Animal Waste Management Systems Expert Panel

Working Draft Report Update

09/07/2016

Panel Composition

Shawn Hawkins, PhD, P.E.	Panel Chair, Animal Waste Management Specialist University of Tennessee
Peter Vanderstappen, P.E.	Pennsylvania Assistant State Engineer
	USDA NRCS
Doug Hamilton, PhD, P.E.	Animal Waste Management Specialist
	Oklahoma State University
Mark Risse, PhD, P.E.	Director of Marine Outreach
	University of Georgia
Jonathon Movle, PhD	Poultry Extension Specialist
	University of Maryland
Bridgett McIntosh, PhD	Equine Extension Specialist
	University of Virginia
Mark Dubin	Chesapeake Bay Agricultural Technical Coordinator
	University of Maryland
Matt Johnston	Chesapeake Bay Program Non-Point Source Analyst
	University of Maryland

Animal Waste Management Systems

- "Practices designed for proper handling, storage, and utilization of wastes generated from confined animal operations"
- CBP Watershed Model component
 - Baseline manure nutrient losses for "before" or "improper storage and handling"
 - AWMS BMP applied to reduce the baseline loss for "after" or "proper storage and handling"

Panel Directives

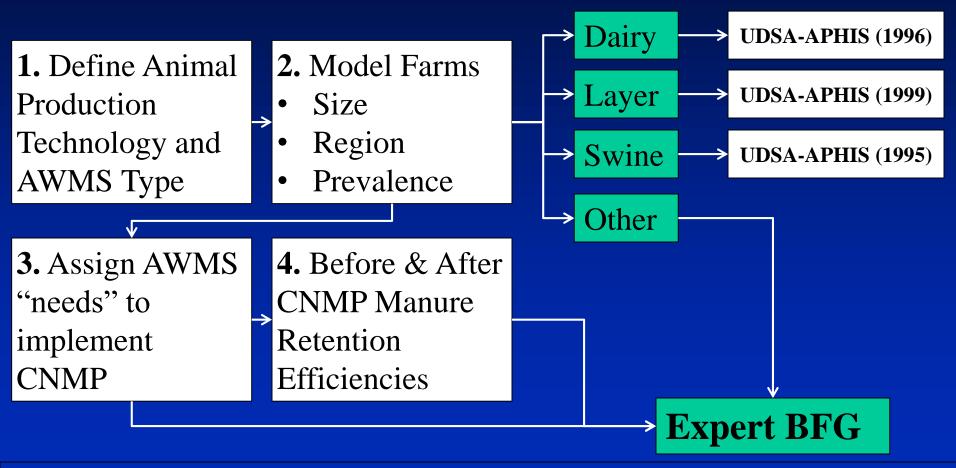
- Report % recoverably of manure generated:
 - Focus on time confined to the "barnyard"
 - Disregard time on pasture to loaf or graze

- Limit recoverability:
 - Consider the effect of manure storages
 - Disregard storm water diversions, fencing
 - Disregard mortality management

Panel Limitations

 There are no data that assign different types of AWMSs to CBW farms – both for the "before" and "after" conditions

 "Section 1619" regulations protect individual landowner data from public release without their written consent – AWMS BMP data are available but not assigned to an animal type



Primary Reference

 USDA NRCS Table B3: "Costs Associated with Development and Implementation of Comprehensive Nutrient Management Plans. Part I – Nutrient Management, Land Treatment, Manure and Wastewater Handling and Storage, and Recordkeeping"

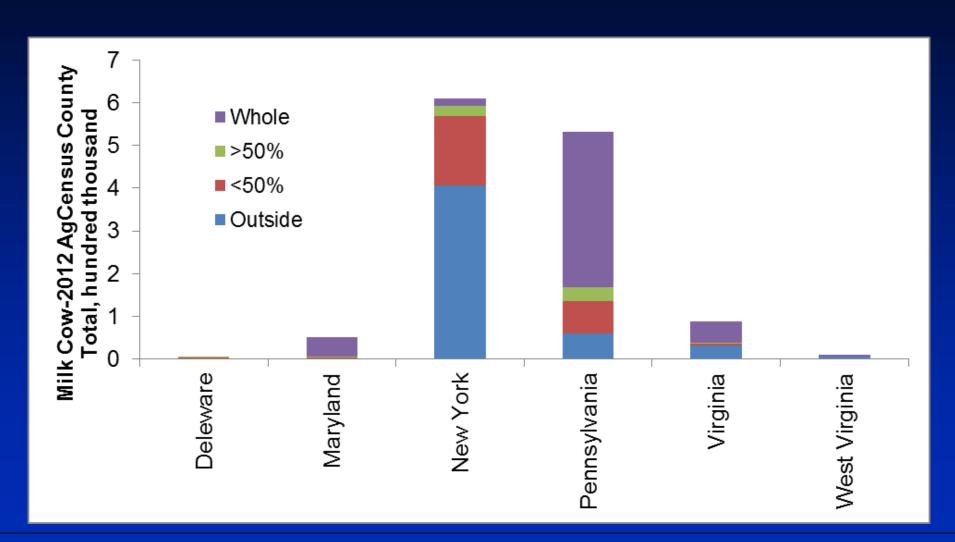
CNMP "Needs" for Manure and Wastewater Storage

Dairy

Primary Reference Dairy AWMSs

Model farms "derived" from 1996 USDA-APHIS survey of 2,542 dairies in 20 states (PA & NY)

- #1 Essentially no storage (frequent spreading)
- #2 Solids storage, no liquid storage (assumed to be "typically outside")
- #3 Liquid-Slurry storage, deep pit or above ground tank (no earthen storage), some solids storage (spreading > monthly)
- #4 Liquid storage in earthen impoundments or "lagoons", some solids storage, (spreading > monthly)



Primary Reference Dairy Size

- < 35 USDA Animal Units (≈ 26 head)
 - #1 model farm only
- 35-135 AU (≈ 26-100 head)
 - All model farms
- 135-270 AU (≈ 100-200 head)
 - All model farms
- > 270 AU (≈ > 200 head)
 - #2 and #3 model farms only

Panel Research: 2012 AgCensus

Panel Research: 2012 AgCensus

Pennsylvania Dairy Farm Data

Farms Gina	Lancaster		Franklin		Lancaster Franklin		All Othe	ers
Farm Size	# cows	%	# cows	%	# cows	%		
1-9	377	0%	62	0%	738	0%		
10-19	205	0%	132	0%	1257	0%		
20-49	33936	10%	2217	1%	29548	9%		
50-99	43449	13%	12279	4%	69291	20%		
100-199	11784	3%	16067	5%	39825	12%		
200-499	5474	2%	10158	3%	28172	8%		
500+	15580	5%	5489	2%	16696	5%		
Grand Total	110,805	32%	46,404	14%	185,527	54%		

Basis for Nutrient Retention

Model Farm			Farm "Needs" to Implement CN	IMD	% recovere			ere	d	
1	nouel Faiill		raini Neeus to Implement CN	IMIP	В	efoi	e	P	Afte	er
Size	AWMS	%	Conservation Practice Standard	%	М	Ν	P	M	N	Р
			558: Roof runoff management	80						
			362: Earth berm, underground outlet	50						
	No storage	29	634: Solids Collection	10	45	60	80	50	60	80
			313: Solids Storage	100						
			635: Liquid Treatment	65						
			558: Roof runoff management	80						
	Solids storage	47	362: Earth berm, underground outlet	50	60	Ω	۵n	75	Ω	90
	Julius Sturage	7/	634: Solids Collection	10	00	00	90	/)	00	90
35-135			313: Solids Storage	20						
33-133	Liquid slurry		558: Roof runoff management	40						
	storage pit or	7	362: Earth berm, underground outlet	30	55	75	an	75	75	90
		,	313: Slurry storage	20	55	/ 5	90	, ,	, ,	90
	tank		533: Liquid transfer	30						
			558: Roof runoff management	40						
	Liquid system		362: Earth berm, underground outlet	40						
	pond or lagoon	17	634: Liquid collection	30	60	40	90	75	30	90
	portu or tagoort		313: Liquid storage	20						
			533: Liquid transfer	30						

Dairy Recoverability Factors

Cost Associated with Development and Implementation of CNMPs Part I					
Model Farm	% of	% Manure Recove			
(PA, NY)	Farms	Before	After		
#1 No storage	29	45-50	50		
#2 Solids storage	47	50-60	75		
#3 Liquid deep pit/slurry	7	55	75		
#4 Liquid basin/pond/lagoon	17	55-60	75		

- Dairy size has limited effect on recoverability differences are shown as ranges.
- 2. Different model farms/values exist for Southeast (DE, MD, VA, WV) but those states were not a part of the survey.
- Some dairies switch from solids to liquid storage which increases manure recovered but lowers %N in manure.
 - These factors are low, particularly for the "after" condition
- Prim Ref author Moffitt: "dairy systems involve grazing and loafing on pasture, manure deposited on these areas would be considered non recovered"

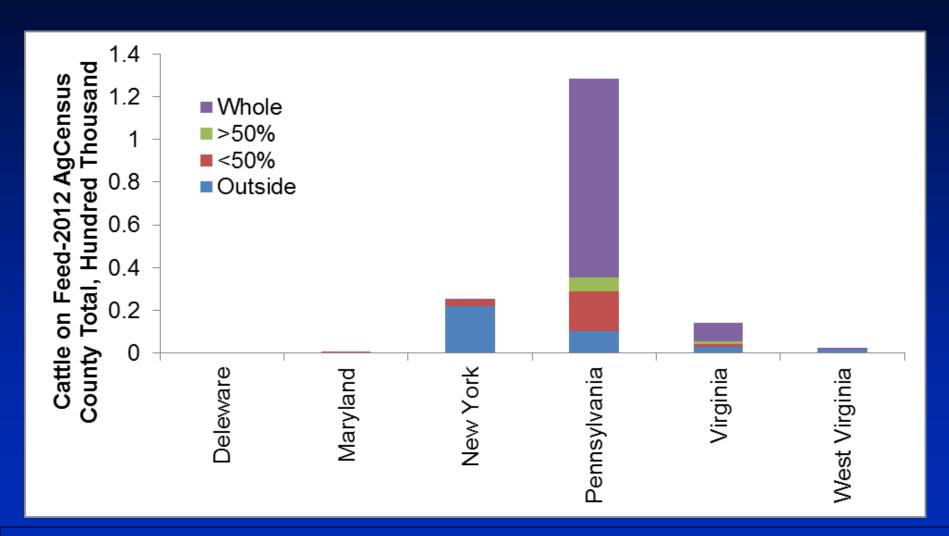
Apparent Manure Collection %

Wisconsin: Powell, McCrory, et al., 2005

- "AMC as a fraction of the manure generated varies regionally and is correlated positively with the number of lactating animals"
 - AMC for 100-199 lactating cows: $95 \pm 5\%$
 - AMC for 200+ lactating cows: 100%

All dairy reported some storage capacity

Dairy EP Recoverability Factors


Cost Associated with Development and Implementation of CNMPs Part I					
Model Farm	% of	% Manure Recover			
(PA, NY)	Farms	Before	After		
#1 No storage	29	45-50	50		
#2 Solids storage	47	50-60	75		
#3 Liquid deep pit/slurry	7	55	75		
#4 Liquid basin/pond/lagoon	17	55-60	75		

- 1. Dairy size has limited effect on recoverability differences are shown as ranges.
- 2. Different model farms/values exist for Southeast (DE, MD, VA, WV) but those states were not a part of the survey.
- 3. Some dairies switch from solids to liquid storage which increases manure recovered but lowers %N in manure.

Expert Panel Recommendations				
Model Farms	% of	% Manure Recovere		
Model Farm	Farms	Before	After	
Mixed	100	60	96	

2012 Ag Census-Fattened Cattle

Fattened Cattle Recoverability Factors

Cost Associated with Development and Implementation of CNMPs Part I				
Model Farm	% of	% of % Manure Recovere		
(PA, NY, NY)	Farms	Before	After	
Feedlot scrape, stack	100	60	75	

Expert Panel Recommendations					
Model Farm (Tara Felix consult)	% of Farms Before After		% Manure Recovered		
			Before	After	
Feedlot scrape, stack	100	0	60	-	
Bedded Pack Barn	0	100	-	99	

Swine Recoverability Factors

Hogs for Slaughter

Cost Associated with Development and Implementation of CNMPs Part I					
Model Farm	% of	% Manure	Recovered		
(DE, MD, PA, NY , VA, WV) (Midwest, NE)	Farms	Before	After		
#1 Confined, liquid, lagoon	6	85	07		
#2 Confined, slurry, no lagoon	53	80	97		
#3 Building/outside, liquid	14	70	95		
#4 Building/outside, solid	27	75	90		

^{1. #3} and #4 should be excluded for CBW.

Farm size has no effect on recoverability.

Expert Panel Recommendations				
Model Farm	% of	% Manure	Recovered	
Model Farm	Farms	Before	After	
Confined, slurry-liquid	100	80	99	

Layer Recoverability Factors

Cost Associated with Development and Implementation of CNMPs Part I				
Model Farm	% of	% Manure Recovere		
(DE, MD, PA, NY , VA, WV)	Farms	Before	After	
#1a High rise, ground level pit	55	80		
#1b Shallow pit, ground level	25	85	95	
#3 Manure belt	20	85		
1. Model farms were "derived" from a 1999 USDA, APHIS survey of 526	laver farms in 1	5 states.		

Chesapeake Bay Model				
Model Form	% of	% Manure Recovere		
Model Farm	Farms	Before	After	
Mixed	100	85	99	

Broiler Recoverability Factors

(same as Pullets)

Cost Associated with Development and Implementation of CNMPs Part I				
Model Farm	% of	% Manure Recovered		
(broiler house)	Farms	Before	After	
Northeast (PA, NY)	100	75	00	
Southeast (DE, MD, VA, WV)	100	85	98	
1. Those with and without storage are unknown?				

Chesapeake Bay Model				
Model Farm	% of	% Manure Recovered		
	Farms	Before	After	
CBW Confinement House	100	85	99	

Turkey Recoverability Factors

Cost Associated with Development and Implementation of CNMPs Part I				
Model Farm	% of	% Manure Recovered		
East (DE, MD, PA, NY, VA, WV)	Farms	Before	After	
#1 Confinement Houses	90	80	98	
#2 Turkey Ranch	10	45	50	
1. Those with and without storage are unknown?				

Chesapeake Bay Model (refers to North Central area?)				
Model Farm	% of	% Manure Recovered		
	Farms	Before	After	
Confinement Houses	100	85	99	

Equine/small ruminant

- "Recoverable manure ... was estimated using manure recoverability factors and nutrient recovery parameters for grass-fed beef cattle"
 - Pastured animals excluded EP consideration
 - Ref Doc does not apply to stabled horses
 - Recommend 99% of manure is collected and stored for land application during stabling

