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I Overview

We use observation-derived parameters to calibrate 3D unstructured-grid model

High turbidity in upper estuary and tributaries affects solar radiation penetration

Mud layers facilitate tidal propagation and saltwater intrusion in tributaries

The present study reduces temperature & salinity errors by ~60% relative to previous studies

Defensible calibration (starting from DEM) builds confidence on models



I Background: challenges in cross-scale modeling
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O Small-scale topographic structures (e.g., creeks and tributaries) pose key challenges for cross-
scale modeling, as they often exhibit more complex hydrodynamic process than the open waters
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Tidal amplification is widely observed in funnel-shaped tributaries

Tidal resonance may exist in certain tributaries

Bottom friction typically dominates tidal damping in shallow regions

Creeks/tributaries are often highly turbid

Accurate bathymetry and high spatial resolutions
are required to resolve these small-scale features
Important to capture the original bathymetry
without smoothing (Ye et al. 2018; Cai et al. 2021;
Zhang et al. 2024), as done in MBM




I Background: challenges in cross-scale modeling

O Hydrological characteristics in a cross-scale estuary continuum exhibit significant spatial
heterogeneity (e.g., water clarity & sediment types)
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I Background: water clarity

O Previous studies have shown the importance of water clarity on temperature simulations

Black Sea (Kara et al., 2005) Baltic Sea (Loptien & Meier, 2011) Chesapeake Bay (Kim et al., 2020)

(a) Climatological monthly mean attenuation coefficient of Photosynthetically Active Radiation a
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Fig. 1. (a) Climatological mean value of KD, in summer (JJA) in m . (b) Assumed Bz -76.5 -76 77 -76.5 76 77 785 26
trends in Secchi depth for the experiments TREND1 (blue line) and TREND2 (red line)
in the Baltic proper in July.



I Background: sediment types

O Warder et al. (2022) improved the tidal range simulation
in Bristol Channel using sediment-dependent bottom
roughness

- Sediment types in the Bristol'Channél
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Fig. 5 Manning coefficient fields used for model validation. a Standard sediment-based parameters. b Result of experiment A. ¢ Result of
experiment B. d Result of experiment C1. e Resull of experiment C2

Warder, S. C., Angeloudis, A., & Piggott, M. D. (2022). Sedimentological data-driven bottom friction parameter
estimation in modelling Bristol Channel tidal dynamics. Ocean Dynamics, 72(6), 361-382.



I Background: Chezy-Manning formulation

O Spitz and Klinck (1998) applied Chezy-Manning formula to improve the tidal simulation
in the Chesapeake Bay, but with a constant Manning’s coefficient (n=0.02)

n-m | ! N ] v L L ' I T T T T 1 T T T T T ]

In practice, the bottom drag coefficient ¢p varies with neap tide

water depth, seabed composition and phase of the tide.
It is parameterized as

- 0.0030 | Higher bottom drag

cp = {_% C=—, (7) 17| in shallow waters
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where h is the undisturbed water depth, C (m"/2 s~1) is [ e
the Chezy coefficient, and n is the Manning’s roughness 0.0020 | spring tide i -
[Officer, 1976]. Typical values for a and n are 1/6 and : | o
0.02, respectively, giving a drag coefficient of ~ 0.002 [ smo ]
or a depth of 10 m. The two parameters a and n only [
depend on time and are estimated during the assimila- 0.0010 ‘/J/\“’“‘ ]

Bottom drag coefficient

tion procedure. Fom
The equations are solved by means of finite differ- [ ®m ]
ence analogs [Ozer et al., 1990] on a uniform staggered 00000 be 1 o o o o
grid (Arakawa C-grid) The time-stepping scheme is a 5 10 15 20
semi-implicit, alternate direction method (ADI) [Beck- November 1983

ers and Neves, 1985], which is unconditionally stable Figure 12. Time series of estimated bottom drag co-

efficient cp for depths between 2 and 50 m.

Spitz, Y. H., & Klinck, J. M. (1998). Estimate of bottom and surface stress during a spring-neap tide cycle by
dynamical assimilation of tide gauge observations in the Chesapeake Bay. Journal of Geophysical Research:
Oceans, 103(C6), 12761-12782.



Latitude

Model baseline: MBM

I | | | 1 0

205 ~:§:Z,‘;‘:,f:ni1$;5877 ORN " G Eandi i Bathymetry: integrate multiple datasets (e.g., BlueTopo, CoONED)

Atmospheric forcing: ERA5 dataset
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I Experiment design

Table 1. The sensitivity experiments with varying water types and bottom drag coefficients.

Experiment Water type Bottom drag coefficient

RUNO1a (base run) Type 4 (moderate turbidity) Ca=0.0025 n = 0.02 essentially

RUNO2a Type 7 (high turbidity) Cs=0.0025 || assumesa purely
/ sandy seabed in the

RUNO2b Type 4 Chezy-Manning (n = 0.02) entire domain

RUNO3a Kd490-dependent Ca=0.0025

RUNO3b Type 4 Chezy-Manning (» is sediment-dependent)

RUNO4a (calibrated run) Kd490-dependent Chezy-Manning (7 is sediment-dependent)

1 RUNO1a (base run) aims to expose the cross-scale modeling challenges in the Bay
1 RUNO02a/2b does NOT consider the spatial heterogeneity of turbidity/sediment
J RUNO03a/3b considers the spatial heterogeneity of turbidity/sediment

O RUNO4a shows the integrated performance of combined approaches



Jerlov water types

Depth (m)
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A pronounced spatial gradient of turbidity exists across the domain

absorbed by the upper layers.
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.. Mud content (0-100%) in the model domain
IBottom drag coefficient (C ) wsl W T R
w\%; : fine sediment

dominates the upper
bay and tributaries

d Chezy-Manning formulation 39
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n is manning coefficient;

h is the water depth;

g is the gravitational acceleration (9.810);
c is aconstant (1/3);

coarse sediment
dominates the
coastal ocean
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I Bottom drag coefficient (C,)

d n=0.02 yields much higher C, values in the Bay (especially in the tributaries), mostly due to
shallow water depths there.
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I Challenges in baseline simulations: hypotheses
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(a) RUNO1a: surface temperature
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(b) RUNO1a: bottom temperature

(c) RUNO1a: surface salinity

(d) RUNO1a: bottom salinity
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Temperature shows notable underestimation
* More notable in the surface layer (ME = -1.046)

* More notable at upstream stations of tributaries

\ ¢

Temperature errors primarily originate
from the surface process?

Salinity also shows notable underestimation
* More notable in the bottom layer (ME = -0.862)

* More notable in the upper bay and tributaries

\ 4

Salinity errors primarily originate from
the bottom process?



Notable longitudinal feature

I Effect of water turbidity on thermal structure
Patuxent R.
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Effect of sediment types on saltwater intrusion
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I Effect of sediment types on tides

O Improved tidal range is a key to saltwater intrusion simulation
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I Performance of the fully-calibrated run
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Summary for all experiments

Experiment RMSE (SST/BT) RMSE (SSS/BS)
RUNO1a 1.380 (1.385) 0.922 (1.514)
RUNO2a 0.692 (0.936)

RUNO2b 0.774 (1.300)
RUNO3a 0.519(0.813)

RUNO3b 0.774 (1.205)
RUNO4a 0.512(0.784) 0.783(1.190)

v RUNO4a outperforms all other experiments,
highlighting the effectiveness of physically

based

calibration.




I Inter-model comparisons

1 These comparisons further demonstrate the effectiveness of the
physically based calibration strategies used in this study.

Table 2. RMSEs of temperature (T) and salinity (S) from different modeling studies based on the CBP

observations. The values outside/inside the parentheses are surface/bottom RMSEs, respectively. Asterisks

(*) indicate the studies that calculate RMSE over the full water column.

Reference RMSE (T,°C) RMSE (S, PSU) Simulation period  # of CBP stations . é;é““é%zo / ﬁd’/«% Og‘,g
Cerco & Noel (2004) 1.76 (1.94) 1.90 (2.12) 1991-2001 121 A \;%%%. ;fi’:;j 5
Lanerolle et al. (2009)  1.10 (1.18) 2.04 (2.29) 2003-2005 35 U}:m — é} *”%\pg/ N
*Hoffman et al. (2012)  1.40 2.50 2003 4 t
*Xu et al. (2012) 1.28 2.28 1991-2005 4 Tributary stations are rarely
*Urquhart et al. (2013) 1.39 2.47 2003; 2007 12 included in previous evaluations
Irby et al. (2018) 1.23 (2.22) 1.86 (2.17) 1993-1995 23
Cai et al. (2022) 1.47 (2.05) 2.08 (2.04) 1991-1995 62
The present study 0.33 (0.72) 0.84 (1.48) 1994-1997 23 (mainstem stations)

(RUNO4a) 0.51 (0.78) 0.78 (1.19) 1994-1997 121

Irby et al. (201 8‘)
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v' Temperature/Salinity RMSEs are reduced by ~60% compared to previous studies



I Conclusions

* Physically-based calibration strategies are important for cross-scale simulations
o Builds confidence on models
o Faithful to original DEM

* This study achieved significant improvements in the cross-scale hydrodynamic
simulation of the Chesapeake Bay

» The spatial heterogeneity of hydrological elements (e.g., turbidity and sediment
types) needs to be carefully considered in cross-scale simulations

» Limitations/Future work:
1) Temporal variation of bottom drag/water clarity; 2) Sediment stratification effect on bottom drag;
3) SAV effect on the bottom drag; 4) Velocity effect on the bottom drag
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