Update on the Phase 7 Main Bay Model (MBM)

VIMS team: Joseph Zhang, Jian Shen, Harry Wang, Marjy Friedrichs,

Zhengui Wang, Wenfan Wu, Pierre St-Laurent

CBPO: Richard Tian, Gopal Bhatt, Lew Linker et al.

UMCES team: Jeremy Testa

Advisor: Carl Cerco

January 8, 2025

Outline

Updates on living resource (LR) modules in ICM

• Latest oyster model calibration and sensitivity tests

□ New workflow incorporating latest phase-7 (P7) watershed loading

- Processing P7 loading for MBM workflow
- Allocating P7 loading to MBM grid

□ Hydrodynamic results with the P7 loading (preliminary)

• Assessment of elevation, temperature and salinity

Summary & next steps

Oyster Model The spatial distribution of Reef biomass (g[C].m⁻²)

- Latest model calibration of Reef oyster shows reasonable biomass (too large or small in earlier runs)
 - The major processes controlling the oyster growth (e.g. filtration rate etc) are carefully calibrated
- Simulated oyster biomass reached a quasi-steady state (after recycling the model with end state).

Comparison of Reef Biomass with data

- Simulated Reef biomass matches observation well.
- The Reef biomass time series shows good seasonal cycles

Reef in VA (Kg [C])

Reef Biomass in tributaries

Overall, the Reef biomass matches with observation in different tributaries

Spatial distribution of biomasses for other species in 1995 (g[C].m⁻²)

- Overall, reasonable spatial patterns and temporal variations for different oyster species
- Note: in the final calibration (not scenarios), constant Aquaculture biomass will be applied in the model

Oyster impact on water quality

- Overall, the oyster impact is relatively small.
- Oyster filtration removes the Chl-a and POC concentrations, making the water cleaner. As a result, DO increases in some regions

Oyster impact: sensitivity test by increasing oyster biomass by 10 and 30 times

Oyster impact
 becomes stronger
 with larger oyster
 biomass.

30 times experiment

Chl-a: -1 ug/L POC : -0.3 mg/L DO : ~0.5 mg/L

Oyster impact in sensitivity tests

- Overall, the oyster impact is still relatively small even with 10/30 times increase
- The impact on POC is most evident.

CHLA: EE2.1

1996

DO: EE2.1

POC: EE2.1

P7 load

Incorporating P7 watershed loading into MBM modeling

- Sopal provided us with the P7 loading. With his help, we finished processing the data with a revised workflow
 - Reorganization of P7 files with more than 220 K files (removed invalid files)
 - Pre-processing the watershed loading (parallel reading)
 - Changed the format to our database format
 - Organized the watershed segments information
 - Collected the watersheds corresponding to the loading
 - Computed cbseg and river basin information
 - Better to use new shapefile from Gopal

Computed the allocations of watershed loadings to MBM grid (including SHO)

- Preparing the input of watershed loading for P7 MBM
- Reorganized the workflow for the new coupling

□ Validating new watershed inputs

- Checked the watershed loading received by the MBM
- Model runs fine with P7 loading (yay!)

Creating database for P7 watershed loading

- Originally, we have 50 k terminal inputs and 175 k tidal inputs (> 220 k files). It requires parallel computing (multiple CPUs) to process the data
- After we reformatted the data, the database is only one file (5.6 G). It contains all the information, which allows us to easily performance various operations on the datasets (filter, read, search, etc.)

snapshot of p7 loading database

```
In [1]: C=read('wsm v1.npz')
In [2]: C.VINFO
Out[2]:
['chla : array(12479, 13149), float32',
 'clay
        : array(12479, 13149), float32',
       : array(12479, 13149), float32',
 'doxx
 'flow
       : array(12479, 13149), float32',
 'nh4x
        : array(12479, 13149), float32',
 'no3x
       : array(12479, 13149), float32',
 'orgn : array(12479, 13149), float32',
      : array(12479, 13149), float32',
 'orqp
        : array(12479, 13149), float32',
 'phyt
 'yipx
       : array(12479, 13149), float32',
       : array(12479, 13149), float32',
 'po4x
 'sand : array(12479, 13149), float32',
 'silt
       : array(12479, 13149), float32',
 'snames: array(12479,), <U13',
 'stypes: array(12479,), <U8',
 'time
       : array(13149,), float64',
 'tocx
       : array(12479, 13149), float32',
       : array(12479, 13149), float32',
 'totn
 'totp
       : array(12479, 13149), float32',
 'tssx
       : array(12479, 13149), float32',
 'units : dict(18,)',
        : array(18,), <U4',
 'vars
 'wtmp
        : array(12479, 13149), float32']
```

Shapefile of P7 watershed segments

- □ We received two shapefiles for watershed segments
 - CBW_NHDv21_catchment_20230630_P7Attributes_v3.shp (all information)
 - CBW_NHDv21_catchment_20230630_P7Attributes_v3_xNonTidal.shp (selected by Gopal)
- We created a new shapefile to include watershed information needed for MBM
 - We couldn't directly use the 2nd shapefile as 2 segments were missing
 - We extracted the information from the 1st one, and might combine it with the 2nd file to include all watershed segments.
- In total, we have 12749 watershed segments in P7 (2745 terminal, 9734 tidal)
 - In comparison, P6 loading has 601 NPS, and 557 PS

Adding attributes for watershed segments

- In order to accurately mapping the watershed loading onto MBM grid, more information about watershed segments is needed
 - Nearest interpolation method may have error locally

□ Information on *cbseg* and *river basin* can help find the correct segment for a MBM boundary location

- cbsegs_104_v2.shp (from Richard)
- p6 watershed (from Gopal)

River Basin for watershed segments

Based on P6 watershed information, we computed the river basin for P7 watershed segments

□ It works OK, but not ideal. It would be better to get the information from watershed modeling team

James River

Rappahannock River

Choptank River

Allocation of watershed loading to MBM grid

- □ For watershed that intersects with MBM grid, we directly distribute its loading to the adjacent MBM cells.
- For watershed that doesn't intersect MBM grid, we search the nearby watershed with same *cbseg* that intersects MBM grid
- The watershed loading is distributed among MBM boundary sides, based on side length

watershed: EL0_008391672

Special treatment for the RIM watershed

- □ For large rivers, we need to make sure the loadings are put at the river head (most upstream location)
 - SL9_2720_0001 Susquehanna
 - PM7_4820_0001 Potomac
 - JL7_7070_0001 James
 - RU5_6030_0001 Rappahannock
 - JA5_7480_0001 Appomattox
 - YP4_6750_0001 Pamunkey
 - YM4_6620_0001 Mattaponi
 - XU3_4650_0001 Patuxent
 - EM2_3980_0001 Choptank

Flow comparison between P6 and P7

- Overall, the flow distributions are very similar between P6 and P7
- Due to the higher resolution in P7, there is some local improvement in flow distribution

Flow comparison between P6 and P7

• Total flow and variation between P6 and P7 are similar

Hydrodynamics with P7 loading

Water Level: tidal signal

nore, Fort McHenry, Patapa

BT, Chesapeake

Cape Henry

• Water levels match well between model and observation from upper

bay to lower bay.

Water Level: sub-tidal signal

• The model reproduced the sub-tidal signals well inside the bay.

•

Obs P7

New Temperature Calibration: Main Channel

• Surface and bottom temperatures along the main bay channel are improved slightly from P6 loading

New Temperature Calibration: Rappahannock River

• Surface and bottom temperatures in the rivers are much improved in some tribs

Spatial distribution of temperature error inside the bay

- Surface and bottom temperatures in deep regions are slightly improved. •
- Surface and bottom temperatures in shallow regions are greatly •

Surface Temp. (°C)

improved.

New salinity Calibration: Main Channel

• Bottom surface and bottom salinities along the main bay channel are improved slightly from P6 loading

Spatial distribution of salinity error inside the bay

- Salinity in mid-bay and lower bay is improved.
- For most stations in upper bay and rivers, salinity is slightly improved
- For a few stations in the rivers, salinity gets worse and site-specific calibration may be needed

Surface Salinity (PSU)

positive values mean improvement

P7: new results

0.0

-0.2

-0.4

0.0

-0.2

Bottom Salinity (PSU)

Summary

□ We have recalibrated the oyster model, and the model results are now reasonable in different regions

Overall, the oyster impact on water quality is small. Sensitivity experiments with higher oyster biomass led to larger impact.

U We have finished incorporating the new phase-7 watershed loading into our MBM workflow.

□ The interpolation method for mapping watershed loading to MBM grid seems to work but further improvement can be made with help from GIS team.

□ We have preliminarily tested the phase-7 loading for the MBM hydrodynamics

- Temperature in the bay is much improved in the rivers; slightly improved in the main-bay channel.
- Salinity in the mid-bay and lower-bay is improved, and slightly improved in the rivers.