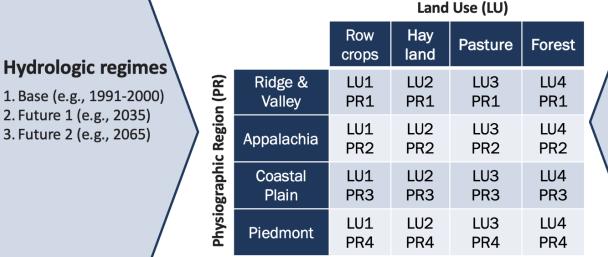
Carnegie Mellon University

Future Climate Impacts of CBP BMP Efficiencies

A Modeling Sensitivity Study for Urban and Agricultural BMPs

Maya Struzak, David Rounce, Sarah Fakhreddine

Project Overview


Goal: Quantify the performance of agricultural & urban BMPs in the Chesapeake Bay watershed under current and future climate scenarios

Tools: APEX for agricultural, SWMM for urban

Output: Pollutant removal efficiencies for different BMPs

Modeling Approach

Watershed Settings

Test BMPs 1. Cover crops 2. Conservation tillage 3. More in progress Carnegie Mellon

University

BMP Selection (Initial Shortlist)

+

CBP's Top 20 Most Implemented BMPs

CBP's Top 20 Most Effective BMPs

+ Feasibility Analysis

BMP	Land Use				
DIWIF	Row Crops	Hay Land	Pasture	Forest	
Grass Buffers	х	х	x		
Cover Crops	х	х			
High Residue Tillage	х				
Conservation Tillage	х				
Manure Incorporation	Х	Х			

=

Carnegie Mellon

University

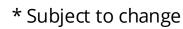
Site Representation in APEX

Input Files to be manipulated:

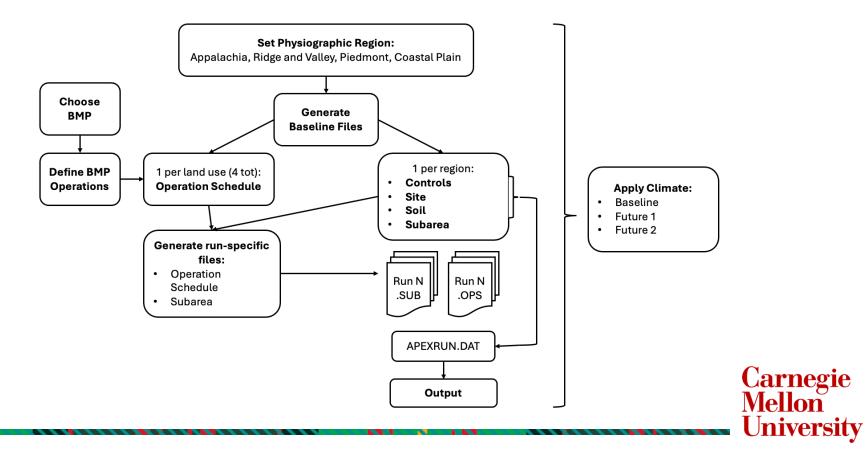
- Controls
- Site characteristics
- Soil
- Weather
- Operation schedule
- Subarea

Parameters defining region, land use, and climate

BMP-specific parameters


* Coordinating with CBP team to get input data

Scenarios



Multiple python scripts have been developed to automate file generation process

APEX Model Workflow

Trial Run: baseline (no BMP)

- Row crops: corn
- Simple operation (plant, harvest, kill)

- 5-ha field
- 0% slope

- 1, 20, 100-year simulations
- Daily and hourly weather data via NASA

Trial Run: Outputs

 \checkmark

 \checkmark

 \checkmark

- Flow
- N concentration
- P concentration
- Sediment

Run times: (hourly tbd)

- 1 year: <1s
- 20 years: 3s
- 100 years: 17s

TOTAL N BALANCE	E (kg)								
VOL = 0.157988D+04 PSON= 0.000000D+00		FNMN= 0.000000D+00 YN = 0.000000D+00	PCP = 0.239363D+03 FNMA= 0.000000D+00 WYLN= 0.314352D+03 TRON= 0.00000D+00	DN = 0.172802D+02 BURN= 0.00000D+00 YLN = 0.443902D+01 RSDN= 0.00000D+00	DPKN= 0.265018D+02				
FLOOD ROUTING SUMMARY WATERSHED OUTLET SUM QVOL = 0.128919E+06 mm SUM HVOL = 0.246793E+04 mm									
TOTAL WATER BAL	LANCE (m3)								
BSWL= 0.000000D+00 QIN = 0.000000D+00	DF = 0.711873D+01 PCP = 0.299204D+06 PSOQ= 0.000000D+00 FGWS= 0.102475D-03	WYLD= 0.222011D+06 EVRT= 0.000000D+00	BGWS= 0.250000D+03 DPRK= 0.930987D+05 RSIR= 0.000000E+00 FSNO= 0.846188D+01	BRSV= 0.00000D+00 ET = 0.171779D+05 WLIR= 0.000000E+00 FSWL= 0.00000D+00					
TOTAL SEDIMENT BALANCE									
PER = 0.000000D+00 DEG = 0.000000D+00	DF = 0.000000D+00 RSYF= 0.000000D+00	BRSY= 0.000000D+00	YS = 0.000000D+00	YW = 0.00000D+00	DEP = 0.0000000+00				

9

Carnegie Mellon

University

Next steps

- 1. Troubleshooting
 - Sediment simulation
 - Hourly data
 - Wind data
- 2. Data gathering/generalization
- 3. BMP simulation
 - Starting with cover crops

Cover crops via cover crop strategies

