
## **CMAQ Modeling of Atmospheric Mercury**

CMAQ Model Peer Review - December 17, 2003

O. Russell Bullock, Jr.\*

Atmospheric Sciences Modeling Division

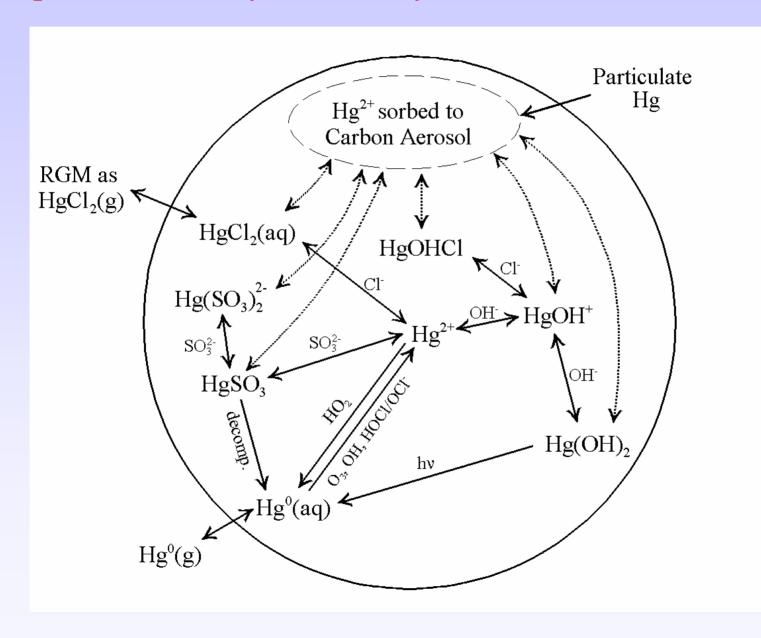
NOAA - Air Resources Laboratory



\* On assignment to the National Exposure Research Laboratory, U.S. EPA

Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy

# Physicochemical Species of Mercury Added to the Standard CMAQ


- Elemental Mercury (Hg<sup>0</sup>)— Mildly reactive gas; sparingly soluble in water; subject to very long range transport throughout the entire atmosphere
- Reactive Gaseous Mercury (RGM) Common term for unspecified gaseous compounds; water soluble and chemically reactive; readily deposited to water, soils and vegetation by wet and dry atmospheric processes
- Particulate Mercury (PHg)— Unspecified condensed compounds and RGM adsorbed to receptive aerosols; morphology rather uncertain at this time

# What are RGM and PHg really?

- RGM is thought to be primarily HgCl<sub>2</sub> based on vapor pressure and water solubility data, but could also include small fractions of other compounds.
- PHg is thought to be HgO, HgS and other low vapor pressure compounds plus more volatile compounds (maybe even Hg<sup>0</sup>) adsorbed to carbon-rich aerosols.
- No practical air-sampling technology exists to measure the specific compounds comprising either of these species. Thus, CMAQ uses these generalized species for the gaseous-phase.

However, for the aqueous phase, the CMAQ-Hg employs a much more definite mercury speciation.

#### Aqueous Mercury Chemistry Mechanism for CMAQ-Hg



#### Hg reactions and rate constants in the CMAQ-Hg model

| No.      | Reaction                                                                                                                               | k or K                                                               | Reference                     |
|----------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------|
| Gaseou   | s-phase reaction of Hg                                                                                                                 |                                                                      |                               |
| RG1      | $Hg^{0}_{(g)} + O_{3(g)}^{-} PHg$                                                                                                      | $3.0 \times 10^{-20} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1}$ | Hall (1995)                   |
| RG2      | $Hg^{0}_{(g)} + Cl_{2(g)} - RGM$                                                                                                       | $4.8 \times 10^{-18} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1}$ | Calhoun and Prestbo (2001     |
| RG3      | $Hg_{(g)}^{0} + H_{2}O_{2(g)} - PHg$                                                                                                   | $8.5 \times 10^{-19} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1}$ | Tokos et al. (1998)           |
| RG4      | $Hg^{0}_{(g)} + OH_{(g)} \stackrel{-}{\rightarrow} PHg$                                                                                | $8.7 \times 10^{-14} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1}$ | Sommar <i>et al.</i> (2001)   |
| Аднеон   | s-phase reactions of Hg                                                                                                                |                                                                      |                               |
| RA1      | $Hg^{0}_{(aq)} + O_{3(aq)} - Hg^{2+}_{(aq)} + products$                                                                                | $4.7 \times 10^7 \mathrm{M}^{-1} \mathrm{s}^{-1}$                    | Munthe (1992)                 |
| RA2      | $HgSO_{3(aq)} - Hg^{0}_{(aq)} + products$                                                                                              | $T \times e^{((31.971 \times T)-12595)/T} s^{-1}$                    | Van Loon <i>et al.</i> (2000) |
| RA3      | $Hg(OH)_{2(aq)} + hv - Hg^{0}_{(aq)} + products$                                                                                       | $6.0 \times 10^{-7} \text{ s}^{-1} \text{ (max)}^{\dagger}$          | Xiao <i>et al</i> . (1994)    |
| RA4      | $Hg^{0}_{(aq)} + OH_{(aq)} - Hg^{2+}_{(aq)} + products$<br>$Hg^{2+}_{(aq)} + HO_{2(aq)} - Hg^{0}_{(aq)} + products$                    | $2.0 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$                      | Lin and Pehkonen (1997)       |
| RA5      | $\mathrm{Hg}^{2+}_{(\mathrm{aq})} + \mathrm{HO}_{2(\mathrm{aq})} \stackrel{\neg}{\mathrm{Hg}}^{0}_{(\mathrm{aq})} + \mathrm{products}$ | $1.1 \times 10^4 \text{ M}^{-1} \text{ s}^{-1}$                      | Pehkonen and Lin (1997)       |
| RA6      | $Hg_{(aq)}^{0} + HOCl_{(aq)} - Hg_{(aq)}^{2+} + products$                                                                              | $2.09 \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$                     | Lin and Pehkonen (1998)       |
| RA7      | $\mathrm{Hg}^{0}_{(aq)} + \mathrm{OCl}^{-}_{(aq)} - \mathrm{Hg}^{2+}_{(aq)} + \mathrm{products}$                                       | $1.99 \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$                     | Lin and Pehkonen (1998)       |
| Аднеонз  | s-phase chemical equilibria for Hg                                                                                                     |                                                                      |                               |
| E1       | $Hg^{2+} + SO_3^{2-} = HgSO_3$                                                                                                         | $2.0 \times 10^{-13} \text{ M}$                                      | Smith and Martell (1976)      |
| E2       | $HgSO_3 + SO_3^{2-} = Hg(SO_3)_2^{2-}$                                                                                                 | $4.0 \times 10^{-12} \text{ M}$                                      | Smith and Martell (1976)      |
| E3       | $Hg^{2+} + 2Cl^{-} = HgCl_2$                                                                                                           | $1.0 \times 10^{-14} \text{ M}^2$                                    | Lin and Pehkonen (1999)       |
| E4       | Hg <sup>2+</sup> + OH <sup>≠</sup> HgOH <sup>+</sup>                                                                                   | $2.51 \times 10^{-11} \text{ M}$                                     | Smith and Martell (1976)      |
| E5       | $HgOH^+ + OH^- = Hg(OH)_2$                                                                                                             | $6.31 \times 10^{-12} \mathrm{M}$                                    | Smith and Martell (1976)      |
| E6       | HgOH <sup>+</sup> + Cl <sup>-</sup> = HgOHCl                                                                                           | $3.72 \times 10^{-8} \text{ M}$                                      | Smith and Martell (1976)      |
| † Rate o | constant for RA3 is scaled to the cosine of so                                                                                         | lar zenith angle                                                     |                               |

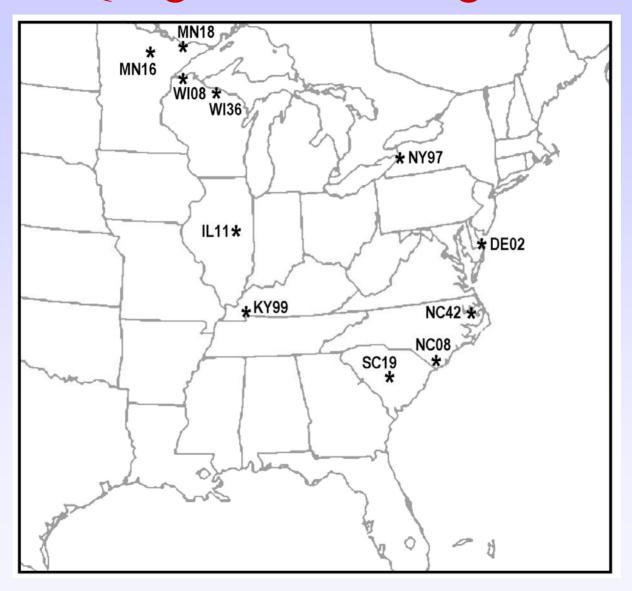
# Sorption of Aqueous Hg<sup>2+</sup> Complexes

- Based on work of Seigneur et al. (1998)
- $[Hg^{2+}_{S}] = K_{S}[Hg^{2+}_{D}]$  at equilibrium
- $K_S = 900 L g^{-1}$  elemental carbon
- Sorption/desorption time constant = 1 h
- PHg  $\rightarrow$  Hg<sup>2+</sup><sub>S</sub> and RGM  $\rightarrow$  Hg<sup>2+</sup><sub>D</sub> at start of cloud chemistry time split
- $Hg^{2+}_S \rightarrow PHg$  and  $Hg^{2+}_D \rightarrow RGM$  at end of cloud chemistry time split

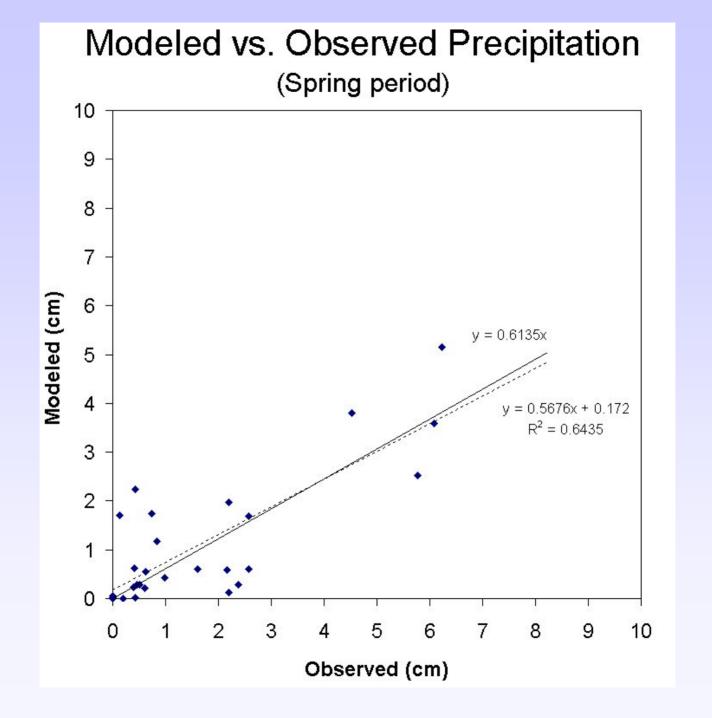
## Feedback effects of the Hg chemistry?

- Air concentrations for the Hg species:
  - $Hg^0 \sim 10^{-13} \text{ (mol/mol)}$
  - RGM and PHg  $\sim 10^{-15}$  (mol/mol)
- Aqueous concentrations are many orders of magnitude less than the standard CMAQ species with which they react.
- Feedback effect was 10<sup>-4</sup> or less for all criteria pollutants in initial testing.
- For efficiency, Hg chemistry is computed separately with no feedback to standard species.

# For a more complete description of the CMAQ modifications for atmospheric mercury simulation:

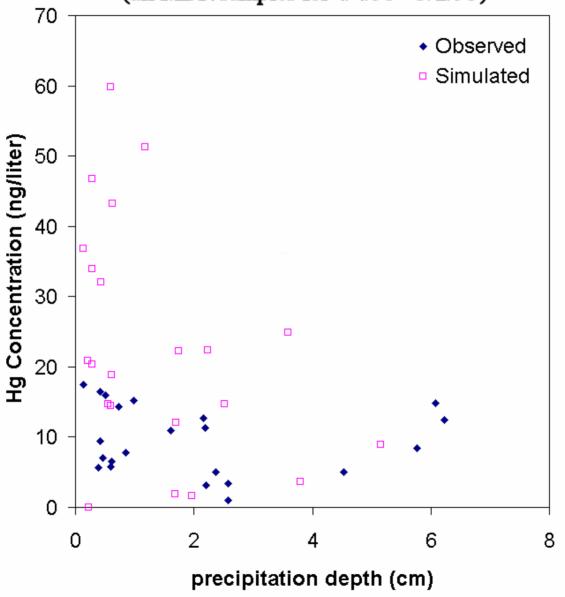

Bullock, O.R., Jr., Brehme, K. A., 2002.

Atmospheric mercury simulation using the CMAQ model: formulation description and analysis of wet deposition results. *Atmospheric Environment* **36**, 2135-2146.


#### Testing the accuracy of the CMAQ-Hg Model

- CMAQ-Hg simulations performed for two four-week test periods in 1995 (April 4 May 2 and June 20 July 18)
- Model resolution Horizontal: 36 km Vertical: 21 layers
- MM5-derived meteorological inputs already available
- Ozone, sulfur, nitrogen, PM emissions already available
- Mercury emissions data for 1995 from the U.S. EPA's Mercury Study Report to Congress (published 1997)
- Simulated wet deposition of mercury compared to *weekly* observations from the Mercury Deposition Network

## **CMAQ-Hg Model Testing Domain**




#### Modeled vs. Observed Wet Deposition of Hg (all MDN samples for 4/4/95 - 5/2/95) per square meter) v = 0.8631x= 0.7033x + 74.657 $R^2 = 0.4895$ Modeled (ng Hg Observed (ng Hg per square meter)



#### Hg Concentration vs. Precipitation Depth

(all MDN samples for 4/4/95 - 5/2/95)



# Model Intercomparison in Europe

- Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury organized by the Meteorological Synthesizing Center East (MSC-East) in Moscow, Russia.
- Stage I: Various starting conditions were used in 48-hour test simulations of a closed cloud/fog volume. (results compared among the models)
- Stage II: Full-scale model simulations of two 15-day episodes over central Europe were performed. Comparisons were made to air concentration observations at five sites.
- Stage III (ongoing): One-year simulations with comparison to observed air concentrations (~8 sites) and wet depositions (~8 sites) in Europe.

# Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury

Stage I. Comparison of chemical modules for mercury transformations in a cloud/fog environment

A.Ryaboshapko, I.Ilyin, R.Bullock, R.Ebinghaus, K.Lohman, J.Munthe, G.Petersen, C.Segneur, I.Wangberg

> Technical Report 2/2001 September 2001

Available on-line at http://www.msceast.org/publications.html



co-operative programme for monitoring and evaluation of the long-range transmission of air pollutants in Europe

#### Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury

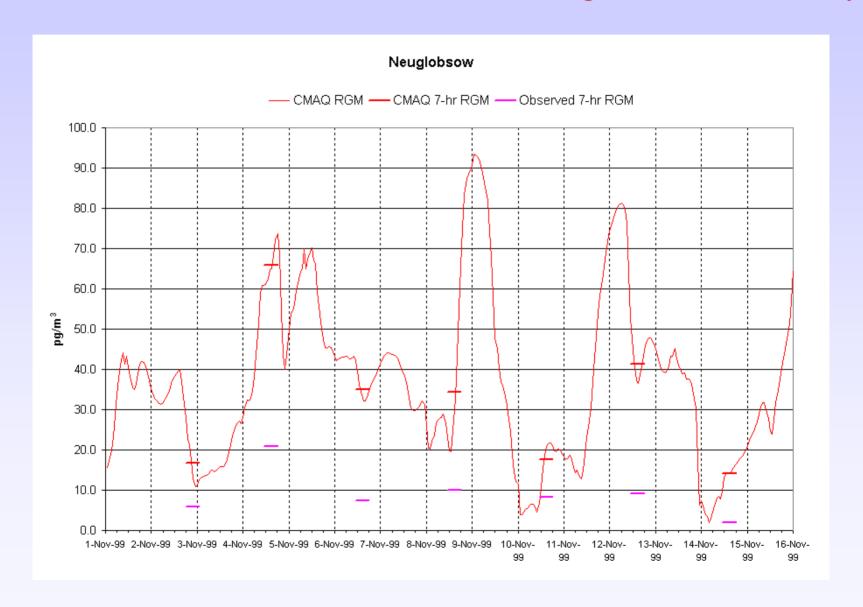
Stage II. Comparison of modeling results with observations obtained during short-term measuring campaigns

Technical Report 1/2003

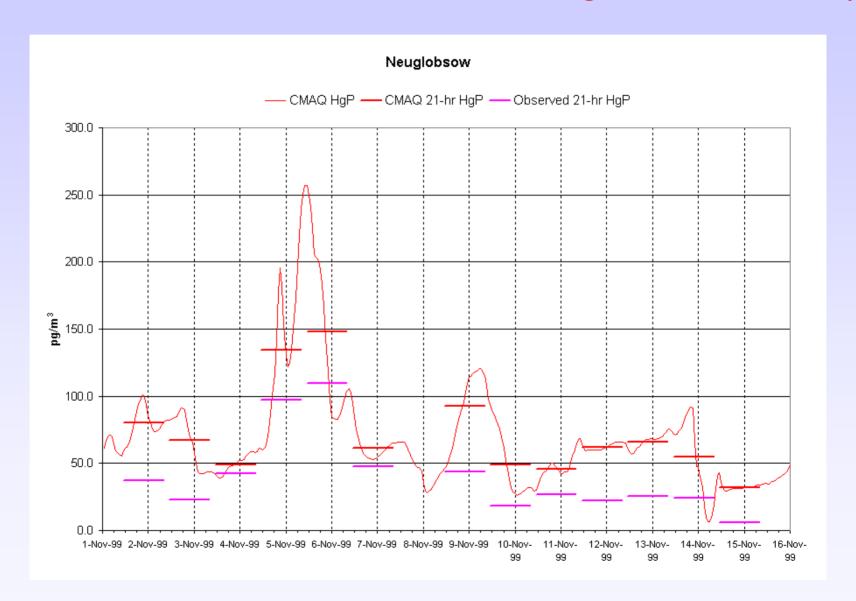
A. Ryaboshapko, R. Artz, R. Bullock, J. Christensen, M. Cohen, A. Dastoor, D. Davignon, R. Draxler, R. Ebinghaus, I. Ilyin, J. Munthe, G. Petersen, D. Syrakov



Available on-line at http://www.msceast.org/publications.html


# Stage 2: CMAQ-Hg European Domain With the Mercury Over Europe observation sites




#### Simulated and Observed Hg<sup>0</sup> for Aspvreten, Sweden



#### Simulated and Observed RGM for Neuglobsow, Germany



#### Simulated and Observed TPM for Neuglobsow, Germany



### Concluding Remarks

- CMAQ-Hg cloud chemistry model is based on the same set of chemical and physical reactions used in most other state-of-the-science models. However, additional reactions will likely be identified and characterized in the future.
- The cloud model produces total-Hg concentrations that are within the range of values observed in weekly samples of precipitation, but event-based precipitation samples and samples of actual cloud water are lacking.
- Full-scale model results for wet deposition are strongly dependent on the accuracy of the precipitation definition.
- Model accuracy for Hg wet deposition is comparable to that seen in RADM acid rain modeling in the mid-1980's; reasonably accurate in cool seasons, but poor accuracy for warm-season convective precipitation.
- How can we test for accuracy of dry deposition?