later years of the Maryland trawl survey, but is more consistent throughout the VIMS trawl survey. This may reflect either incorrect specification of error in the observation model, or problems with estimated uncertainty in the assessment model.

The model performed better in estimating the size distributions of male crabs in both the Maryland trawl survey (Figure 28) and the VIMS trawl survey (Figure 29). This improvement in model performance relates directly to the greater number of monthly observations in these two surveys providing information to the model that improves the fit of the model to the size distributions. Specifically, the data provide the model more information from which to estimate the G matrices that drive growth.

As noted above, this model does not include any movement among spatial regions. It is possible that a fully spatial model will help resolve some of the patterns observed in the length compositions by allowing for varying temperature in different parts of the Bay. However, from the experience gained in fitting these length-structured models, we are concerned that there is insufficient movement data, at the spatial and temporal resolution of the surveys, to allow us to successfully develop such a spatial model.

There are three main challenges for moving from the current non-spatial length-structured model to a spatial version: 1) spatial patterns of recruitment, 2) spatial patterns of mortality, and 3) movement among regions. Spatial patterns in recruitment is likely the easiest problem to address because the WDS operates in all parts of the Bay and surveys in a consistent manner. Therefore, it should be relatively straightforward to estimate the proportion of age-0 blue crabs in each region of the Bay. But this requires us to include the assumption that recuitment is observed for the first time in the aggregate winter month. The main issue would be if the proportions in each region are changing over time because forcing functions would need to be developed to allow the simulation model to forecast changes in the spatial distribution of recruits. Spatial patterns in mortality are more challenging to deal with than recruitment because a common survey like the WDS does not sample throughout the whole year. Rather, we have surveys that sample large, but often non-overlapping areas. The differences in

selectivity and catchability among surveys make it difficult to infer differences in mortality rates from survey data alone. Lastly, movement will likely be the most difficult portion of the model to parameterize. Ideally, movement would be estimated through a large-scale tagging study that marks indiviuals throughout the Bay and has a coordinated and well-designed approach for getting recaptures throughout the whole Bay. To date this kind of study has not been done. Smaller scale tagging studies can help inform movement, but substantial uncertainty will remain because many parts of the Chesapeake were not included in those studies.

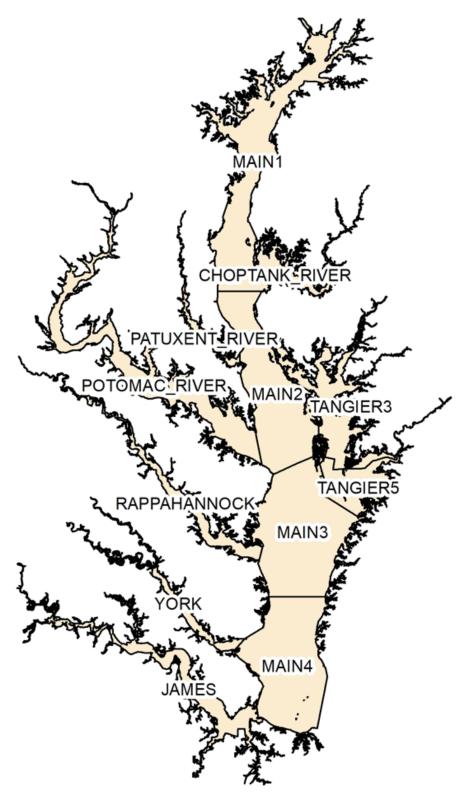


Figure 19. The spatial regions used in the spatially explicit modeling exercise

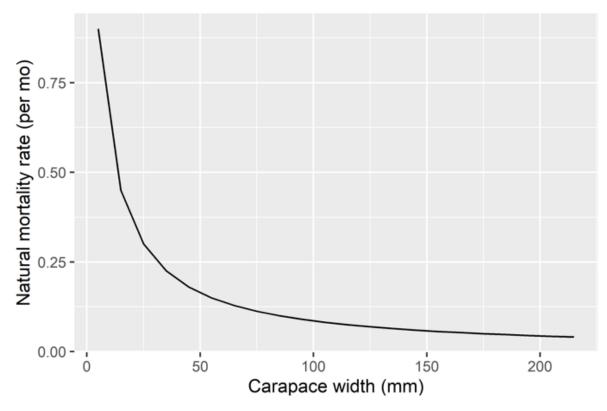


Figure 20. The size dependent natural mortality function used in the model. The overall rate of natural mortality was fixed to M=0.9/yr or 0.009/ month for the 10 month year

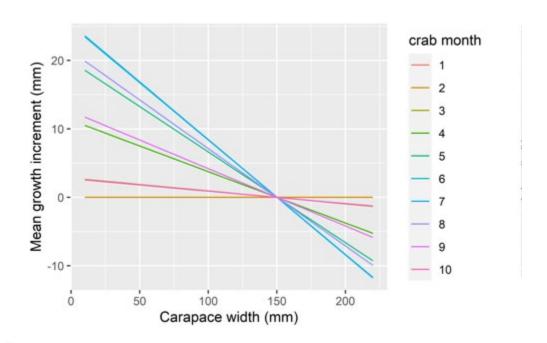


Figure 21. The seasonal growth model used in the operating model. Each line is the linear incremental growth function for a different month

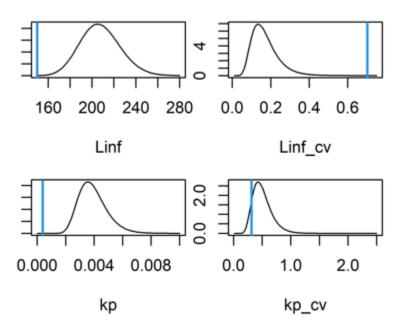


Figure 22. Posterior distributions of parameters for the growth model, together with their initial values (in blue)

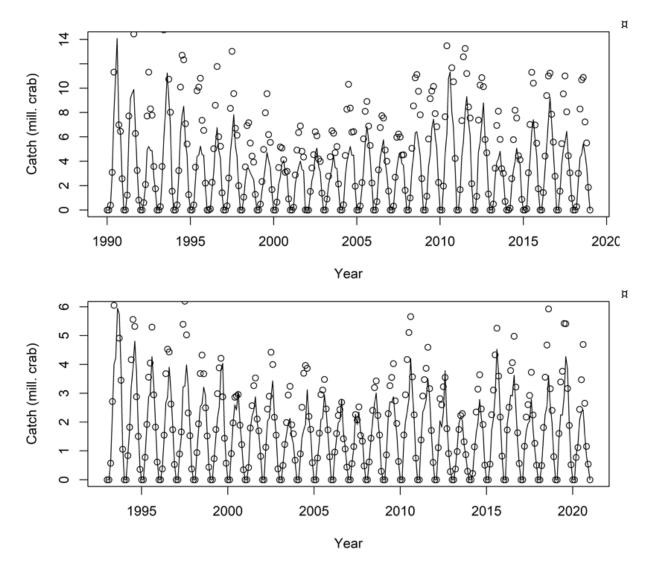
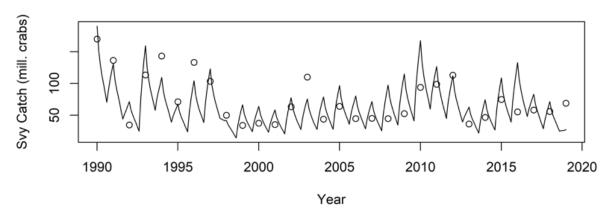



Figure 23. Time series of observed and estimated catch of male crabs in Maryland (upper panel) and Virginia (lower) for the period 1993-2022. The observed catches are shown as open symbols, and the estimated catches as the solid line.

Ħ

Winter Dredge Srvy

Winter Dredge Srvy

Figure 24. Time series of observed and estimated indices for total male abundance in the winter dredge survey for strata in Maryland (upper panel) and in Virginia (lower) panel for the period 1993 -2022. Both panels show observations as open circles and estimated male abundance as the black line

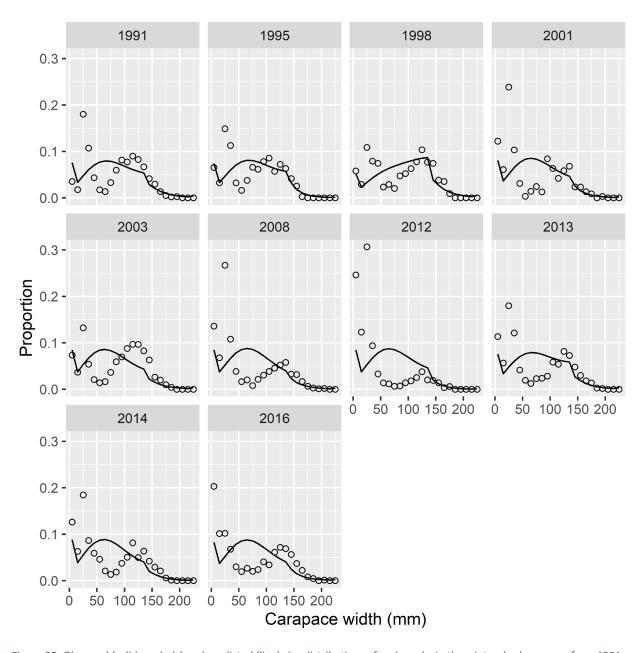


Figure 25. Observed (solid symbols) and predicted (line) size distributions of male crabs in the winter dredge survey from 1991-2016

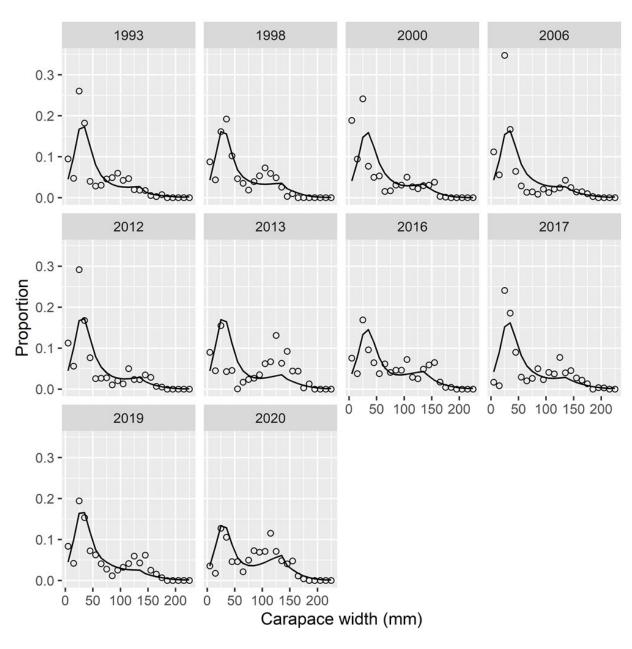
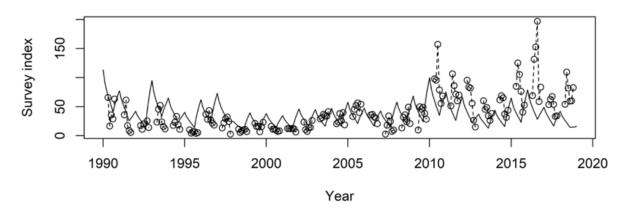



Figure 26 Observed (solid symbols) and predicted (line) size distributions of male crabs in the winter dredge survey from 1991-2016

MD Trawl Srvy

Trawl Srvy

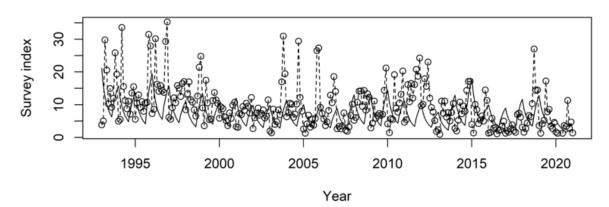


Figure 27. Observed and estimated abundances of male crabs in the Maryland trawl survey (upper panel) and the VIMS trawl survey (lower panel) for the period 1993- 2022. Estimated values are shown as a solid line and observed values as open symbols and a dashed line.

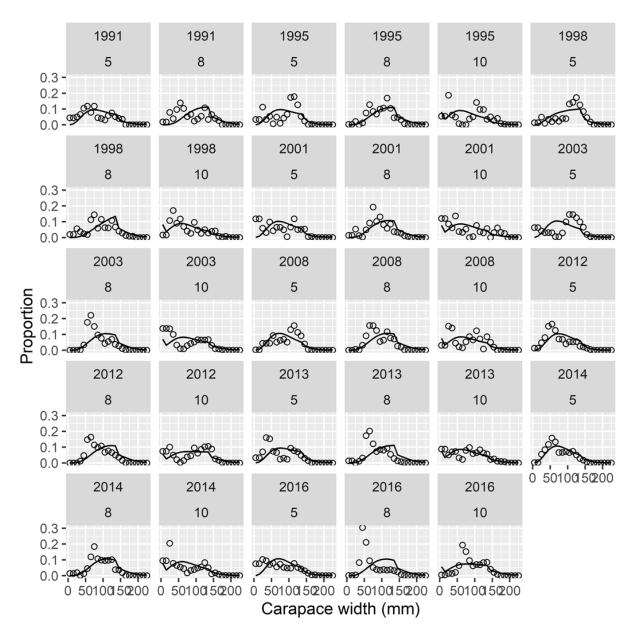


Figure 28. Predicted (solid line) and observed (open symbols) size distributions of male crabs in the Maryland trawl survey for 1991-2016 by month

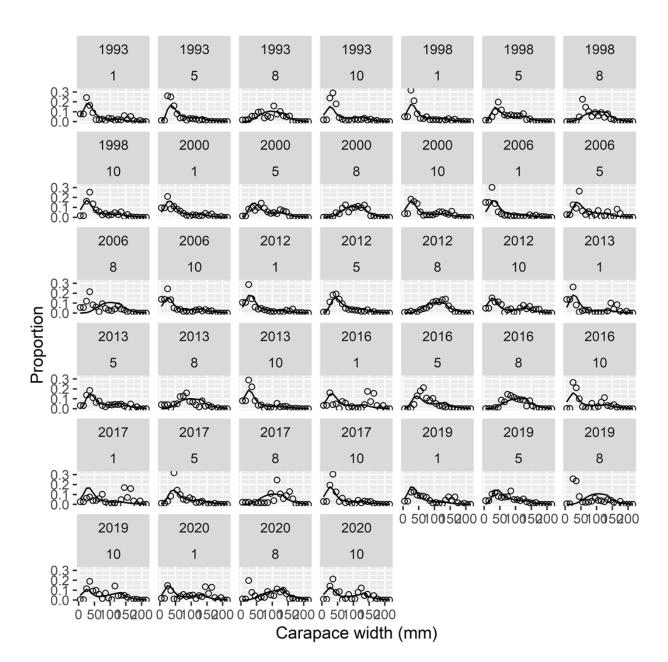


Figure 29. Predicted (solid line) and observed (open symbols) size distributions of male crabs in the VIMS trawl survey for 1993-2020 by month

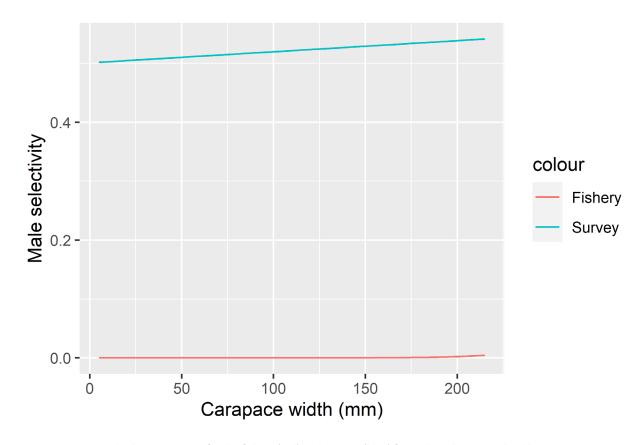


Figure 30. Estimated selectivity curves for the fishery (red) and surveys (blue) for male crabs in Maryland between 1990-1999

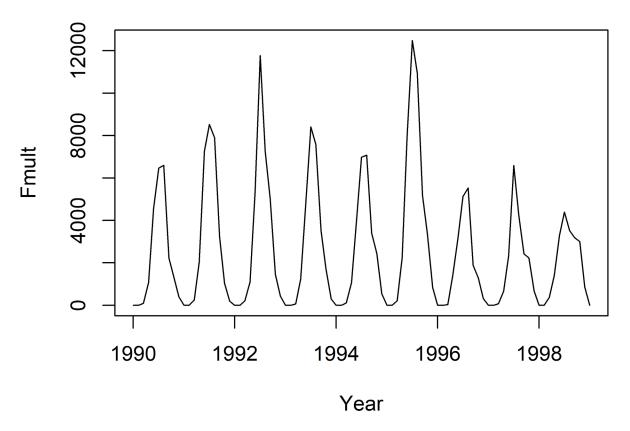


Figure 31. The F multiplier estimated by the stock assessment model for the period 1990-1999 fit to data for male blue crab in Maryland

LITERATURE CITED

- Allen, K. G. D. 2022. Synergistic impacts of climate change and human induced stressors on the Apalachicola Bay food web. MS. University of Central Florida, Orlando, FL.
- Baird, D., and R. E. Ulanowicz. 1989. The seasonal dynamics of the Chesapeake Bay ecosystem. Ecological Monographs **59**:329-364.
- Brylawski, B. J., and T. J. Miller. 2006. Temperature-dependent growth of the blue crab (Callinectes sapidus): a molt process approach. Canadian Journal of Fisheries and Aquatic Sciences **63**:1298-1308.
- Bunnell, D. B., and T. J. Miller. 2005. An individual-based modeling approach to spawning-potential perrecruit models: an application to blue crab (Callinectes sapidus) in Chesapeake Bay. Canadian Journal of Fisheries and Aquatic Sciences **62**:2560-2572.
- Butterworth, D. S., and A. E. Punt. 1999. Experiences in the evaluation and implementation of management procedures. ICES Journal of Marine Science **56**:985-998.
- Cao, J., Y. Chen, and A. E. Richards. 2017a. Improving assessment of *Pandalus* stocks using a seasonal size-structured assessment model with environmental variables. Part I: Model description and application. Canadian Journal of Fisheries and Aquatic Science **74**:349-362.
- Cao, J., Y. Chen, and R. A. Richards. 2017b. Improving assessment of Pandalus stocks using a seasonal, size-structured assessment model with environmental variables. Part I: Model description and application. Canadian Journal of Fisheries and Aquatic Sciences **74**:349-362.
- Caswell, H. 2001. Matrix Population Models: Construction, Analysis and Interpretation. 2nd edition. Sinauer and Assoc., Sunderland, MA.
- Chesapeake Bay Stock Assessment Committee. 2022. Blue crab population drivers and stock assessment in Chesapeake Bay. NOAA Chesapeake Bay Office, Hampton, VA.
- Davis, J. L. D., A. C. Young-Williams, A. H. Hines, and Y. Zohar. 2005. Assessing the potential for stock enhancement in the case of the Chesapeake Bay blue crab (Callinectes sapidus). Canadian Journal of Fisheries and Aquatic Sciences **62**:109-122.
- Eggleston, D. B., R. N. Lipcius, and A. H. Hines. 1992. Density-Dependent Predation by Blue Crabs Upon Infaunal Clam Species with Contrasting Distribution and Abundance Patterns. Marine Ecology-Progress Series 85:55-68.
- Fogarty, M. J., and R. N. Lipcius. 2007. Population dynamics and fisheries. Pages 711-755 *in* V. S. Kennedy and L. E. Cronin, editors. The Blue Crab, *Callinectes sapidus*. Maryland Sea Grant College, College Park, MD.
- Frisk, M. G., T. J. Miller, R. J. Latour, and S. J. D. Martell. 2011. Assessing biomass gains from marsh restoration in Delaware Bay using Ecopath with Ecosim. Ecological Modelling **222**:190-200.
- Glandon, H. L., K. H. Kilbourne, and T. J. Miller. 2019. Winter is (not) coming: warming temperatures will affect the overwinter behavior and survival of blue crab. PLOS ONE **14**:000-000.
- Hata, D. 1997. Comparisons of gears and vessels in the Virginia Institute of Marine Science juvenile finfish trawl survey. 343, Virginia Institute of Marine Science, Gloucester Point, VA.
- Jensen, O. P., and T. J. Miller. 2005. Geostatistical analysis of the abundance and winter distribution patterns of the blue crab Callinectes sapidus in Chesapeake Bay. Transactions of the American Fisheries Society **134**:1582-1598.
- Ju, S.-J., D. H. Secor, and H. R. Harvey. 2001a. Growth rate variability and lipofuscin accumulation rates in the blue crab Callinectes sapidus. Marine Ecology Progress Series **224**:197-205.

- Ju, S. J., D. H. Secor, and H. R. Harvey. 2001b. Growth rate variability and lipofuscin accumulation rates in the blue crab Callinectes sapidus. Marine Ecology-Progress Series **224**:197-205.
- Liang, D., G. Nesslage, M. Wilberg, and T. Miller. 2017. Bayesian Calibration of Blue Crab (Callinectes sapidus) Abundance Indices Based on Probability Surveys. Journal of Agricultural Biological and Environmental Statistics **22**:481-497.
- Liang, D., G. M. Nesslage, M. J. Wilberg, and T. J. Miller. 2021. Ranking ecosystem impacts on Chesapeake Bay blue crab (Callinectes sapidus) using empirical Gaussian Graphical Models. Canadian Journal of Fisheries and Aquatic Sciences **78**:245-254.
- Lipcius, R. N., R. D. Seitz, M. S. Seebo, and D. Colon-Carrion. 2005. Density, abundance and survival of the blue crab in seagrass and unstructured salt marsh nurseries of Chesapeake Bay. Journal of Experimental Marine Biology and Ecology **319**:69-80.
- Mancinelli, G., P. Chainho, L. Cilenti, S. Falco, K. Kapiris, G. Katselis, and F. Ribeiro. 2017. The Atlantic blue crab Callinectes sapidus in southern European coastal waters: Distribution, impact and prospective invasion management strategies. Marine Pollution Bulletin **119**:5-11.
- Mansour, R. A., and R. N. Lipcius. 1991. Density-Dependent Foraging and Mutual Interference in Blue Crabs Preying Upon Infaunal Clams. Marine Ecology-Progress Series **72**:239-246.
- Miller, T. J. 2001. Matrix-based modeling of blue crab population dynamics with applications to the Chesapeake Bay. Estuaries **24**:535-544.
- Miller, T. J. 2003. Incorporating space into models of the Chesapeake Bay blue crab population. Bulletin of Marine Science **72**:567-588.
- Miller, T. J., and E. D. Houde. 1999. Blue crab target setting. U.S. EPA Chesapeake Bay Program, Annapolis, MD.
- Miller, T. J., S. J. D. Martell, D. B. Bunnell, G. Davis, L. A. Fegley, A. F. Sharov, C. F. Bonzek, D. A. Hewitt, J. M. Hoenig, and R. N. Lipcius. 2005. Stock Assessment of Blue Crab in Chesapeake Bay: 2005. Final Report TS-487-05-CBL., University of Maryland Center for Environmental Science Chesapeake Biological Laboratory, Solomons, MD.
- Miller, T. J., M. J. Wilberg, A. R. Colton, G. R. Davis, A. Sharov, R. N. Lipcius, G. M. Ralph, E. G. Johnson, and A. G. Kaufman. 2011. Stock assessment of blue crab in Chesapeake Bay, 2011. TS-614-11, University of Maryland Center for Environmental Science Chesapeake Biological Laboratory, Solomons, MD.
- Ogburn, M. B., P. M. Roberts, K. D. Richie, E. G. Johnson, and A. H. Hines. 2014. Temporal and spatial variation in sperm stories in mature female blue crabs *Callinectes sapidus* and potential effects on brood production in Chesapeake Bay. Marine Ecology Progress Series **507**:249-262.
- Rains, S. A. M., M. J. Wilberg, and T. J. Miller. 2016. Sex Ratios and Average Sperm per Female Blue Crab Callinectes sapidus in Six Tributaries of Chesapeake Bay. Marine and Coastal Fisheries **8**:492-501.
- Rains, S. A. M., M. J. Wilberg, and T. J. Miller. 2018. Evaluation of fishery-induced sperm limitation in Chesapeake Bay blue crab using an individual-based model. Marine Ecology Progress Series **596**:127-142.
- Rugolo, L. J., K. Knotts, A. Lange, V. Crecco, M. Terceiro, C. F. Bonzek, C. Stagg, R. O'Reilly, and D. S. Vaughan. 1997. Stock assessment of Chesapeake Bay blue crab (*Callinectes sapidus*). National Oceanic and Atmospheric Administration:267p.
- Rugolo, L. J., K. S. Knotts, A. M. Lange, and V. A. Crecco. 1998. Stock assessment of Chesapeake Bay Blue Crab (*Callinectes sapidus* Rathbun). Journal of Shellfish Research **17**:1319-+.
- Seitz, R. D., R. N. Lipcius, W. T. Stockhausen, K. A. Delano, M. S. Seebo, and P. D. Gerdes. 2003. Potential bottom-up control of blue crab distribution at various spatial scales. Bulletin of Marine Science **72**:471-490.

- Semmler, R. F., M. B. Ogburn, R. Aguilar, E. W. North, M. L. Reaka, and A. H. Hines. 2021. The influence of blue crab movement on mark-recapture estimates of recreational harvest and exploitation. Canadian Journal of Fisheries and Aquatic Sciences **78**:371-385.
- Sharov, A. F., J. H. Volstad, G. R. Davis, B. K. Davis, R. N. Lipcius, and M. M. Montane. 2003. Abundance and exploitation rate of the blue crab (*Callinectes sapidus*) in Chesapeake Bay. Bulletin of Marine Science **72**:543-565.
- Smith, S. G. 1997. Models of crustacean growth dynamics. Ph. D. Dissertation. University of Maryland, College Park.
- Smith, S. G., and E. S. Chang. 2007. Molting and Growth. Pages 197-254 *in* V. S. Kennedy and L. E. Cronin, editors. The Blue Crab Callinectes sapidus. Maryland Sea Grant, College Park, MD.
- Türeli, C., T. J. Miller, G. S., and I. N. Yeşilyurt. 2016. Growth and mortality of blue crab (*Callinectes sapidus*) in the North-Eastern Mediterranean Sea. Journal of Fisheries Science **10**:55-62.
- Volstad, J. H., A. F. Sharov, G. Davis, and B. Davis. 2000. A method for estimating dredge catching efficiency for blue crabs, Callinectes sapidus, in Chesapeake Bay. Fishery Bulletin **98**:410-420.
- Williams, A. B. 1974. The swimming crabs of the genus *Callinectes* (Decapoda: Portunidae). Fishery Bulletin U.S. **72**:685-798.

Appendix I

Data requests and agreements

Appendix 1.1. Winter dredge survey

----- Forwarded message ------

From: Wilberg, Michael <wilberg@umces.edu>

Date: Wed, Nov 23, 2022 at 10:57 AM

Subject: Data request for Chesapeake Bay blue crab data To: Glenn Davis -DNR- <glenn.davis@maryland.gov>

Hi Glenn,

Following on last week's CBSAC meeting, we are compiling data sets for our project to develop a simulation model to conduct testing of the Chesapeake Bay Blue Crab stock assessment model. The project is "Scope #9: A Population Simulation Model for Blue Crab Stock Assessment Performance Evaluation" and was awarded to Miller, Wilberg and Liang, by the Chesapeake Bay Trust.

We request the most recent versions of the **Winter Dredge Survey** and the **Maryland Trawl Survey** data up through the most recent year (2022). We are requesting the full data sets because we expect to consider the environmental and location variables in addition to the information on blue crabs (number per station, carapace width, sex, and maturity). From these data sets would like to calculate the number of crabs caught by tow, carapace width, sex, and maturity (maturity just for females). If it is easier for you to provide the tow-specific data, that would be great. Otherwise, if it is easier to send the full data set, we can calculate the catches by tow and category that we are planning on using.

The simulation model we are developing will be spatial, and, therefore, the tow-by-tow information will be very important for helping inform the model. Additionally, this data request will help inform the new CB blue crab stock assessment that will be starting in 2023.

Ideally, we would like to have the data by Dec. 20, 2022.

Please let me know if you have any questions, and I hope you have a Happy Thanksgiving,

Thanks,

Mike

Michael Wilberg
Professor
Chesapeake Biological Laboratory
University of Maryland Center for Environmental Science
P.O. Box 38
Solomons, Maryland 20688, USA
wilberg@umces.edu
Office: 410-326-7273

Lab website: wilberglab.cbl.umces.edu

Appendix 1.2 Virginia Institute of Marine Science Juvenile Finfish and Blue crab Trawl Survey

------ Forwarded message -----From: Wilberg, Michael <wilberg@umces.edu>
Date: Wed, Nov 23, 2022 at 12:44 PM

Subject: VIMS Trawl survey blue crab data request

To: <tuckey@vims.edu>

Cc: Dong Liang <dliang@umces.edu>

Hi Troy,

We are compiling data sets for our project to develop a simulation model to conduct testing of the Chesapeake Bay Blue Crab stock assessment model. The project is "Scope #9: A Population Simulation Model for Blue Crab Stock Assessment Performance Evaluation" and was awarded to Miller, Wilberg and Liang by the Chesapeake Bay Trust.

We are requesting blue crab data from the VIMS Trawl Survey data up through the most recent year (2022). If the 2022 data are not finalized yet, data through 2021 will be good too. We would like to calculate the number of crabs caught by tow, carapace width, sex, and maturity (maturity just for females). We expect to consider the environmental and location variables in addition to the information on blue crabs (CPUE per station by carapace width, sex, and maturity). Specifically, we would like to have the following information including the information for tows that caught no crabs:

Tow ID, Date, Time, Location, Station (fixed or random), gear, effort (e.g., tow distance or time), latitude, longitude, #crabs (by carapace width, sex, and maturity), depth, temprerature, salinity, and any other environmental variables collected).

If it is easier for you to provide a summarized version of the tow-specific data, that would be great. Otherwise, if it is easier to send the full data set, we can calculate the catches by tow and category that we are planning on using. Having the data as either a flat file or relational database would be great - whichever is easiest for you.

The simulation model we are developing will be spatial, and, therefore, the tow-by-tow information will be very important for helping inform the model. Additionally, this data request will help inform the new CB blue crab stock assessment that will be starting in 2023.

Ideally, we would like to have the data by Dec. 20, 2022.

Please let me know if you have any questions, and I hope you have a Happy Thanksgiving,

Thanks,

Mike

Michael Wilberg
Professor
Chesapeake Biological Laboratory
University of Maryland Center for Environmental Science
P.O. Box 38

Appendix 1.3 Chesapeake Bay Multispecies Monitoring and Assessment Program

-------Forwarded message -----From: Wilberg, Michael <wilberg@umces.edu>
Date: Wed, Nov 23, 2022 at 12:38 PM
Subject: ChesMMAP data for blue crab project
To: Robert J Latour <latour@vims.edu>
Cc: Dong Liang <dliang@umces.edu>

Hi Rob.

We are compiling data sets for our project to develop a simulation model to conduct testing of the Chesapeake Bay Blue Crab stock assessment model. The project is "Scope #9: A Population Simulation Model for Blue Crab Stock Assessment Performance Evaluation" and was awarded to Miller, Wilberg and Liang by the Chesapeake Bay Trust.

We are requesting blue crab data from the **ChesMMAP Survey** data up through the most recent year (2022). If the 2022 data are not finalized yet, data through 2021 will be good too. We would like to calculate the number of crabs caught by tow, carapace width, sex, and maturity (maturity just for females). We expect to consider the environmental and location variables in addition to the information on blue crabs (CPUE per station by carapace width, sex, and maturity). Specifically, we would like to have the following information including the information for tows that caught no crabs:

Tow ID, Date, Time, Location, gear, effort (e.g., tow distance or time), latitude, longitude, #crabs (by carapace width, sex, and maturity), depth, temprerature, salinity, and any other environmental variables collected).

If it is easier for you to provide a summarized version of the tow-specific data, that would be great. Otherwise, if it is easier to send the full data set, we can calculate the catches by tow and category that we are planning on using. Having the data as either a flat file or relational database would be great - whichever is easiest for you.

The simulation model we are developing will be spatial, and, therefore, the tow-by-tow information will be very important for helping inform the model. Additionally, this data request will help inform the new CB blue crab stock assessment that will be starting in 2023.

Ideally, we would like to have the data by Dec. 20, 2022.

Please let me know if you have any questions, and I hope you have a Happy Thanksgiving,

Thanks,

Mike

Michael Wilberg
Professor
Chesapeake Biological Laboratory
University of Maryland Center for Environmental Science
P.O. Box 38
Solomons, Maryland 20688, USA
wilberg@umces.edu
Office: 410-326-7273

Lab website: wilberglab.cbl.umces.edu

Appendix 1.5 Maryland Harvest Data and Sentinel Fishery Data Request

----- Forwarded message ------

From: Wilberg, Michael <wilberg@umces.edu>

Date: Wed, Nov 23, 2022 at 1:35 PM

Subject: Maryland blue crab harvest data and sentinel survey data request

To: Genine K Lipkey -DNR- <genine.mcclair@maryland.gov>

Cc: Dong Liang <dliang@umces.edu>

Hi Genine,

As we talked about at the last CBSAC meeting, we are compiling data sets for our project to develop a simulation model to conduct testing of the Chesapeake Bay Blue Crab stock assessment model. The project is "Scope #9: A Population Simulation Model for Blue Crab Stock Assessment Performance Evaluation" and was awarded to Miller, Wilberg and Liang by the Chesapeake Bay Trust.

We are requesting blue crab data from the Maryland harvest and the Maryland Sentinel Survey up through the most recent year (2022). If the 2022 data are not finalized yet, data through 2021 will be good too.

For the Maryland Harvest data, we would like to have catch by sex, market category, NOAA code, month, and gear (if this ends up being non-confidential). We are requesting the harvest by NOAA code because we thought that would be easiest for you. However, if the data are confidential at that level, the regions we are expecting to use in the model are the major tributaries (Patuxent, Chester, and Choptank), three mainstem regions in MD (Above the Bay Bridge (including small tribs); Mid-MD (127, 027, Eastern Bay, all the minor tribs in those regions); and lower-MD (229 and 129)), and Tangier/Pocomoke Sounds (including the tribs).

For the Maryland Sentinel Survey data, we would, ideally like to get the raw data that includes date, location, gear, the size and sex of crabs caught, and any other relevant information. We haven't worked with these data previously, so it may be worth a call so that we better understand what is available.

The simulation model we are developing will be spatial, and, therefore, the spatial information will be very important for helping inform the model. Additionally, this data request will help inform the new CB blue crab stock assessment that will be starting in 2023.

Also, if you have a table on the size and season regulations for MD, that would be very helpful.

Ideally, we would like to have the data by Dec. 20, 2022.

Please let me know if you have any questions, and I hope you have a Happy Thanksgiving,

Thanks,

Mike

Michael Wilberg
Professor
Chesapeake Biological Laboratory
University of Maryland Center for Environmental Science
P.O. Box 38
Solomons, Maryland 20688, USA
wilberg@umces.edu

Office: 410-326-7273

1.6 Virginia Marine Resource Commission Data Request and Confidentiality Agreements

----- Forwarded message -----

From: Wilberg, Michael <wilberg@umces.edu>

Date: Wed, Nov 23, 2022 at 1:35 PM Subject: VA blue crab harvest data

To: Alexa Galvan <alexa.galvan@mrc.virginia.gov>, Lowman, Brooke <brooke.lowman@mrc.virginia.gov>, Dong Liang

<dli>dliang@umces.edu>

Hi Alexa and Booke.

As we talked about at the last CBSAC meeting, we are compiling data sets for our project to develop a simulation model to conduct testing of the Chesapeake Bay Blue Crab stock assessment model. The project is "Scope #9: A Population Simulation Model for Blue Crab Stock Assessment Performance Evaluation" and was awarded to Miller, Wilberg and Liang by the Chesapeake Bay Trust.

We are requesting blue crab data from the **VA harvest** up through the most recent year (2022). If the 2022 data are not finalized yet, data through 2021 will be good too.

For the **VA Harvest data**, we would like to have catch by sex, market category, reporting area, month, and gear (if this ends up being non-confidential). We are requesting the data by reporting area because we thought that would be easiest for you. However, if the data are confidential at that level, we are expecting to represent the VA as several regions: the main tributaries (James, York Rappahannock); two mainstem regions (the same as the ChesMMAP southern strata); and Pocomoke/Tangier Sound.

The simulation model we are developing will be spatial, and, therefore, the spatial information will be very important for helping inform the model. Additionally, this data request will help inform the new CB blue crab stock assessment that will be starting in 2023.

Also, if you have a table of the size and season regulations for VA, that would be very helpful.

Ideally, we would like to have the data by Dec. 20, 2022.

Please let me know if you have any questions, and I hope you have a Happy Thanksgiving,

Thanks,

Mike

Michael Wilberg
Professor
Chesapeake Biological Laboratory
University of Maryland Center for Environmental Science
P.O. Box 38
Solomons, Maryland 20688, USA
wilberg@umces.edu

wilberg@umces.edu Office: 410-326-7273

Lab website: wilberglab.cbl.umces.edu

VMRC PLANS & STATISTICS DATA REQUEST FORM

NAME: Michael Wilberg	g	PHONE: 410-326-7273		
AGENCY: Ches. Biologi	cal Lab., UMCES	FAX#: 410-326-7318		
ADDRESS: P.O. Box 38,	Solomons, MD 20688	EMAIL: wilberg@umces.edu		
SELECT REPORT BELOW: If one of the reports (1 through 15) cannot fill your request, there are more available upon request. Select the appropriate system (1 through 9), if necessary. Please write your detailed request in the "Additional Comments" section of the form.				
REPORTS: 16. Other (Plea	se specify in the "Additional Co	omments" section)		
Systems = A group of water System 1 = Atlantic Ocea System 2 = Seaside E. Sh System 3 = Misc. Seaside System 4 = Chesapeake E System 5 = James River & System 6 = York River &	ore Codes Say Tribs.	System 7 = Rappahannock River & Tribs. System 8 = Potomac River & Tribs. System 9 = Other Chesapeake Bay Tribs. Systems 1-3 = Coastal Waters Systems 4-9 = Ches Bay and All Tribs Systems 1-9 = All Virginia Waters		
Group = All size classes of a This is only available for spe small, med and large trout).		ferent size classes (i.e. Trout Group includes		
Be sure to include the following information: A) Species: species group or all species B) Year: range of years or all (1929-Present) C) Water body: a particular one or all in a system D) Do you want values for species caught in VA waters only? (1993 – Present) E) Do you want values for species landed in VA only? (1939 – Present)				
Export File Format: XLSX				
Please return this form to:	Virginia Marine Resources Co Plans & Statistics - Data Requ 380 Fenwick Road, Bldg. 96, Fort Monroe, VA 23651 Email: Stephanie.Iverson@mn Fax: (757) 247-2264	OFFICIAL USE ONLY e Received:		

VIRGINIA MARINE RESOURCES COMMISSION Individual Statement of Non-Disclosure

Thia	:	40		C	41-44
This	18	ш	ceru	IIV	mat:

- 1. I am a research/state employee working for the UMCES/CBL in that role, it has been determined by Stephanie Iverson that in order for me to carry out my fisheries-related work assignments, I require access to state computer systems and/or VMRC data files that may contain information declared to be held confidential by the VMRC.
- In using VMRC computers and data I agree to uphold the state's security provisions for preserving the safety and integrity of the systems accessed and protecting against misuse or destruction of the computer systems and data being accessed.
- I have read Section 28.2-204 of the "Laws of Virginia Relating to the Marine Resources of the Commonwealth," which pertains to the collection and confidentiality of fisheries data.
- 4. I am fully aware of the civil and criminal penalties for unauthorized disclosure, misuse or other violation of the confidentiality of such data.
- 5. I will not knowingly disclose any statistics identified as confidential under this agreement to any person or persons, except as authorized by the VMRC Data Supervisor, or the Supervisor's designee, in accordance with the law, as authorized by the Commonwealth of Virginia Attorney General.

DONG LIANG	Def ling	09/01/2	09/01/24
Name of User	Signature	Begin Date	End Date
VMRC Data Supervisor	Signature	Evolu	tion Data
VIVINC Data Supervisor	Signature	Expira	ation Date

VIRGINIA MARINE RESOURCES COMMISSION Individual Statement of Non-Disclosure

This is	s to certify that:				
1.	I am a <u>Professor</u> employee working for the <u>UMCES</u> in that role, it has been determined by <u>Stephanie Iverson</u> that in order for me to carry out my fisheries-related work assignments, I require access to state computer systems and/or VMRC data files that may contain information declared to be held confidential by the VMRC.				
2.	In using VMRC computers and data I agree to uphold the state's security provisions for preserving the safety and integrity of the systems accessed and protecting against misuse or destruction of the computer systems and data being accessed.				
3.	I have read Section 28.2-204 of the "Laws of Virginia Relating to the Marine Resources of the Commonwealth," which pertains to the collection and confidentiality of fisheries data.				
4.	I am fully aware of the civil and criminal penalties for unauthorized disclosure, misuse or other violation of the confidentiality of such data.				
5.	. I will not knowingly disclose any statistics identified as confidential under this agreement to any person or persons, except as authorized by the VMRC Data Supervisor, or the Supervisor's designee, in accordance with the law, as authorized by the Commonwealth of Virginia Attorney General.				
, T	HOMAS MILLER	BOUIL	1/10/2023	1/9/2024	
Name	of User	Signature	Begin Date	End Date	
	-			100	
VMR	C Data Supervisor	Signature	Expirati	on Date	

VIRGINIA MARINE RESOURCES COMMISSION Individual Statement of Non-Disclosure

This is to certify that:

1.	I am a Professor employee working for the in that role, it has been determined by Stephanie Iverson that in order for me to carry out my fisheries-related work assignments, I require access to state computer systems and/or VMRC data files that may contain information declared to be held confidential by the VMRC.				
2.	In using VMRC computers and data I agree to uphold the state's security provisions for preserving the safety and integrity of the systems accessed and protecting against misuse or destruction of the computer systems and data being accessed.				
3.	I have read Section 28 Resources of the Common confidentiality of fisher	nonwealth," which perta			
4.	I am fully aware of the civil and criminal penalties for unauthorized disclosure, misuse or other violation of the confidentiality of such data.				
5.	Supervisor, or the Supe	sclose any statistics ider on or persons, except as a prvisor's designee, in acc monwealth of Virginia A	authorized by the VM cordance with the lay	ARC Data	
M	chael Wilberg	Mas	1/10/2023	1/9/2024	
Name	of User	Signature	Begin Date	End Date	
) (D)	S.D	G!t	Position	i D-t-	
VIVIK	C Data Supervisor	Signature	Expirat	ion Date	

Appendix 1.7 Potomac River Fisheries Commission Harvest Data Request

------- Forwarded message ------From: Wilberg, Michael <wilberg@umces.edu>
Date: Wed, Nov 23, 2022 at 1:35 PM
Subject: PRFC blue crab harvest data request
To: Martin Gary <martingary.prfc@gmail.com>, Dong Liang <dliang@umces.edu>

Hi Marty.

As we talked about at the last CBSAC meeting, we are compiling data sets for our project to develop a simulation model to conduct testing of the Chesapeake Bay Blue Crab stock assessment model. The project is "Scope #9: A Population Simulation Model for Blue Crab Stock Assessment Performance Evaluation" and was awarded to Miller, Wilberg and Liang by the Chesapeake Bay Trust.

We are requesting blue crab data from the **PRFC harvest** up through the most recent year (2022). If the 2022 data are not finalized yet, data through 2021 will be good too.

For the **PRFC Harvest data**, we would like to have catch by sex, market category, NOAA code, month, and gear (if this ends up being non-confidential). We are requesting the harvest by NOAA code because we thought that would be easiest for you. However, if the data are confidential at that level, we are expecting to represent the Potomac as one region. Therefore, catch in the whole Potomac by sex, market category, month, and gear would also be fine.

The simulation model we are developing will be spatial, and, therefore, the spatial information will be very important for helping inform the model. Additionally, this data request will help inform the new CB blue crab stock assessment that will be starting in 2023.

Also, if you have a table of the size and season regulations for the Potomac, that would be very helpful.

Ideally, we would like to have the data by Dec. 20, 2022.

Please let me know if you have any questions, and I hope you have a Happy Thanksgiving,

Thanks,

Mike

--Michael Wilberg
Professor
Chesapeake Biological Laboratory
University of Maryland Center for Environmental Science
P.O. Box 38
Solomons, Maryland 20688, USA
wilberg@umces.edu

Office: 410-326-7273

Lab website: wilberglab.cbl.umces.edu

Appendix 2. General Blue Crab Operating Model

This is the full model code, written in the R programming language, for the operating model and the observation model.

#Basic Length-based data simulation model #To Do: #-----# Load Libraries #----library(TMB) library(ggplot2) library(tidyverse) #-----# Load Functions #----setwd("C:\\Users\\wilbe\\OneDrive\\Desktop\\GitHub\\CB_blue_crab_sim") #setwd("C:\\Users\\Mike\\Documents\\GitHub\\CB blue crab sim") #-----#Load Rdata file for survey data load("sslam_data_2b_share.rData") #Set values we need for the model nyr<-30 #number of years nmo<-10 #months per year (jan-mar is one month) t_initialize<-20*nmo #run model for 10 years to get the starting length composition #fdyr<-10 #first data year nmo<-10 #months/year Dec-Feb considered one "month" maxl<-220 #lower limit of maximum length bin tsteps<-nyr*nmo #number of time steps months<-seq(1,nmo,1) #define months bin width<-10 #10 mm length bins bins<-(seq(0,maxl,bin_width)) #names(bins)<-c("L_CW")</pre> bin mids<-bins+0.5*bin width #names(bin mids)<-c("CW") #nb<-length(bin mids) #count number of bins nlbins=length(bins) #linc<-data.frame(matrix(NA, nrow = nlbins, ncol = 1)) #names(linc)<- c("length")</pre> #calculate number of length bins

```
#Size distribution of recruits
LO<- 30 #initial mean length of recruits, mm
LO_CV<-0.55 #CV for length distribution of recruits
#Parameters for normal growth increment
Linf<-220 #Linf same for males & females mm
Linf CV <-0.2 #CV for Linf
kp<-0.0003 #proportionality constant to convert GDD to K
K CV <- 0.2 #CV for K
Linf SD<-Linf*Linf CV #SD of Linf
#K SD<-K*K CV #SD of K
Linf V<-Linf SD^2 #variance of Linf
#K V<-K SD^2 #variance of K
Linf K Cor<--0.0
#-----
#Maturity parameters
fmat_params<-c(0.1,150) #slope and 50% maturity length for female maturity
m | mat=107 #knife edge function for male maturity
#Stock recruitment parameters
R pm=0.48 #percent male recruits
R_sd=0.45 #log-scale SD of recruitment errors
R mo<-c(1,0,0,0,0,0,0,0,0,0) #proportion of recruitment in each month
SR_alpha<-exp(3.28) #2011 assessment log_alpha=3.28... Need to change if we use length-specific M
SR beta<-exp(-7) #from 2011 assessment
#Natural mortality
#Calculate sex-specific natural mortality per month (same as previous assessment)
Mref<-0.9/nmo
M<-matrix(Mref,nrow=nlbins,ncol=3)
#calculate fishing mortality rate for hard-shell male and female crabs
fh<-matrix(rep(1.05/nmo,2*tsteps),ncol=2)
#fh<-matrix(rep(.5/nmo,2*tsteps),ncol=2)
#fh<-matrix(rep(0/nmo,2*tsteps),ncol=2)
#calculate fishing mortality rate for peelers SET TO ZERO FOR NOW
fp<-matrix(rep(0.0/nmo,2*tsteps),ncol=2)</pre>
# for(x in 1:3)
# M[,x]<-Mref*(bin mids$CW/(Linf[1]))^-.5 #MADE UP M matrix for Now. M same for all sexes/stages
# }
```

#Process error sd

```
proc err sd=0.0001 #process error sd for abundance
#Function to calculate proportion in a bin using a normal distribution
init_size_dist<-function(lower_l_bins,mean,sd)</pre>
  nbins<-length(lower_l_bins)</pre>
  init size<-as.vector(mode="numeric",rep(0,nbins)) #set up init size vector (proportions at length for
recruits)
  init_size[1]<-pnorm(lower | bins[2],mean=mean,sd=sd) #fill in first length bin as proportion less than
the upper limit of the first length bin
  p<-init size[1]
  for(I in 2:(nbins-1)) #loop over length bins
   q<-pnorm(lower | bins[l+1],mean=L0,sd=L0 CV*L0)</pre>
   init_size[l]<-q-p #use cumulative density function to calculate proportion in each bin
   p<-q
  }
  init size[l]<-1-p
  #init_size[I]<-1-pnorm(lower | bins[nlbins],mean=L0,sd=L0 CV*L0) #fill in last length bin as the rest
of the distribution
  return(init size)
#Generate monthly temperature and cumulative growing degree days (GDD)
tempa<-4+10*(1+sin((months/nmo)*2*pi+1.2*pi)) #Average monthly Temperature follows a sine wave
tempc<-rep(tempa,nyr) #expand for the number of years
#temp<-rep(20,nmo) #constant temp for testing
#Generate AR1 random numbers
temp err cor<-0.8 #correlation of errors of temperature over time MADE UP CURRENTLY
temp err sd<-1 #SD of independent random errors MADE UP CURRENTLY
temp_err<-rnorm(tsteps,0,temp_err_sd) #start by generating independent normal errors
temp_err[1]=(temp_err[1]/temp_err_sd)*sqrt(temp_err_sd^2/(1-temp_err_cor^2)) #deviation for the
first time step
for(t in 2:tsteps)
{
 temp_err[t]<-temp_err[t-1]*temp_err_cor+temp_err[t] #AR1 process to allow for correlated errors
temp=tempc+temp err #add error to mean temperature time series
GDD<-ifelse(temp>8.9,(temp-8.9)*30,0) #Growing degree days (simplified here)
#Use actual mean GDD for model
GDD<-rep(sslam.tvg.data$GDD,nyr)
```

```
K_V < -K_SD^2
 #ggplot(data=as.data.frame(cbind(1:(nmo*nyr),GDD)),aes(x=V1,y=GDD))+
 # geom line()+
 # labs(x="Time", y = "Growing degree days")
 #Function to calculate m from number of months and t
 get m<-function(t,nmo){</pre>
  x<-t%%nmo
 if(x==0){x=nmo}
 return(x)
#Function to pull time step ts from a list of time steps and the annual routine of sampling
get_sample_t<-function(tsteps,samplet){</pre>
  # tsteps=1:dtsteps
  # samplet<-I1 mo
  ntpy<-length(samplet)</pre>
  nt<-length(tsteps)
  #tout<-tsteps
  ny<-nt/ntpy
  index t<-rep(samplet,ny)</pre>
  answer<-vector(mode="numeric",length=length(tsteps)*sum(samplet)/ntpy)
  ct<-1
  for(t in 1:length(tsteps)){
   if(index_t[t]==1){
    answer[ct]<-t
    ct<-ct+1
  }
 return(answer)
#Calculate growth
#Initial size distribution of recruits
init_size<-init_size_dist(bins,L0,L0_CV*L0)
#Normal distribution method
#Function for normal distribution growth increment
growth_matrix<-function(Linf,K,Linf_Var,K_Var,Linf_K_Cor,bin_mids)
{
#Linf=Linf[1],K=K[m],Linf_Var=Linf_V[1],K_Var=K_V[m],Linf_K_Cor=Linf_K_Cor,bin_mids=bin_mids$CW
```

K<-GDD*kp #calculate von Bertalanffy K

K SD<-K*K CV

```
nb<-length(bin mids)
 bw<-bin mids[2]-bin mids[1] #calculate width of bins
 mat<-matrix(0,nrow=nb, ncol=nb) #set up empty matrix
 mean_g<-(Linf-bin_mids)*(1-exp(-K)) #calculate mean growth as a function of starting length
 L diff<-(Linf-bin mids) #Calculate difference between Linf and the midpoints of the length bins
 Linf_SD<-sqrt(Linf_Var) #SD for Linf</pre>
 K_SD<-sqrt(K_Var) #SD for K
 #calculate variance for starting length bin i
 #SD CALCULATIONS CORRECT
 L SD<-Linf Var*(1-exp(-K))^2
 L SD<-L SD+K Var*(L diff*exp(-K))^2
 L SD<-L SD+2.0*Linf K Cor*Linf_SD*K_SD*(1-exp(-K))*L_diff*exp(-K);
 L SD<-sqrt(L SD) #convert from var to SD
 for(i in 1:(nb-1)) #loop over starting length bins
  up lim=bw/2
  mat[i,i]=pnorm(up_lim,mean_g[i],sd=L_SD[i])
  #p<-mat[i,i]
  for(j in (i+1):(nb-1)) #loop over ending length bins
   if((i+1)>(nb-1)) {
    break
   }
   #calculate increment
   inc=bin mids[i]-bin mids[i]
   #calculate lower bound of growth increment
   lo lim=up_lim
   #calculate upper bound of growth increment
   up_lim=lo_lim+bw
   #Calculate proportion that grow to bin j
   mat[j,i]=pnorm(up_lim,mean_g[i],sd=L_SD[i])-pnorm(lo_lim,mean_g[i],sd=L_SD[i])
   #print(c(i,j))
  }#close i
  #last length bin a plus group
  lo lim=up lim
  mat[nb,i]=1-pnorm(lo_lim,mean_g[i],sd=L_SD[i])
 }#close i
 #mat[nb,nb]=1 #Animals in the highest length bin stop growing and stay in that length bin
 return(mat)
#Generate transition matrices for immature female maturation and egg stage
growth_matrix_im_fem<-function(G,matl){</pre>
 nb<-length(matl)
 mat=matrix(0,nrow=nb,ncol=nb)
for(i in 1:(nb-1)) #Starting length
```

```
for(j in i:nb) #ending length
    if(i==j)
     mat[j,i]=G[j,i] #crabs don't grow, so just use the diagonal element
    {
     mat[j,i]=G[j,i]*(1-matl[j]) #crabs grow, so some will mature
  }
  mat[nb,nb]=0 #any immature females in the largest size bin become mature
  return(mat)
 #generate matrix for females that mature
 growth_matrix_mat_fem<-function(G,matl){
  nb<-length(matl)
  mat=matrix(0,nrow=nb,ncol=nb)
  for(i in 1:(nb-1)) #starting length
   for(j in (i+1):nb) #ending length
    mat[j,i]=G[j,i]*matl[j]
   }
  mat[nb,nb]=1 #any immature females in the largest size bin become mature
  return(mat)
}
#All orange eggs and black eggs are spawned before the next month (it's more complicated, though -
eggs take about 14 days to go from orange to hatch)
#https://www.bluecrab.info/spongers.html
#Gofm=diag(nlbins)
#Gbfm=diag(nlbins)
#Gfmo=diag(nlbins)
 #Gfmb=diag(nlbins)
#function for exponential mortality
exp_mort<-function(N,Z){N*exp(-Z)}</pre>
#function for catch equation
catch < -function(F,Z,N){F/Z*(1-exp(-Z))*N}
#Function for logistic selectivity
```

```
logistic sel<-function(sl,p50){
      sel<-1/(1+exp(-sl*(bin mids-p50)))
      return(sel/sel[length(bin_mids)])}
  #Function for double logistic selectivity
  doub\_logistic\_sel <-function(sl,p150,s2,p250) \{1/(1+exp(-sl*(bin\_mids-p150)))*1/(1+exp(-s2*(p250-p250)))*1/(1+exp(-s2*(p250-p250)))*1/(1+exp(-s2*(p250-p250)))*1/(1+exp(-s2*(p250-p250)))*1/(1+exp(-s2*(p250-p250)))*1/(1+exp(-s2*(p250-p250)))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250)))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250)))*1/(1+exp(-s2*(p250-p250)))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250)))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250)))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250)))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250)))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250))))*1/(1+exp(-s2*(p250-p250)))*1/(1+exp(-s2*(p250-p250)))(1+exp(-s2*(p250-p250)))(1+exp(-s2*(p250-p250)))(1+exp(-s2*(p250-p250)))(1+exp(-s2*(p250-p250)))(1+exp(-s2*(p250-p250)))(1+exp(-s2*(p
bin_mids)))}
  #Function for increasing threshold using the midpoints of the bins and a value for the threshold
  #used for male maturity
   inc threshold<-function(bin mids,cutoff){</pre>
      i=1
      v<-vector(mode="numeric",length=length(bin_mids))
      for(I in bin mids)
         if(I < cutoff)
           v[i]=0
         } else
           v[i]=1
         }#Close else
         i=i+1
      }#close I loop
      return(v)
   } #end inc_threshold function
  #calculate female maturity
  fmat<-logistic_sel(fmat_params[1],fmat_params[2]) #logistic function for female maturation</pre>
  #calculate male maturity
  mmat<-inc_threshold(bin_mids,m_l_mat)
  #Calculate growth matrices
 G<-array(0,dim=c(nlbins,nlbins,3,tsteps)) #G for three sexes, each time step, number of length bins,
number of length bins
 #t=6 #variable for testing
 #x=1 #variable for testing
 for(t in 1:tsteps)
  for(x in 1:3)
  { #m=2
      if(GDD[t] <= 0 \&\& x <= 2){
         G[,,x,t]<-diag(nlbins)
```

```
} else{
   if(x==1) #males
   {
    G[,,x,t]<-
growth_matrix(Linf=Linf,K=K[t],Linf_Var=Linf_V,K_Var=K_V[t],Linf_K_Cor=Linf_K_Cor,bin_mids=bin_mid
s)
   }
   if(x==2) #immature females
    g<-
growth matrix(Linf=Linf,K=K[t],Linf Var=Linf V,K Var=K V[t],Linf K Cor=Linf K Cor,bin mids=bin mid
    G[,,x,t]<-growth matrix im fem(g,fmat) #Immature females
   if(x==3) #mature females
    if(GDD[t]<=0) #need to account for periods of no growth for females
    { #This represents the fraction of immature females that grow to become mature females
     #If GDD is zero, then there is no growth and therefore no maturation
     G[,,x,t]=0
    } else
    {
     g<-
growth_matrix(Linf=Linf,K=K[t],Linf_Var=Linf_V,K_Var=K_V[t],Linf_K_Cor=Linf_K_Cor,bin_mids=bin_mid
     G[,,x,t]<-growth_matrix_mat_fem(g,fmat) #Mature females
    }#close if
  } #close if for x=3
  }#close else
} #close x loop
} #close t loop
 ##POPULATION DYNAMICS
 #-----
#Set up arrays
 N<-array(0,c(tsteps,nlbins,3)) #abundance at size by sex (1 = male, 2=immature female, 3=mature
female:no eggs, 4=mature female orange eggs, 5=mature female black eggs)
 F<-array(0,c(tsteps,nlbins,3)) #fishing mortality rate
Z<-array(0,c(tsteps,nlbins,3)) #total mortality rate
C<-array(0,c(tsteps,nlbins,3)) #catch of by size and sex/maturity stage
 R<-vector(mode="numeric",length=tsteps) #recruitment
#Calculate male selectivity
selh<-logistic_sel(0.1,85)
#Peeler selectivity
```

```
#selp<-selp/max(selp) #Standardize to have a maximum of 1
SR<-function(sd){return(200*exp(rnorm(1,0,sd)))}
Ricker_SR<-function(alpha,beta,Nf,Nm,sd){
 R<-alpha*Nf*exp(-beta*(Nf+Nm))*exp(rnorm(1,0,sd))
 return(as.numeric(R))
}
calc_F<-function(x,t)</pre>
 #Calculate F
 if(x==1) #males
  F<-fh[t,1]*selh #hardshell fishing mortality at length for males is a function of the minimum size limit
} else
 { # females
  if(x==2) #immature females
   F=0.0 #Currently no release mortality
  if(x==3) #mature females
   F<-fh[t,2] #hard-shell fishing mortality at length for females is only a function of maturity
  }
 } #end else
 # if(GDD[t]>0 && x<=2) #only peeler fishery if crabs are growing and for males and immature females
 # F<-F+fp[x,t]*t(selp[,1]) #peeler fishing mortality only happens of crabs are growing
 #}#end if
 return(F)
} #end function
#Calculate F and Z
#calc_F_Z<-function(){</pre>
for(t in 1:tsteps)
{
for(x in 1:3)
  #Calculate F and Z
  F[t,,x]<-calc_F(x,t) #fishing mortality
  Z[t,x]<-F[t,x]+M[x] #total mortality at length
```

selp<-doub logistic sel(0.1,50,0.1,80)

```
}
#print("done")
#calc_F_Z()
R temp=0
p_uni_init<-rep(1/nlbins,nlbins) #Uniform distribution for starting size composition for males and
immature females
for(t in 1:(tsteps-1))
#calculate month
m=get m(t,nmo)
#apportion among males and females
if(t==1)
 {
  init_R=SR(R_sd) #Specify starting recruitment to get initial conditions started
  N[t,,1]=R_pm*init_R*p_uni_init #start with uniform size distribution
  N[t,2]=(1-R_pm)*init_R*p_uni_init_R
  #init R2<-0
  for(t2 in 2:t initialize){ #loop over initialization time steps
   m2<-get_m(t2,nmo)
   for(x in 1:3)
    #calculate abundance
    if(x==1) #males
    {
     N[t,x]=G[x,x,m2]**%(N[t,x]*exp(-Z[m2,x]))+R_pm*R_temp*R_mo[m2]*init_size
    if(x==2) #immature females
     N[t,x]=G[,x,m2]%*%(N[t,x]*exp(-Z[m2,x]))+(1-R_pm)*R_temp*R_mo[m2]*init_size
    if(x==3) #mature females
    { #first part is that mature females don't grow, second is immature females that become mature
     N[t,x]=N[t,x]*exp(-Z[m2,x])+G[,x,m2]%*%(N[t,2]*exp(-Z[m2,2]))
   }#close x loop
   if(m2==5) #Calculate spawning abundance and recruitment assuming that crabs spawn on July 1
    #calculate mature females
    Nf < -sum(N[t,,3])
    #calculate abundance of mature males using dot product of male abundance and male maturity
    Nm<-N[t,,1]%*%mmat
    #recruitment= propostion of recruits that return during a month * total recruitment for the year
    R_temp<-Ricker_SR(SR_alpha, SR_beta,Nf,Nm,sd=0)
    #print(c(Nf,Nm,R_temp))
```

```
} #end if(t%%nmo==5)
  #apportion recruitment among months
  #init R2=R temp
 }#close t2 loop for initialization period
 N[t,1]=N[t,1]+R_pm*R_temp*R_mo[m]*init size
 N[t,2]=N[t,2]+(1-R_pm)*R_temp*R_mo[m]*init_size
#}#close if(t==1)
} else{
 #Calculate recruitment using Ricker S-R function
 if(t%%nmo==5) #Calculate spawning abundance and recruitment assuming that crabs spawn on July 1
 {
  #calculate mature females
  Nf < -sum(N[t,,3])
  #calculate abundance of mature males using dot product of male abundance and male maturity
  Nm<-N[t,,1]%*%mmat
  #recruitment= propostion of recruits that return during a month * total recruitment for the year
  R_temp<-Ricker_SR(SR_alpha, SR_beta,Nf,Nm,R_sd)
  #print(c(t,Nf,Nm,R_temp))
  R[(t+5):(t+5+nmo-1)]=R_mo*R_temp
 } #end if(t%%nmo==5)
 #apportion recruitment among months
} #end else
#generate process error for abundance-at-length
N_proc_err=rnorm(nlbins,0,sd=proc_err_sd)
for(x in 1:3)
 #Calculate F and Z
 \#F[t,,x]<-calc_F(x,t)
 #Z[t,,x]<-F[t,,x]+M[,x] #total mortality at length
 #calculate abundance
 if(x==1) #males
  N[t+1,x]=(G[,x,t])^*(N[t,x])^*\exp(-Z[t,x])) exp(N_proc_err)+R_pm^*R[t]^*init_size
 if(x==2) #immature females
  N[t+1,x]=(G[,x,t])^*(N[t,x])^*exp(-Z[t,x]))^*exp(N_proc_err)+(1-R_pm)^*R[t]^*init_size
 if(x==3) #mature females without eggs
 { #first part is that mature females don't grow, second is immature females that become mature
  N[t+1,x]=(N[t,x]*exp(-Z[t,x])+G[,x,t]%*%(N[t,2]*exp(-Z[t,2])))*exp(N_proc_err)
 #Calculate catch
```

```
C[t,x]=catch(F[t,x],Z[t,x],N[t,x])
}#end t loop
#do catch calcs for last year
t=tsteps
for(x in 1:3)
 F[t,,x]<-calc_F(x,t) #fishing mortality at length
 Z[t,x]<-F[t,x]+M[,x] #total mortality at length
 C[t,x]=catch(F[t,x],Z[t,x],N[t,x])
}
 #Calculate total catch in numbers wihtout observation error
 TC<-matrix(0,nrow=tsteps,ncol=3)
 for(x in 1:3)
  for(t in 1:tsteps)
   TC[t,x]=sum(C[t,,x]) #*exp(C_obs_err)
  }
 }
 #surv1 sel<-logistic sel(0.05,30)
 #surv2_sel<-logistic_sel(0.1,15)
 #data length
 fdyr<-1 #first data year
 dyr<-nyr-fdyr+1 #number of years for data
 dtsteps<-dyr*nmo #number of time steps for data
 fdstep<-(fdyr-1)*nmo+1
}
#Observation Model
 #Number of surveys
 nsrv<-4
 #number of fleets
 nflt<-1
 cat_sigma<-0.1 #log-scale SD for observed catch data
 C effN=100 #effective sample size for length composition of the catch
 #survey CV
 I_sigma<-c(0.1,0.3,0.3,0.3)
```

```
#effective sample size
 I effN=c(500,500,500,500)
 #Months for sampling (1=month with sampling, 0 = month with no sampling)
 I1_mo<-c(1,0,0,0,0,0,0,0,0,0) #WDS
 I2_mo<-c(0,0,1,1,1,1,1,1,0,0) #MD Trawl Survey
 I3_mo<-rep(1,nmo) #VIMS trawl survey</pre>
 I4_mo<-c(0,0,1,1,0,1,1,0,0,0) #ChesMMAP
 Clen mo<-rep(1,nmo)
 #vectors of data time step indicator variables
 I mo<-matrix(0,nrow=dtsteps,ncol=nsrv)
 I mo[,1]<-rep(I1 mo,dyr)
 I_mo[,2] < -rep(I2_mo,dyr)
 I mo[,3]<-rep(I3 mo,dyr)
 I_mo[,4] < -rep(I4_mo,dyr)
 C_mo<-rep(Clen_mo,dyr)
 #Survey catchability
 surv q<-c(1,0.05,0.05,0.05)
 #Survey selectivity
 surv_sel_p<-matrix(0,nrow=3,ncol=nsrv)</pre>
 surv sel p[,1]<-c(0.05,10,1)
surv_sel_p[,2]<-c(0.1,15,1)
surv sel p[,3]<-c(0.1,15,1)
surv_sel_p[,4]<-c(0.05,110,1)
 surv sel<-matrix(0,nrow=nlbins,ncol=nsrv)</pre>
#calculate selectivity for each survey
 for(s in 1:nsrv){
  if(surv sel p[3,s]==1){ #increasing logistic survey selectivity
   surv_sel[,s]<-logistic_sel(surv_sel_p[1,s],surv_sel_p[2,s])</pre>
  }#close if
 }#close s loop
 #Generate survey indices without observation error for all time steps (including burn-in)
I<-array(0,dim=c(tsteps,nlbins,3,nsrv)) #index of abundance at size</pre>
#t=tsteps
for(s in 1:nsrv)
for(x in 1:3)
  for(t in 1:tsteps)
   I[t,,x,s]<-t(as.vector(N[t,,x])*surv_sel[,s]*surv_q[s])
  } #close t loop
```

```
} #close x loop
}#close survey loop
 #Generate catch and survey observations with observation error only for years of model fitting
obs_I<-array(-99,dim=c(dtsteps,nlbins,3,nsrv)) #index of abundance at sex and size
 obs_C<-array(-99,dim=c(dtsteps,nlbins,3)) #catch at sex and size
 \#x=1
 #t=(fdyr-1)*nmo+1
 #include observation error
 for(x in 1:3)
  for(t in ((fdyr-1)*nmo+1):tsteps)
   t2=t-(fdyr-1)*nmo
   for(s in 1:nsrv)
   {
   if(I_mo[t2,s]==1)
    if(sum(I[t,,x,s])>0) obs_I[t2,,x,s]<-
sum(I[t,,x,s])*exp(rnorm(1,0,I\_sigma[s]))*rmultinom(1,I\_effN[s],I[t,,x,s]/sum(I[t,,x,s]))/I\_effN[s]
   }
   if(C mo[t2]==1){
    if(sum(C[t,,x])>0) obs_C[t2,,x]<-
sum(C[t,,x])*exp(rnorm(1,0,cat\_sigma))*rmultinom(1,C\_effN,C[t,,x]/sum(C[t,,x]))/C\_effN
  #print(c(t,t2))
  } #close t
} #close x loop
 #Make arrays to get rid of immature female catch
 obs_C_mod<-array(NA,dim=c(dtsteps,nlbins,2))
 obs_C_mod[,,1]<-obs_C[,,1]
 obs_C_mod[,,2]<-obs_C[,,3]
 #Check results
 # for(x in 3:3)
 # {
 # for(t in 1:tsteps)
 # write.table(G[,,x,t],sep=",",file="G.csv",append=TRUE)
    #write.table(t(N[t,,x]),sep=",",file="N.csv",append=TRUE)
 #
 # }
 # }
#Plot WDS
{
```

```
#plot simulated length composition with observed
Nfmo<-seq(251,291,nmo)
dat<-I[Nfmo,,1,1]
pdat<-colSums(dat)
pdat<-as.data.frame(pdat/sum(pdat))
names(pdat)<-"P"
pdat$CW<-bins
pdat$OE<-"est"
obs plot data<-rowSums(sslam.tvg.data$obs p I[1,,])
obs plot data<-obs plot data/sum(obs plot data)
obs plot data<-as.data.frame(obs plot data)
names(obs plot data)<-"P"
obs_plot_data$CW<-sslam.tvg.data$low_l_bins
obs_plot_data$OE<-"obs"
plot_data_4m<-rbind(pdat,obs_plot_data)</pre>
plot_data_4m$sex<-"Male"
# p<-ggplot(data=plot data 4, aes(x=CW,y=P,fill=OE)) +
# geom_bar(stat="identity", position=position_dodge())+
# ggtitle("Winter Dredge Survey Males") +
# xlab("Carapace width (mm)") + ylab("Proportion")
#
# p
#WDS immature female
dat<-I[Nfmo,,2,1]
pdat<-colSums(dat)
pdat<-as.data.frame(pdat/sum(pdat))</pre>
names(pdat)<-"P"
pdat$CW<-bins
pdat$OE<-"est"
obs_plot_data<-rowSums(sslam.tvg.data$obs_p_I[2,,])
obs plot data<-obs plot data/sum(obs plot data)
obs_plot_data<-as.data.frame(obs_plot_data)
names(obs_plot_data)<-"P"
obs plot_data$CW<-sslam.tvg.data$low_l_bins
obs_plot_data$OE<-"obs"
plot_data_4if<-rbind(pdat,obs_plot_data)</pre>
plot data 4if$sex<-"Im. female"
# p<-ggplot(data=plot_data_4, aes(x=CW,y=P,fill=OE)) +</pre>
# geom_bar(stat="identity", position=position_dodge())+
# ggtitle("Winter Dredge Survey Immature females") +
```

```
# xlab("Carapace width (mm)") + ylab("Proportion")
 #
# p
#plot simulated WDS length composition with observed mature female
dat<-I[Nfmo,,3,1]
 pdat<-colSums(dat)
 pdat<-as.data.frame(pdat/sum(pdat))
names(pdat)<-"P"
 pdat$CW<-bins
 pdat$OE<-"est"
obs plot data<-rowSums(sslam.tvg.data$obs p I[3,,])
obs_plot_data<-obs_plot_data/sum(obs_plot_data)
obs_plot_data<-as.data.frame(obs_plot_data)
names(obs plot data)<-"P"
obs_plot_data$CW<-sslam.tvg.data$low_l_bins
obs_plot_data$OE<-"obs"
plot data 4mf<-rbind(pdat,obs plot data)
plot_data_4mf$sex<-"Mat. female"
#Combine all sexes for WDS plot
plot_data_4<-rbind(plot_data_4m,plot_data_4if,plot_data_4mf)
p<-ggplot(data=plot_data_4, aes(x=CW,y=P,fill=OE)) +
  geom bar(stat="identity", position=position dodge())+
  ggtitle("Winter Dredge Survey") +
  xlab("Carapace width (mm)") + ylab("Proportion")+
  facet wrap(~sex)
р
#MD trawl survey
#Males
Nfmo<-251:300
dat<-I[Nfmo,,1,2]
plot data<-as.data.frame(dat)
plot_data$mo<-rep(1:nmo,5)
nt<-5*(8-3+1)
plot_data2 <- dplyr::filter(plot_data, mo>=3 & mo<=8) %>%
  pivot_longer(cols=!mo,
        names_to = c("Value"),
```

```
values drop na = TRUE)
plot data2$CW<-rep(bins,nt)
plot_data_2a<-plot_data2 %>%
 group_by(mo, CW) %>%
 summarise(T=sum(value)) %>%
 mutate(P=T/sum(T))
plot_data_2a$OE<-"est"
#Observed
obs_plot_data<-as.data.frame(sslam.tvg.data$obs2_p_I[1,,])
MTS_mo<-sslam.tvg.data$obs2_t
MTS_mo2<-MTS_mo
for(i in 1:length(MTS_mo)){
MTS_mo2[i]<-get_m(MTS_mo[i],nmo)
obs_plot_data$CW<-bins
plot_data3 <- obs_plot_data %>%
pivot longer(cols=!CW,
       names_to = c("Value"))
plot_data3$mo<-rep(MTS_mo2,nlbins)</pre>
plot_data_3a<-plot_data3 %>%
 group_by(mo, CW) %>%
 summarise(T=sum(value)) %>%
 mutate(P=T/sum(T))
plot_data_3a$OE<-"obs"
plot_data_4m<-rbind(plot_data_2a,plot_data_3a)
plot_data_4m$sex<-"Male"
p<-ggplot(data=plot_data_4m, aes(x=CW,y=P,fill=OE)) +
 geom_bar(stat="identity", position=position_dodge())+
 ggtitle("MD Trawl Survey Males") +
 xlab("Carapace width (mm)") + ylab("Proportion")+
 facet_wrap(~mo)
print(p)
#Immature females
Nfmo<-251:300
dat<-I[Nfmo,,2,2]
plot_data<-as.data.frame(dat)
plot_data$mo<-rep(1:nmo,5)
```

```
nt<-5*(8-3+1)
plot data2 <- dplyr::filter(plot data, mo>=3 & mo<=8) %>%
 pivot_longer(cols=!mo,
       names_to = c("Value"),
       values_drop_na = TRUE)
plot_data2$CW<-rep(bins,nt)
plot data 2a<-plot data2 %>%
 group_by(mo, CW) %>%
 summarise(T=sum(value)) %>%
 mutate(P=T/sum(T))
plot_data_2a$OE<-"est"
#Observed
obs_plot_data<-as.data.frame(sslam.tvg.data$obs2_p_I[2,,])
MTS_mo<-sslam.tvg.data$obs2_t
MTS_mo2<-MTS_mo
for(i in 1:length(MTS mo)){
 MTS_mo2[i]<-get_m(MTS_mo[i],nmo)
}
obs plot data$CW<-bins
plot_data3 <- obs_plot_data %>%
 pivot_longer(cols=!CW,
       names_to = c("Value"))
plot_data3$mo<-rep(MTS_mo2,nlbins)
plot_data_3a<-plot_data3 %>%
 group by(mo, CW) %>%
 summarise(T=sum(value)) %>%
 mutate(P=T/sum(T))
plot_data_3a$OE<-"obs"
plot_data_4m<-rbind(plot_data_2a,plot_data_3a)
plot data 4m$sex<-"Im. female"
p<-ggplot(data=plot_data_4m, aes(x=CW,y=P,fill=OE)) +
 geom_bar(stat="identity", position=position_dodge())+
 ggtitle("MD Trawl Survey Immature Females") +
 xlab("Carapace width (mm)") + ylab("Proportion")+
 facet_wrap(~mo)
print(p)
#Immature females
Nfmo<-251:300
dat<-I[Nfmo,,3,2]
```

```
plot data<-as.data.frame(dat)
plot data$mo<-rep(1:nmo,5)
nt<-5*(8-3+1)
plot_data2 <- dplyr::filter(plot_data, mo>=3 & mo<=8) %>%
 pivot_longer(cols=!mo,
       names to = c("Value"),
       values_drop_na = TRUE)
plot data2$CW<-rep(bins,nt)
plot_data_2a<-plot_data2 %>%
 group_by(mo, CW) %>%
 summarise(T=sum(value)) %>%
 mutate(P=T/sum(T))
plot_data_2a$OE<-"est"
#Observed
obs_plot_data<-as.data.frame(sslam.tvg.data$obs2_p_I[3,,])
MTS_mo<-sslam.tvg.data$obs2_t
MTS mo2<-MTS mo
for(i in 1:length(MTS_mo)){
MTS_mo2[i]<-get_m(MTS_mo[i],nmo)
obs plot data$CW<-bins
plot_data3 <- obs_plot_data %>%
 pivot_longer(cols=!CW,
       names_to = c("Value"))
plot_data3$mo<-rep(MTS_mo2,nlbins)</pre>
plot_data_3a<-plot_data3 %>%
 group_by(mo, CW) %>%
 summarise(T=sum(value)) %>%
 mutate(P=T/sum(T))
plot_data_3a$OE<-"obs"
plot_data_4m<-rbind(plot_data_2a,plot_data_3a)
plot_data_4m$sex<-"Mat. Female"
p<-ggplot(data=plot_data_4m, aes(x=CW,y=P,fill=OE)) +
 geom_bar(stat="identity", position=position_dodge())+
 ggtitle("MD Trawl Survey Mature Females") +
 xlab("Carapace width (mm)") + ylab("Proportion")+
 facet_wrap(~mo)
```

```
print(p)
}
#VIMS Trawl Survey
{
 #Males
 Nfmo<-251:300
 dat<-I[Nfmo,,1,3]
 plot_data<-as.data.frame(dat)
 plot data$mo<-rep(1:nmo,5)
 nt<-5*nmo
 plot_data2 <- plot_data %>%
  pivot_longer(cols=!mo,
        names_to = c("Value"),
        values_drop_na = TRUE)
 plot data2$CW<-rep(bins,nt)</pre>
 plot_data_2a<-plot_data2 %>%
  group_by(mo, CW) %>%
  summarise(T=sum(value)) %>%
  mutate(P=T/sum(T))
 plot_data_2a$OE<-"est"
 #Observed
 obs_plot_data<-as.data.frame(sslam.tvg.data$obs3_p_I[1,,])
 MTS_mo<-sslam.tvg.data$obs3_t
 MTS_mo2<-MTS_mo
 for(i in 1:length(MTS mo)){
  MTS_mo2[i]<-get_m(MTS_mo[i],nmo)
 obs_plot_data$CW<-bins
 plot_data3 <- obs_plot_data %>%
  pivot_longer(cols=!CW,
        names_to = c("Value"))
 plot_data3$mo<-rep(MTS_mo2,nlbins)</pre>
 plot_data_3a<-plot_data3 %>%
  group_by(mo, CW) %>%
  summarise(T=sum(value)) %>%
  mutate(P=T/sum(T))
 plot_data_3a$OE<-"obs"
 plot_data_4m<-rbind(plot_data_2a,plot_data_3a)
```

```
plot data 4m$sex<-"Male"
p<-ggplot(data=plot data 4m, aes(x=CW,y=P,fill=OE)) +
 geom_bar(stat="identity", position=position_dodge())+
 ggtitle("VIMS Trawl Survey Males") +
 xlab("Carapace width (mm)") + ylab("Proportion")+
 facet_wrap(~mo)
print(p)
#Immature females
dat<-I[Nfmo,,2,3]
plot_data<-as.data.frame(dat)
plot_data$mo<-rep(1:nmo,5)
nt<-5*nmo
plot_data2 <- plot_data %>%
 pivot longer(cols=!mo,
       names_to = c("Value"),
       values_drop_na = TRUE)
plot_data2$CW<-rep(bins,nt)
plot_data_2a<-plot_data2 %>%
 group_by(mo, CW) %>%
 summarise(T=sum(value)) %>%
 mutate(P=T/sum(T))
plot_data_2a$OE<-"est"
#Observed
obs_plot_data<-as.data.frame(sslam.tvg.data$obs3_p_I[2,,])
MTS_mo<-sslam.tvg.data$obs3_t
MTS_mo2<-MTS_mo
for(i in 1:length(MTS mo)){
 MTS_mo2[i]<-get_m(MTS_mo[i],nmo)
}
obs plot data$CW<-bins
plot_data3 <- obs_plot_data %>%
 pivot_longer(cols=!CW,
       names_to = c("Value"))
plot data3$mo<-rep(MTS mo2,nlbins)
plot_data_3a<-plot_data3 %>%
 group_by(mo, CW) %>%
 summarise(T=sum(value)) %>%
```

```
mutate(P=T/sum(T))
plot data 3a$OE<-"obs"
plot_data_4m<-rbind(plot_data_2a,plot_data_3a)
plot_data_4m$sex<-"Im. female"
p<-ggplot(data=plot_data_4m, aes(x=CW,y=P,fill=OE)) +
 geom_bar(stat="identity", position=position_dodge())+
 ggtitle("VIMS Trawl Survey Immature Females") +
 xlab("Carapace width (mm)") + ylab("Proportion")+
 facet wrap(~mo)
print(p)
#Mature females
Nfmo<-251:300
dat<-I[Nfmo_{,,3,3}]
plot_data<-as.data.frame(dat)
plot_data$mo<-rep(1:nmo,5)
nt<-5*nmo
plot data2 <- plot data %>%
 pivot_longer(cols=!mo,
       names to = c("Value"),
       values_drop_na = TRUE)
plot_data2$CW<-rep(bins,nt)
plot_data_2a<-plot_data2 %>%
 group_by(mo, CW) %>%
 summarise(T=sum(value)) %>%
 mutate(P=T/sum(T))
plot_data_2a$OE<-"est"
#Observed
obs_plot_data<-as.data.frame(sslam.tvg.data$obs3_p_I[3,,])
MTS_mo<-sslam.tvg.data$obs3_t
MTS mo2<-MTS mo
for(i in 1:length(MTS_mo)){
 MTS_mo2[i]<-get_m(MTS_mo[i],nmo)
}
obs plot data$CW<-bins
plot_data3 <- obs_plot_data %>%
 pivot_longer(cols=!CW,
       names_to = c("Value"))
plot_data3$mo<-rep(MTS_mo2,nlbins)</pre>
```

```
plot data 3a<-plot data3 %>%
  group by(mo, CW) %>%
  summarise(T=sum(value)) %>%
  mutate(P=T/sum(T))
 plot_data_3a$OE<-"obs"
 plot_data_4m<-rbind(plot_data_2a,plot_data_3a)
plot_data_4m$sex<-"Mat. female"
 p<-ggplot(data=plot data 4m, aes(x=CW,y=P,fill=OE)) +
  geom_bar(stat="identity", position=position_dodge())+
  ggtitle("VIMS Trawl Survey Mature Females") +
  xlab("Carapace width (mm)") + ylab("Proportion")+
  facet_wrap(~mo)
print(p)
#ChesMMAP
#Males
Nfmo<-251:300
dat<-I[Nfmo,,1,4]
 plot_data<-as.data.frame(dat)
plot_data$mo<-rep(1:nmo,5)
chesmo<-c(1,3,5,7,9)
nt<-5*length(chesmo)
plot_data2 <- dplyr::filter(plot_data, mo %in% chesmo) %>%
  pivot_longer(cols=!mo,
        names_to = c("Value"),
        values drop na = TRUE)
plot_data2$CW<-rep(bins,nt)</pre>
plot_data_2a<-plot_data2 %>%
  group_by(mo, CW) %>%
  summarise(T=sum(value)) %>%
  mutate(P=T/sum(T))
plot_data_2a$OE<-"est"
#Observed
obs_plot_data<-as.data.frame(sslam.tvg.data$obs4_p_I[1,,])
```

```
MTS mo<-sslam.tvg.data$obs4 t
MTS mo2<-MTS mo
for(i in 1:length(MTS mo)){
 MTS_mo2[i]<-get_m(MTS_mo[i],nmo)
}
obs_plot_data$CW<-bins
plot_data3 <- obs_plot_data %>%
 pivot_longer(cols=!CW,
       names to = c("Value"))
plot_data3$mo<-rep(MTS_mo2,nlbins)</pre>
plot data 3a<-plot data3 %>%
 group by(mo, CW) %>%
 summarise(T=sum(value)) %>%
 mutate(P=T/sum(T))
plot_data_3a$OE<-"obs"
plot_data_4m<-rbind(plot_data_2a,plot_data_3a)
plot_data_4m$sex<-"Male"
p<-ggplot(data=plot_data_4m, aes(x=CW,y=P,fill=OE)) +
 geom_bar(stat="identity", position=position_dodge())+
 ggtitle("ChesMMAP Trawl Survey Males") +
 xlab("Carapace width (mm)") + ylab("Proportion")+
 facet wrap(~mo)
print(p)
#Immature females
Nfmo<-251:300
dat<-I[Nfmo,,2,4]
plot_data<-as.data.frame(dat)
plot_data$mo<-rep(1:nmo,5)
plot_data2 <- dplyr::filter(plot_data, mo %in% chesmo) %>%
 pivot_longer(cols=!mo,
       names_to = c("Value"),
       values_drop_na = TRUE)
plot_data2$CW<-rep(bins,nt)
plot data 2a<-plot data2 %>%
 group_by(mo, CW) %>%
 summarise(T=sum(value)) %>%
 mutate(P=T/sum(T))
```

```
plot data 2a$OE<-"est"
#Observed
obs_plot_data<-as.data.frame(sslam.tvg.data$obs4_p_I[2,,])
MTS_mo<-sslam.tvg.data$obs4_t
MTS_mo2<-MTS_mo
for(i in 1:length(MTS_mo)){
MTS_mo2[i]<-get_m(MTS_mo[i],nmo)
obs plot data$CW<-bins
plot data3 <- obs plot data %>%
 pivot longer(cols=!CW,
       names_to = c("Value"))
plot_data3$mo<-rep(MTS_mo2,nlbins)</pre>
plot_data_3a<-plot_data3 %>%
 group_by(mo, CW) %>%
 summarise(T=sum(value)) %>%
 mutate(P=T/sum(T))
plot data 3a$OE<-"obs"
plot_data_4m<-rbind(plot_data_2a,plot_data_3a)
plot data 4m$sex<-"Im. female"
p<-ggplot(data=plot data 4m, aes(x=CW,y=P,fill=OE)) +
 geom_bar(stat="identity", position=position_dodge())+
 ggtitle("ChesMMAP Trawl Survey Immature Females") +
 xlab("Carapace width (mm)") + ylab("Proportion")+
 facet_wrap(~mo)
print(p)
#Mature females
Nfmo<-251:300
dat<-I[Nfmo,,3,4]
plot_data<-as.data.frame(dat)
plot_data$mo<-rep(1:nmo,5)
plot_data2 <- dplyr::filter(plot_data, mo %in% chesmo) %>%
 pivot longer(cols=!mo,
       names_to = c("Value"),
       values_drop_na = TRUE)
plot_data2$CW<-rep(bins,nt)
plot_data_2a<-plot_data2 %>%
 group_by(mo, CW) %>%
```

```
summarise(T=sum(value)) %>%
  mutate(P=T/sum(T))
 plot_data_2a$OE<-"est"
#Observed
obs_plot_data<-as.data.frame(sslam.tvg.data$obs4_p_I[3,,])
MTS_mo<-sslam.tvg.data$obs4_t
MTS mo2<-MTS mo
for(i in 1:length(MTS mo)){
 MTS mo2[i]<-get m(MTS mo[i],nmo)
 obs plot data$CW<-bins
 plot_data3 <- obs_plot_data %>%
  pivot_longer(cols=!CW,
        names to = c("Value"))
 plot_data3$mo<-rep(MTS_mo2,nlbins)</pre>
 plot_data_3a<-plot_data3 %>%
  group by(mo, CW) %>%
  summarise(T=sum(value)) %>%
  mutate(P=T/sum(T))
 plot data 3a$OE<-"obs"
 plot data 4m<-rbind(plot data 2a,plot data 3a)
 plot_data_4m$sex<-"Mat. Female"
 p<-ggplot(data=plot_data_4m, aes(x=CW,y=P,fill=OE)) +
  geom_bar(stat="identity", position=position_dodge())+
  ggtitle("ChesMMAP Trawl Survey Mature Females") +
  xlab("Carapace width (mm)") + ylab("Proportion")+
  facet wrap(~mo)
print(p)
#END SIMULATION MODEL
#BEGIN ASSESSMENT MODEL
SSLAM BC<-function(parms){
#RTMB function to use "local" variable names
getAll(parms,alldat)
#Define needed arrays
```

G<-array(0,dim=c(nlbins,nlbins,3,tsteps)) #G for three sexes, each time step, number of length bins, number of length bins

```
N<-array(0,c(tsteps,nlbins,3)) #abundance at size by sex (1 = male, 2=immature female, 3=mature
female:no eggs, 4=mature female orange eggs, 5=mature female black eggs)
 F<-array(0,c(tsteps,nlbins,3)) #fishing mortality rate
Z<-array(0,c(tsteps,nlbins,3)) #total mortality rate
C<-array(0,c(tsteps,nlbins,3)) #catch of by size and sex/maturity stage
 R<-vector(mode="numeric",length=tsteps) #recruitment
est_I<-array(-99,dim=c(dtsteps,nlbins,3,nsrv)) #index of abundance at sex and size
 est C<-array(-99,dim=c(dtsteps,nlbins,3)) #catch at sex and size
#Calculate male selectivity
selh<-logistic_sel(0.1,85)
#Backtransform parameters
#Calculate growth
#Calculate population dynamics
nll=0 #Testing - set nll equal to zero
return(nll) #return the negative log likelihood value
}
alldat <- list(fyear=fdyr,
        lyear=nyr,
        nmo=nmo,
        years=seq(fdyr,nyr,1),
        months=seq(1,nmo,1),
        low I bins=bins,
        binw=bin width,
        lbins=1:nlbins,
        fmat=fmat, #probability of a female maturing at length
        mmat=mmat, #male maturity at length
        GDD=GDD, #growing degree days during each month
        M=M[,1], #natural mortality rate
        #Harvest=obs_C_mod,
        #Index=obs I,
        #in_C_sd=cat_sigma,
        #in effN C=C effN,
        #in_l_sd=l_sigma,
        #in_effN_I=I_effN,
        #mat_params=fmat_params,
```

```
#Gest=ifelse(rep(GDD,(nyr-fdyr+1))>0,1,0)
#initial parameter values
param_init_vals<-list(log_Linf=log(Linf),
            log_kp=log(kp),
            log_L0=log(L0),
            log_L0_sd=log(L0*L0_CV),
            #log_Linf_cv=log(Linf_CV),
            #log K cv=log(K CV),
            #tan Linf K cov=tan(Linf K Cor*3.1416/2),
            \#\log q = \log(1),
            \#\log R0 = \log(2000),
            #log_F0=log(f[1]),
            #log_N0=log(N[(fdyr-1)*nmo+1,]),
            #log_R=log(R[((fdyr-1)*nmo+1):(tsteps-1)]),
            #log_f=log(f[((fdyr-1)*nmo+1):(tsteps)]),
            #log_fish_sel_params=c(log(0.1),log(85)),
            \#\log \text{ surv sel params} = c(\log(0.05), \log(15)),
            #nu C=0,
            #phi_C=1,
            #nu I=0,
            #phi_l=1,
            #proc err=array(0,dim=c(3,nlbins,(dtsteps-1))),
            #log_proc_err_sd=log(0.1)
params_to_estimate<-list(log_Linf=factor(1),
             log kp=factor(1),
             log_L0=factor(1),
             log LO sd=factor(1),
             #log Linf var=factor(1),
             #log_K_var=factor(1),
             #Linf_K_cov=factor(1),
             #log q=factor(1),
              #log_R0=factor(1),
             #log_F0=factor(1),
             #log_R=factor(rep(NA,length(R[((fdyr-1)*nmo+1):(tsteps-1)]))),
             #log_R=factor((1:length(R[((fdyr-1)*nmo+1):(tsteps-1)]))),
             #log f=factor(rep(NA,length(f[((fdyr-1)*nmo+1):(tsteps)]))),
             #log_f=factor((1:length(f[((fdyr-1)*nmo+1):(tsteps)]))),
              #log fish sel params=factor(1:2),
             #log_surv_sel_params=as.factor(matrix(1:4),nrow=2,ncol=nsrv),
             #nu_C=factor(NA),
              #phi_C=factor(NA),
```

```
#nu I=factor(NA),
             #phi I=factor(NA),
             #proc err=factor(matrix(NA,nrow=nlbins,ncol=(dtsteps-1))),
             #proc_err=factor(matrix(1:((dtsteps-1)*nlbins),nrow=nlbins,ncol=(dtsteps-1))),
             #log_proc_err_sd=factor(1)
obj <- MakeADFun(alldat, param_init_vals, random="proc_err", DLL=model,map=params_to_estimate)
#obj <- MakeADFun(alldat, param init vals, DLL=model,map=params to estimate)
# Minimize log likelihood using nlminb.
opt <- nlminb(obj$par,obj$fn,obj$gr,
       control = list(eval.max = 100000, iter.max = 100000),
       lower = -50, upper = 50)
#Model fitting stuff below here
#set up data for model
alldat <- list(fyear=fdyr, lyear=nyr, nmo=nmo,
years=seq(fdyr,nyr,1),months=seq(1,nmo,1),low | bins=bins,binw=bin width,
         Harvest=obs_C_mod, Index=obs_I, M=M[1:2,],in_C_sd=cat_sigma, in_effN_C=C_effN,
in I sd=I sigma,in effN I=I effN,
         mat params=fmat params, lbins=1:nlbins,GDD=rep(GDD,(nyr-
fdyr+1)),Gest=ifelse(rep(GDD,(nyr-fdyr+1))>0,1,0))
#initial parameter values
param_init_vals<-list(log_Linf=log(Linf),log_kp=log(kp),log_L0=log(L0),
             log_LO_sd=log(LO*LO_CV),log_Linf_cv=log(Linf_CV), log_K_cv=log(K_CV),
            tan_Linf_K_cov=tan(Linf_K_Cor*3.1416/2),log_q=log(1),log_R0=log(2000),log_F0=log(f[1]),
            #log N0=log(N[(fdyr-1)*nmo+1,]),
            log R = log(R[((fdyr-1)*nmo+1):(tsteps-1)]),
            log_f = log(f[((fdyr-1)*nmo+1):(tsteps)]), log_f = log(0.1), log(85)),
            log_surv_sel_params=c(log(0.05),log(15)),nu_C=0,phi_C=1,nu_I=0,phi_I=1,
            proc err=array(0,dim=c(3,nlbins,(dtsteps-1))),log proc err sd=log(0.1))
params_to_estimate<-list(log_Linf=factor(1),
              log kp=factor(1),
              log L0=factor(1),
              log LO sd=factor(1),
              log_Linf_var=factor(1),
              log K var=factor(1),
              Linf_K_cov=factor(1),
              log_q=factor(1),
              log_R0=factor(1),
              log_F0=factor(1),
```

```
#log R=factor(rep(NA,length(R[((fdyr-1)*nmo+1):(tsteps-1)]))),
              log R=factor((1:length(R[((fdyr-1)*nmo+1):(tsteps-1)]))),
              #log f=factor(rep(NA,length(f[((fdyr-1)*nmo+1):(tsteps)]))),
              log_f=factor((1:length(f[((fdyr-1)*nmo+1):(tsteps)]))),
              log_fish_sel_params=factor(1:2),
              #log_fish_sel_params=factor(rep(NA,2)),
              #log_surv_sel_params=factor(rep(NA,2)),
              log_surv_sel_params=factor(1:2),
              nu C=factor(NA),
              phi C=factor(NA),
              nu I=factor(NA),
              phi I=factor(NA),
              #proc err=factor(matrix(NA,nrow=nlbins,ncol=(dtsteps-1))),
              proc err=factor(matrix(1:((dtsteps-1)*nlbins),nrow=nlbins,ncol=(dtsteps-1))),
              log_proc_err_sd=factor(1))
model="BC_SSLAM_tvG"
# Compile c++ file with objective function
compile(pasteO("src/", model,".cpp")) #dyn.unload(dynlib(pasteO("src/", model)))
# Add dynlib extension
# From TMB documentation: Add the platform dependent dynlib extension. In order
# for examples to work across platforms DLLs should be loaded by dyn.load(dynlib("name")).
dyn.load(dynlib(paste0("src/", model)))
# MakeADFun constructs an objective function with derivatives based on the c++ template
 obj <- MakeADFun(alldat, param_init_vals, random="proc_err", DLL=model,map=params_to_estimate)
#obj <- MakeADFun(alldat, param init vals, DLL=model,map=params to estimate)
# Minimize log likelihood using nlminb.
opt <- nlminb(obj$par,obj$fn,obj$gr,
        control = list(eval.max = 100000, iter.max = 100000),
        lower = -50, upper = 50)
#Simulation Model Plots for documentation
#female maturity
pdat<-cbind(fmat,bins)</pre>
ggplot(pdat, aes(x=bins,y=fmat))+
geom_line()+
labs(x="Carapace width", y = "Maturity")
```

```
#Growing degree days
pdat<-as.data.frame(cbind(GDD[1:nmo],1:nmo))
ggplot(pdat, aes(x=V2,y=V1))+
geom_line()+
labs(x="Month", y = "Cumulative growing degree days")
#mean growth
pdat<-as.data.frame(cbind(kp*GDD,rep(Linf[1],length(GDD)),seq(1:length(GDD))))
pdat<-as.data.frame(cbind(bin_mids,(pdat$V2[6]-bin_mids)*(1-exp(-pdat$V1[6]))))
ggplot(pdat, aes(x=bin mids,y=V2))+
geom line()+
labs(x="Carapace width", y = "Mean growth increment (mm)")
#length-based Natural mortality per month
pdat<-as.data.frame(cbind(bin_mids,M[,1]))
ggplot(pdat, aes(x=bin_mids,y=V2))+
geom line()+
labs(x="Carapace width", y = "Natural mortality rate (per mo)")
#fishery and survey selectivity
pdat<-as.data.frame(cbind(bin_mids,selh,surv_sel))</pre>
names(pdat)<-c("CW","selh","sels1","sels2","sels3","sels4")
ggplot(pdat, aes(x=CW))+
geom_line(aes(y=selh),color="red")+
geom_line(aes(y=sels1),color="blue")+
geom_line(aes(y=sels2),color="black")+
geom_line(aes(y=sels3),color="black")+
geom line(aes(y=sels4),color="purple")+
labs(x="Carapace width", y = "Selectivity")
#function to plot length composition
plot length comp<-function(ft,lt,dat,ylabel){</pre>
pdat<-as.data.frame(cbind(ft:lt,dat))
pdat<-gather(pdat,key="V1",value="N",2:(nlbins+1))
pdat$CW<-sort(rep(bins,lt-ft+1))
pdat$mo<-rep(1:nmo,nlbins)
pdat$t<-rep(1:(lt-ft+1),nlbins)
pp<-ggplot(data=pdat, aes(x=CW, y=N)) +
  geom_bar(stat="identity")+
  facet_wrap(~t)+
  labs(x="Carapace width", y = ylabel)
 return(pp)
```

```
}
ft=291
It=300
#Male population
plot_length_comp(ft,lt,dat=N[ft:lt,,1],"Abundance")
#Immature female population
plot_length_comp(ft,lt,dat=N[ft:lt,,2],"Abundance")
#Mature female population
plot_length_comp(ft,lt,dat=N[ft:lt,,3],"Abundance")
#Male Catches
plot_length_comp(ft,lt,dat=C[ft:lt,,1],"Catch")
#mature female catches
plot_length_comp(ft,lt,dat=C[ft:lt,,3],"Catch")
#Survey male catch at length
plot_length_comp(ft,lt,dat=I[ft:lt,,1,1],"Index")
#Survey immature female catch at length
plot_length_comp(ft,lt,dat=I[ft:lt,,2,1],"Index")
#Survey mature female catch at length
plot_length_comp(ft,lt,dat=I[ft:lt,,3,1],"Index")
ggsave("surv2_length_dist.pdf",plot=p,width=24,height=36,units="in")
pdat<-as.data.frame(cbind(1:10,obs_I_mod[1,31:40,]))
pdat<-gather(pdat,key="V1",value="I",2:28)
for(i in 1:length(pdat$I))
j=as.integer(trunc(1+(i-1)/10))
 pdat$CW[i]<-bins$L_CW[j]
```

```
mo<-i%%10
if(mo==0) mo=10
pdat$t[i]<-mo
ggplot(data=pdat, aes(x=CW, y=I)) +
geom_bar(stat="identity")+
facet_wrap(~t)+
labs(x="Carapace width", y = "Index")
#total male abundance
NT<-rowSums(N[,,1])
pdat<-as.data.frame(cbind(NT,1:300))
ggplot(pdat, aes(x=V2,y=NT))+
geom_line()+
labs(x="Month", y = "Male abundance")
#Total Recruitment
Rdat<-seq(10,300,10)
pdat<-as.data.frame(cbind(R[Rdat],Rdat))
pdat$y<-seq(1:30)
ggplot(pdat, aes(x=y,y=V1))+
geom_line()+
labs(x="Year", y = "Recruitment")
#report out values to check code
#obj$adreport()
res<-obj$report() #get results into an R list
 rep <- sdreport(obj, bias.correct = TRUE)</pre>
summary(rep, "random")
                            ## Only random effects
summary(rep, "fixed", p.value = TRUE) ## Only non-random effects
summary(rep, "report")
                                  ## Only report
#unload DLL
dyn.unload(dynlib(paste0("src/", model)))
#Diagnostics
#Linf
Linf-res$Linf
#K
K-res$K
```

```
#LO
L0-res$L0
#LO sd
L0_CV*L0-res$L0_sd
#fishery selectivity
res$fsel-sel
#abundance
Nd < -res N-t(N[((fdyr-1)*nmo+1):tsteps,])
Nt<-t(N[((fdyr-1)*nmo+1):tsteps,])
Nt[,1]-res$N[,1]
res$Ntest
t(N[1:10*nmo,])
res$Ntest-t(N[1:(10*nmo),])
#Total abundance
(colSums(res$N)-rowSums(N[((fdyr-1)*nmo+1):tsteps,]))/rowSums(N[((fdyr-1)*nmo+1):tsteps,])
#growth
res$G-G[1,,]
#R
(res$R-R[((fdyr-1)*nmo+1):(tsteps-1)])/R[((fdyr-1)*nmo+1):(tsteps-1)]
log(res\$R)-log(R[((fdyr-1)*nmo+1):(tsteps-1)])
#Recruitment proportions at length
res$init_pL-init_size
#survey selectivity
res$ssel-surv_sel
#Graph catch
pdata<-
data.frame(est_C=res$TC,obs_C=res$obs_C,obs_C_u=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_l=exp(log(res$obs_C)+2*cat_sigma),obs_C_
g(res$obs_C)-2*cat_sigma),time=1:length(res$obs_C))
p<-ggplot(data=pdata,aes(x=time,y=obs_C))+
     geom point()+
     geom_errorbar(aes(ymin=obs_C_I, ymax=obs_C_u), width=.1,
                     position=position_dodge(0.05))+
     geom_line(aes(x=time,y=est_C))+
  labs(title="Total Catch",x="Time", y = "Catch (numbers)")
р
#plot index
pdata<-
data.frame(est_C=res$TI,obs_C=res$obs_I,obs_C_u=exp(log(res$obs_I)+2*surv_sigma),obs_C_l=exp(log
(res$obs_I)-2*surv_sigma),time=1:length(res$obs_I))
p<-ggplot(data=pdata,aes(x=time,y=obs_C))+
 geom_point()+
  geom_errorbar(aes(ymin=obs_C_I, ymax=obs_C_u), width=.1,
                     position=position_dodge(0.05))+
  geom_line(aes(x=time,y=est_C))+
```

```
labs(title="Total Index",x="Time", y = "Index (numbers)")
р
#plot catch composition
#calculate catch proportion residuals
est<-as.data.frame((res$p_C-res$obs_p_C)/sqrt(res$p_C*(1-res$p_C)/res$in_effN_C))
colnames(est)<-c(as.factor(1:ncol(est)))
nt<-length(colnames(est))</pre>
est$L<-as.factor(bins$L_CW)
pdata<-gather(est,"t","est_p",1:36)
pdata$posneg<-ifelse(pdata$est p>0,"pos","neg")
p<-ggplot(data=pdata,aes(x=L,y=as.numeric(t),size=abs(est_p),color=as.factor(posneg)))+
geom point()+
labs(title="Catch composition",x="Length",y="Time",color="Sign
of\nresidual",size="Residual\nmagnitude")
р
x<-gather(as.data.frame(res$p_C),"t","est_p",1:36)
y<-gather(as.data.frame(res$obs_p_C),"t","est_p",1:36)
qqplot(x$est p,y$est p,xlab = "estimated", ylab = "observed", main = "Catch Q-Q Plot")
#plot index composition
est<-as.data.frame((res$p I-res$obs p I)/sqrt(res$p I*(1-res$p I)/res$in effN I))
colnames(est)<-c(as.factor(1:ncol(est)))
nt<-length(colnames(est))</pre>
est$L<-as.factor(bins$L_CW)
pdata<-gather(est,"t","est_p",1:36)
pdata$posneg<-ifelse(pdata$est_p>0,"pos","neg")
p<-ggplot(data=pdata,aes(x=L,y=as.numeric(t),size=abs(est_p),color=as.factor(posneg)))+
geom_point()+
labs(title="Index composition",x="Length",y="Time",color="Sign
of\nresidual",size="Residual\nmagnitude")
р
x<-gather(as.data.frame(res$p_I),"t","est_p",1:36)
y<-gather(as.data.frame(res$obs_p_I),"t","est_p",1:36)
qqplot(x$est_p,y$est_p,xlab = "estimated", ylab = "observed", main = "Index Q-Q Plot")
#test if model is running
diff<-res$C-t(C[((fdyr-1)*nmo+1):tsteps,])</pre>
diff/t(C[((fdyr-1)*nmo+1):tsteps,])
Idiff<-res$I-t(I[((fdyr-1)*nmo+1):tsteps,])</pre>
#fishing intensity
```

```
res$f
f
#selectivity
res$fsel-sel
#abundance
Nd<-res$N-t(N[((fdyr-1)*nmo+1):tsteps,])
Nd/t(N[((fdyr-1)*nmo+1):tsteps,])
#Z
res$Z-t(Z[((fdyr-1)*nmo+1):tsteps,])
#growth
res$G-G[1,,]
#R
res$R-R[((fdyr-1)*nmo+1):(tsteps-1)]
#Recruitment proportions at length
res$init_pL-init_size
colSums(res$C)
res$TC
colSums(t(obs_I))
(res$TC-res$obs C)/res$obs C
(res$TI-res$obs_I)/res$obs_I
colSums(res$obs_p_I)
colSums(res$obs p C)
Idiff<-res$I-t(obs_I)</pre>
Idiff/t(obs I)
res$ssel-surv_sel
res$q
ogc=res$TC_nll
ogil=res$nll_I_lcomp
ogi=res$TI nll
ogcl=res$nll_C_lcomp
#Old code below here
all_mod_fit <- summary(sdreport(obj))</pre>
all_mod_fitRowNames <- row.names(all_mod_fit)</pre>
row.names(all_mod_fit) <- 1:nrow(all_mod_fit)</pre>
all_mod_fit_df <- as.data.frame(all_mod_fit)
names(all mod fit df) <- c("Estimate", "StError")</pre>
all_mod_fit_df$Name <- all_mod_fitRowNames
#all_mod_fit_df$NOAACode <- rep(dat$NOAANumber, times = nrow(all_mod_fit_df))
TMBresults <- data.frame()
TMBresults <- rbind(all_mod_fit_df, TMBresults)
```

```
# make a text file with the likelihood results
ModelResultsText(obj = obj, opt = opt, modelname = "LAM", plot_title = plot_title)
#Call estimation model
#end simulation loop
p<-as.vector(c(0.2,0.5,0.3))
n<-rmultinom(1,15,p)
dmultinom(x=n,size=NULL,prob=p,T)
N_plot<-cbind(seq(1,tsteps),N)
colnames(N_plot)<-c("t",seq(5,maxl,bin_width))
ndata<- gather(as.data.frame(N_plot),key="Length",value="N",2:(nlbins+1))</pre>
tmin=37
tmax=48
pdat<-subset(ndata,t>=tmin)
pdat<-subset(pdat,t<=tmax)</pre>
p<-ggplot(data=pdat, aes(x=as.numeric(Length), y=N)) +
 geom_bar(stat="identity")+
 facet_wrap(~t,ncol=1)
р
I_plot<-cbind(seq(1,tsteps),I)</pre>
colnames(I_plot)<-c("t",seq(5,maxl,bin_width))</pre>
Idata<- gather(as.data.frame(I_plot),key="Length",value="I",2:(nlbins+1))</pre>
tmin=37
tmax=48
pdat<-subset(Idata,t>=tmin)
pdat<-subset(pdat,t<=tmax)</pre>
p<-ggplot(data=pdat, aes(x=as.numeric(Length), y=I)) +
 geom_bar(stat="identity")+
 facet_wrap(~t,ncol=1)
```

Appendix 3. Spatially Explicit Length-Based Assessment Model (SSLAM)

```
// Length-based assessment model that uses a normal distribution for the
transition probabilities conditional on current length
// Basic model to allow testing of code and state-space estimation
// Authors: Mike Wilberg
// Date Started: 22 May 2023
// Comments:
// Rec constraint to zero for certain months
// Fmult constrant to zero for certain months
// time series of GDD to allow growth to show annual variability
//Include statements to get the right libraries
#include <iostream>
#include <TMB.hpp>
#include "age comp osa.hpp"
#include "SSLAM helper.hpp"
#include <fenv.h>
#include "SSLAM tvG DLStudy index2.hpp"
//template<class Type>
//Type multinom
template <class Type>
Type objective function<Type>::operator()()
 //feenableexcept(FE INVALID | FE OVERFLOW | FE DIVBYZERO |
FE UNDERFLOW);
 //DATA
 //-----
 DATA INTEGER (dtsteps); // number of time steps
 DATA INTEGER (fyear); //first year
 //DATA INTEGER(lyear); //last year
 DATA INTEGER (nmo); //number of months per year
 //DATA IVECTOR(years); // years per time step
 DATA IVECTOR (months); // months per time step
 DATA VECTOR(low 1 bins); //lower bound of length bins
 DATA SCALAR(binw); //width of length bins
 DATA VECTOR(Harvest); //number harvested per fishing month
 DATA IVECTOR (Harvest t); // zero-based indices of non-zero hearvest month
 DATA IVECTOR (Rec t); // zero-based indices of non-zero recruit month
 DATA IVECTOR (Rec sea); // monthly boolean variable of non-zero recruit
season
 DATA IVECTOR(obs t); // observed time indices
 DATA VECTOR(obs I);// observed indices by month
```

```
DATA MATRIX(obs p I);// observed proportion at length in index
  // the second index is subject to catch-ability constraint
 DATA IVECTOR(obs2 t);// observed time second index
 DATA VECTOR(obs2 I); // observed indices by month
 DATA MATRIX(obs2 p I);// observed proportion at length in index 2
 DATA VECTOR(M); // constant M (only include if can't estimate in the
model)
  DATA SCALAR(in C sd); //constant log-scale SD for catch
  DATA_SCALAR(in_I_sd); //log-scale SD for the index of abundance
  DATA SCALAR(in effN I); //effective sample size for the index of
abundance
  //DATA IVECTOR(lbins); //numbers for lbins to use in composition
likelihood functions
 DATA VECTOR(GDD); //Growing degree days each seasonal step
  DATA IVECTOR(Gest); //vector of ones and zeros to determine if growth
should be estimated for that season step
 DATA VECTOR(GDD ts); // Growing degree days each time step
 DATA IVECTOR (Gest ts); // binary whether growth should be estimated for
that time step
  DATA SCALAR (debug ); // debug flag;
 //-----
 //ESTIMATED PARAMETERS
 //-----
 PARAMETER(log Linf); // log scale Linfinity for von Bertalanffy growth
model
 PARAMETER(log kp); // log scale proportionality constant for GDD->K
 PARAMETER(log L0); //log scale mean length of recruits
 PARAMETER(log L0 sd); //log scale SD of length at recruitment
 PARAMETER(log Linf cv);//log of the coefficient of variation of Linf
 PARAMETER(log K cv); //log of the coefficient of variation of K
 PARAMETER(tan Linf K cor); //tangent of the correlation of Linf and K
 PARAMETER(log R0); //log initial recruitment
 PARAMETER (log F0); //log initial fishing intensity
 PARAMETER VECTOR(log R); //log recruitment
 PARAMETER VECTOR(log f); //log scale fishing intensity (F when
selectivity is 1)
  PARAMETER VECTOR(log fish sel params); //log-scale logistic fishery
selectivity parameters
 PARAMETER VECTOR(log surv sel params); //log-scale logistic survey
selectivity parameters
 PARAMETER(nu C); //offset for catch sd
 PARAMETER (phi C); //offset for catch effective sample size
 PARAMETER(nu I); //offset for index sd
 PARAMETER(phi I); //offset for index effective sample size
 PARAMETER MATRIX(proc err); //process error for population dynamics
 PARAMETER(log proc err sd); //Process error SD (on the log scale)
  // parameters for lognormal priors for the von Bertalanffy parameters
 PARAMETER (mean log Linf);
 PARAMETER(sd_log_Linf);
 PARAMETER (mean log Linf cv);
 PARAMETER (sd log Linf cv);
```

```
PARAMETER (mean log kp);
 PARAMETER (sd log kp);
 PARAMETER (mean log kp cv);
 PARAMETER (sd log kp cv);
 // prior for the von Bertalanffy parameters
 Type var log Linf = square(sd log Linf);
 Type Linf pen = Type (-1.0)*dnorm(log Linf, mean log Linf-
0.5*var log Linf, sd log Linf, true);
 Type var log Linf cv = square(sd log Linf cv);
 Type Linf cv pen = Type(-1.0)*dnorm(log Linf cv, mean log Linf cv-
0.5*var_log_Linf_cv,sd_log Linf cv,true);
 Type var log kp = square(sd log kp);
 Type kp pen = Type (-1.0) *dnorm(log kp, mean log kp-
0.5*var log kp,sd log kp,true);
 Type var_log_kp_cv = square(sd_log_kp_cv);
 Type kp cv pen = Type (-1.0)*dnorm(log K cv, mean log kp cv-
0.5*var log kp cv,sd log kp cv,true);
 //INTERMEDIATE PARAMETERS
 //Local variables for indexing.
 int nt = dtsteps;
 int nh = Harvest.size();
 int nr = Rec t.size();
 vector<Type> binmids = low l bins+0.5*binw; //Calculate the midpoint of
each bin
 //int debug = 2;
 //-----
 // PROCEDURE SECTION
 //-----
 Type Linf = exp(log Linf); //Backtransform Linf
 Type kp = exp(log kp);
 vector<Type> K = exp(log kp)*GDD; //calculate K as a function of GDD
 Type L0 = \exp(\log L0); //Backtransform L0
 Type L0_sd = exp(log_L0_sd); //Backtransform the SD of L0
 Type Linf sd = exp(log Linf cv)*Linf; //Backtransform sd of Linf
 Type Linf var = square(Linf sd);
 Type K cv = exp(log K cv); //Backtransform variance of K
 vector<Type> K_sd = K_cv*K; //calculate SD of K for each timestep
 Type Linf K cor = atan(tan Linf K cor)/Type(3.1416/2.); //backtransform
Linf-K correlation
 int nb=binmids.size(); //get length of mean g vector
 vector<Type> mean g(nb);
 REPORT (Linf K cor);
 REPORT (kp);
 // 1. Proportions at length for recruits
 vector<Type> init pL(nb);
```

```
int ulb=nb-1; //Upper index for length bins
 init pL(0)=pnorm(low 1 bins(1),L0,L0 sd); //first length bin represents
that range and all smaller
 for(int l=1; l<ulb; l++)
                         //loop over length bins
    init pL(l)=pnorm(low l bins(l+1),L0,L0 sd)-
pnorm(low 1 bins(1),L0,L0 sd); //calculate proportion in each length bin
assuming normal distribution for length of recruits
 }
 init pL(ulb) = Type(1.0) - pnorm(low 1 bins(ulb), L0, L0 sd); //Last length
bin is a plus group representing individuals in that bin and larger.
 // 2. Calculate growth matrix
  //Calculate growth Transition matrix
  matrix<Type> G(nb,nb); //Specify size of Growth transition matrix
   G.setZero(); //fill with zeros
  //Calculate mortality rates
   //Calculate selectivity as column vector
   vector<Type> fsel(nb);
   vector<Type> ssel(nb);
  //backtransform selectivity parameters
   vector<Type> fsel params(2);
  vector<Type> ssel_params(2);
   //Fishery Selectivity
   fsel params=exp(log fish sel params); //backtransform fishery
selectivity parameters
   fsel=Type(1.)/(Type(1.0)+exp(-fsel params(0)*(binmids-
fsel params(1)))); //logistic function
   //Survey selectivity
   ssel params=exp(log surv sel params); //backtransform survey
selectivity parameters
   ssel=Type(1.)/(Type(1.0)+exp(-ssel params(0)*(binmids-
ssel params(1)))); //Logistic function
   //backtransform fishing intensity for each time step
   vector<Type> f(nh);
   f=exp(log f);
   //Fishing (F) and total (Z) mortality
  matrix<Type> F(nb,nt); //Fishing mortality (rows=lengths, cols=time)
   //F.setZero();
   F.setZero();
   matrix<Type> Z(nb,nt); //Total instantaneous mortality rate
   Z.setZero();
  int t2=0:
   for (int t=0; t<nh; t++) { // for each month harvest allowed
     t2 = Harvest t(t);
     F.col(t2)=fsel*f(t); // Calculate F as the product of selectivity and
fishing intensity
   }
```

```
for (int t=0; t<nt; t++)</pre>
       Z.col(t)=M; //Calculate Z as the sum of F and M (total
instantaneous mortality)
       Z.col(t) += F.col(t);
   }
   if(debug >0){
     std::cout <<"\nSSLAM tvG ver. 3f\n";</pre>
     std::cout <<"nt="<<nt<<",nb="<<nh<<",nr="<<nr<<"\n";
   }
   if(debug >0){
     std::cout <<"Growth parameters.\n";</pre>
     std::cout <<"Linf="<<Linf<<","<"kp="<<kp<<","<"L0="<<L0<<"\n";
     std::cout
<<"Linf sd="<<Linf sd<<",K cv="<<K cv<<",L0 sd="<<L0 sd<<"\n";
     std::cout <<"K=";
     for (int t=0; t < nmo-1; t++) {
       std::cout<<K(t)<<"\t";
     std::cout<<K(nmo-1)<<"\n";
     std::cout <<"K sd=";</pre>
     for (int t=0; t<nmo-1; t++) {
       std::cout<<K sd(t)<<"\t";
     std::cout<<K sd(nmo-1)<<"\n";
   if(debug >1){
     std::cout <<"Mortality rates.\n";</pre>
     std::cout <<"log f(0):"<<log F0<<"\n";
     std::cout <<"log f:";</pre>
     for(int t=0;t<nh;t++){</pre>
       std::cout << log f(t) <<"\t";
     }
     std::cout <<"\n";
     std::cout <<"fsel:"<<std::endl;</pre>
     for (int b=0; b<nb; b++) {
       std::cout << fsel(b) <<"\t";</pre>
     std::cout <<"\n";</pre>
   //Calculate abundance at length
   matrix<Type> N(nb,nt); //Abundance at length matrix
   N.setZero(); //fill with zeros
   matrix<Type> S(nb,nb); //survival at length
   //Fill in first column of the N matrix
   //N.col(0) = exp(log N0);
   int t initialize=fyear*nmo+months(0)-1;
```

```
vector<Type> N init(nb);
   Type R0=exp(log R0);
   if(debug >1){
     std::cout <<"Initial abundance at length.\n";</pre>
     std::cout <<"R(0):"<<R0<<"\n";
   }
   vector<Type> Z init(nb);
   Type F0=\exp(\log F0);
   Z init=M+F0*fsel;
   matrix<Type> S0(nb,nb);
   S0.setZero();
   S0.diagonal()=exp(-Z init.array());
   matrix<Type> Ntest(nb,t initialize);
   Ntest.setZero();
   //calculate initial abundance at length in the first model year by
calculating the approximate equilibrium by
   //running the model out with constant R and Z
   vector<Type> Ntemp(nb);
   vector<Type> K calc(t initialize);
   int m; // index for month
   for(int t=1;t<=t initialize;t++)</pre>
    m=get mo(t,nmo);
     if(t==1)
       N init=R0*init pL; //start off with just recruits
     }
     else
       G=G matrix(binmids, Linf, K(m), Linf var, square(K sd(m)),
Linf K cor*Linf sd*K sd(m), Gest(m));
       //Build up the initial numbers at length over the t initialize
period
       Ntemp=G*(S0*N init); //growth and survival
       N init=Ntemp+R0*Rec sea(m)*init pL; //add in recruitment
     K \operatorname{calc}(t-1) = K(m);
     Ntest.col(t-1)=N init;
     //std::cout << t << " " << t-1 << std::endl;
     //std::cout << m << std::endl;
     if(debug__>2){
       std::cout <<"t="<<t<", m="<<m;
       std::cout <<", R="<<R0*Rec sea(m) <<"\n";
       std::cout <<"Growth and Z:\n";</pre>
       for (int b=0; b< nb-1; b++) {
         std::cout <<Ntemp(b) <<"\t";</pre>
       std::cout <<Ntemp(nb-1)<<"\n";
       std::cout <<" N_init:";</pre>
       for (int b=0;b<nb-1;b++) {
         std::cout <<N init(b) << "\t";</pre>
```

```
std::cout <<N init(nb-1) <<"\n";
     }
   }
   REPORT(N init);
   REPORT(Z init);
   REPORT (R0);
   REPORT (F0);
   REPORT (Ntest);
   REPORT(K calc);
   //calculate recruitment for each time step
   vector<Type> R(nt-1);
   vector<Type> Rtemp = exp(log R.array());
   R.setZero();
   for(int t=0;t<nr;t++){</pre>
     t2 = Rec t(t);
     R(t2) = Rtemp(t);
   //vector<Type> R=exp(log R.array());
   N.col(0)=N init;
   vector<Type> K ts(nt);
   vector<Type> K_sd_ts(nt);
   K ts = exp(log kp) * GDD ts;
   K \text{ sd ts} = K \text{ ts} * K \text{ cv};
   if(debug >0){
     std::cout <<"Abundance at length.\n";</pre>
   for (int t=1; t<nt; t++)</pre>
      //Calculate growth
      //Calculate survival
      S.setZero();
      S.diagonal() = \exp(-Z.col(t-1).array());
      //Growth occurs before mortality
      //N.col(t) = G*N.col(t-1);
      //N.col(t)=N.col(t).array()*exp(-Z.col(t-1).array());
      //calculate growth for each time step
      G=G matrix(binmids, Linf, K ts(t-1), Linf var, square(K sd ts(t-1)),
Linf K cor*Linf sd*K sd ts(t-1), Gest ts(t-1));
      //Growth occurs after mortality
      Ntemp=G*S*N.col(t-1);
      N.col(t) = Ntemp.array() *exp(proc err.col(t-1).array()) + R(t-
1) *init pL.array();
      /*
      for(int l=0;1<=ulb;1++)
        N(1,t) += R(t-1) *init pL(1); //add in recruitment. Need to use
previous t because R has one fewer t than N
      } // end l loop
```

```
if(debug >2){
        std::cout << t <<std::endl;</pre>
        std::cout << "R("<< t-1<< "):"<<R(t-1) <<std::endl;
        std::cout <<"proc error("<<t-1<<"):"<<std::endl;</pre>
        for(int b=0; b<nb; b++){
          std::cout << proc err(b, t-1) << "\t";
        }
        std::cout <<std::endl;</pre>
        std::cout <<"Growth and mortality("<<t<"):"<<std::endl;</pre>
        for(int b=0; b<nb; b++) {
          std::cout <<Ntemp(b) <<"\t";</pre>
        std::cout << "\n";</pre>
        std::cout <<"N("<<t<<"):\n"<<std::endl;
        for(int b=0; b<nb;b++){
          std::cout << N(b,t) << "\t";
        std::cout << "\n";</pre>
   } //end t loop
   //Calculate catch-at-length and total catch
   matrix<Type> C=(F.array()/Z.array())*(Type(1.0)-exp(-
Z.array()))*N.array();
  vector<Type> TC(nh);
   for (int t=0; t< nh; t++) {
     t2 = Harvest t(t);
     TC(t) = C.col(t2).sum();
   }
   //Calculate catchability of second indices of abundance
  Type q;
   q = calculate catchability indices(obs2 I,obs2 p I,N,ssel,
                                        obs2 t,nb,nt,debug );
   if(debug >0){
     std::cout <<"q="<<q<<"\n";
   //Calculate indices of abundance - index 1
   matrix<Type> I(nb,nt); //Index of abundance at length
  I.fill(0.0); //fill with zeros
   I = calculate predicted indices(Type(1.0), N, ssel, nb, nt);
   vector<Type> TI=I.colwise().sum();
   //{\tt Calculate} indices of abundance - index 2
   matrix<Type> I2(nb,nt);
   I2.fill(0.0); //fill with zeros
   I2 = calculate predicted indices(q,N,ssel,nb,nt);
   vector<Type> TI2=I2.colwise().sum();
  // 6. Calculate likelihood
  //Total catch
  Type TC nll;
  Type sig C;
```

```
sig C=in C sd*exp(nu C);
  Type var C=square(siq C);
  vector<Type> obs C=Harvest;//C3: Total catch by timestep
  TC nll=-sum(dnorm(log(obs C),log(TC)-0.5*var C,sig C,true)); //true
means give the log density
  REPORT (obs C);
  REPORT (TC);
  if(debug >0){
    //std::cout <<"obs C="<<obc C<<"\n";
    std::cout <<"TC=[";
    for(int i =0;i <TC.size();i ++)</pre>
      std::cout <<obs C(i )<<"~"<< TC(i )<<" ";
    std::cout <<"]\n";
    std::cout <<"TC_nll="<<TC_nll<<"\n";
  //Total index objective
  //Total index of abundance - index 1
  Type TI nll;
  TI nll = calculate objective total indices(obs I,TI,in I sd,nu I,obs t);
  // index 2;
  Type TI2 nll;
  TI2 nll =
calculate objective total indices (obs2 I, TI2, in I sd, nu I, obs2 t);
  if(debug >0){
    //std::cout <<"TI="<<TI<<"\n";
    std::cout <<"TI=[";
    for(int i =0;i <obs t.size();i ++)</pre>
      std::cout <<obs I(i) <<"~"<<TI(obs t(i)) <<" ";
    std::cout <<"]\n";
    std::cout <<"TI nll="<<TI nll<<"\n";</pre>
    //std::cout <<"TI2="<<TI2<<"\n";
    std::cout <<"TI2=[";
    for(int i =0;i <obs2 t.size();i ++)
      std::cout <<obs2 I(i) <<"~"<<TI2(obs2 t(i)) <<" ";
    std::cout <<"]\n";
    std::cout <<"TI2 nll="<<TI2 nll<<"\n";
  }
  //Calculate proportions at length for catch
  matrix<Type> p C(nb,nh); //estimated proportions at length in the catch
  //C3 matrix<Type> obs p C(nb,nt); //observed proportions at length in
the catch
  for (int t=0; t< nh; t++)
    t2 = Harvest t(t);
```

```
p C.col(t)=C.col(t2)/TC(t); //Calculate estimated proportions at
length in the catch
    //C3 obs p C.col(t)=Harvest.col(t)/obs C(t); //Calculate observed
proportions at length in the catch
 //Calculate proportions at length for index - index 1
 matrix<Type> p I(nb,nt); //estimated proportions at length in the index
  //matrix<Type> obs p I(nb,nt); //observed proportions at length in the
index
 for (int t=0; t< nt; t++)
   p I.col(t)=I.col(t)/TI(t); //calculate estimated proportions at
length in the index
    //obs_p_I.col(t)=Index.col(t)/obs_I(t); //calculate observed
proportions at length in the index
 }
 // index 2
 matrix<Type> p I2(nb,nt);
 for(int t=0;t<nt;t++)</pre>
    p I2.col(t) = I2.col(t) / TI2(t);
 REPORT (p C);
 REPORT (p I);
 REPORT (p I2);
  //REPORT (obs p C);
 //REPORT(obs p I);
  //Likelihood for proportions at length for catch
 //Likelihood for proportions at length for index - index 1
 vector<Type> nll I lcomp(nt);
 nll I lcomp.setZero();
 nll I lcomp = calculate objective prop length indices(
    obs p I, p I, in effN I, nb, nt, obs t, debug
  // index 2
 vector<Type> nll I2 lcomp(nt);
 nll I2 lcomp.setZero();
 nll I2 lcomp = calculate objective prop length indices(
    obs2 p I, p I2, in effN I, nb,nt,obs2 t, debug
 );
 //Process error likelihood
 Type nll proc err;
 Type proc err sd=exp(log proc err sd);
 nll_proc_err=Type(0.0);
  //v2.setZero();
 vector<Type> v1(nb);
```

```
for(int t=0; t<nt-1; t++)
  v1=proc err.col(t);
  nll proc err+=-sum(dnorm(v1, Type(0.0), proc err sd, true));
//REPORT (obs I);
Type sig I;
sig I=in I sd*exp(nu I);
Type var I=square(sig I);
REPORT (TI);
REPORT (TI2);
REPORT (var I);
REPORT (sig I);
REPORT (TI nll);
REPORT (TI2 nll);
REPORT(nll_I_lcomp);
REPORT(nll I2 lcomp);
//C3: REPORT(nll C lcomp);
REPORT (proc err);
REPORT (proc err sd);
REPORT (tan Linf K cor);
//Index length composition
//Total negative log likelihood
//----
REPORT(in C sd); //input log-scale sd of catch
//C3: REPORT(in effN C); //input effective sample size of catch
REPORT (in I sd); //input log-scale sd of index
REPORT(in effN I); //input effective sample size of index
// Any parameters in a call to REPORT() will show point estimates in R
REPORT (log Linf);
REPORT (log kp);
REPORT (Linf);
REPORT (K);
REPORT (L0);
REPORT (L0 sd);
REPORT(Linf var);
REPORT (K sd);
REPORT (Linf K cor);
REPORT (binmids);
REPORT (mean g);
//REPORT(L SD);
REPORT (nb);
REPORT (G);
REPORT (N);
REPORT(fsel params);
REPORT (fsel);
```

```
REPORT (F);
  REPORT (f);
  REPORT(Z);
  REPORT (init pL);
  REPORT (R);
  REPORT (C);
  vector<Type> TN=N.colwise().sum();
  vector<Type> logTN=log(TN);
  //DL edits start
  //REPORT(TN);
  REPORT (N);
  //DL edits stop
  REPORT(I);
  REPORT (I2);
  REPORT (ssel);
  REPORT (ssel params);
  REPORT (sig C);
  REPORT (nu C);
  REPORT (nu I);
  REPORT (phi C);
  REPORT (phi I);
  REPORT (TC nll);
  //Type q=exp(log q);
  REPORT (q);
  //REPORT(log q);
  Type nll = 0.0; //Don't run the optimization version of the model- just
do the calculations
  nll+=TC nll;
  nll+=TI nll;
  nll+=TI2 nll;
  //C3: nll+=sum(nll C lcomp);
  nll+=sum(nll I lcomp);
  nll+=sum(nll I2 lcomp);
  nll+=nll proc err;
  // prior
  nll+= Linf pen;
  nll+= Linf cv pen;
  nll+= kp pen;
  nll+= kp_cv_pen;
  if(debug >0){
    //std::cout <<"TC nll="<<TC nll<<", TI nll="<<TI nll<<",
TI2 nll="<<TI2 nll;
    //std::cout <<",nll I lcomp="<<nll I lcomp << "
,nll_I2_lcomp="<<nll_I2_lcomp;</pre>
    std::cout <<"nll I lcomp=[";</pre>
    for(int i =0;i <nll I lcomp.size();i ++)</pre>
```

```
std::cout <<"nll_I_lcomp(i_)<<" ";
std::cout <<"nll_I2_lcomp=[";
for(int i_=0;i_<nll_I2_lcomp.size();i_++)
    std::cout <<nll_I2_lcomp(i_)<<" ";
std::cout <<"]\n";

std::cout <<",nll_proc_err="<<nll_proc_err<<"\n";
std::cout <<",nll="<<nll<<"\n";
}
//nll = 0.0; //uncomment for testing
return nll;
//return nll; //need this in tmb. Returns the negative log likelihood
to the R optimization program
}</pre>
```