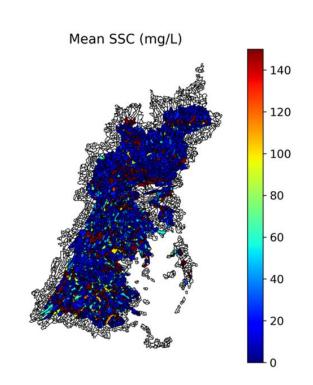
Multiscale machinelearning sediment prediction update

Xueting Pu, Chaopeng Shen, Yalan Song Civil & Environmental Engineering, Penn State



Purely data-driven ML in water

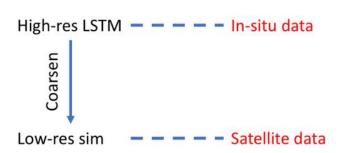
dai: 10 1002/2017al075610

Examined comparison with in-situ data & long-term projections

Geophysical Research Letters Water Resources Research **Enhancing Streamflow Forecast and Extracting Insights** Research Letter (3) Full Access RESEARCH ARTICLE 10.1029/2019WR026793 Using Long-Short Term Memory Networks With Data Prolongation of SMAP to Spatiotemporally Seamless Coverage of Continental U.S. Using a Deep Learning Neural Network **Integration at Continental Scales** Special Section: Big Data & Machine Learning Kuai Fang, Chaopeng Shen . Daniel Kifer, Xiao Yang in Water Sciences: Recent Dapeng Feng¹, Kuai Fang^{1,2}, and Chaopeng Shen¹ Progress and Their Use in First published: 16 October 2017 | https://doi.org/10.1002/2017GL075619 | Cited by: 3 Advancing Science ¹Civil and Environmental Engineering, Pennsylvania State University, State College, PA, USA, ²Now at: Earth System Science, Stanford University, Stanford, CA, USA 1.0 Train Shows us the SMAP information limit! 0.8 -LSTM Better ARp SAC-SMA Noah LSTM 0.6 01/16 04/16 01/17 CDF DI(1) SAC-SMA-Sub Test Train 0.4 LSTM-Sub DI(1)-Sub 0.2 X multiply 10/15 01/16 0.2 0.4 0.6 0.8 1.0 Fang et al., 2017 NSE 0.75 0.85

4

Multiscale soil moisture – learning from two teachers



0.05

0.10

0.15

0.20

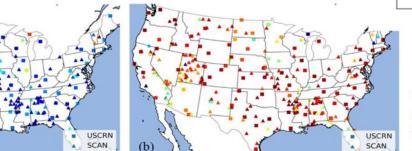
RMSE

0.25

0.30

0.35

Test period: 2015-04-01 to 2020-03-31



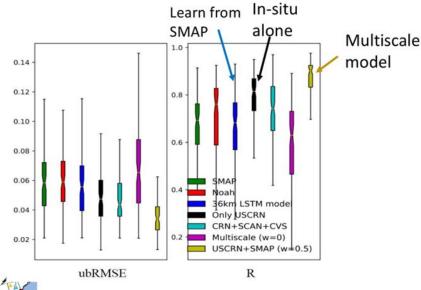
0.4

R

0.6

0.8

0.2



Geophysical Research Letters

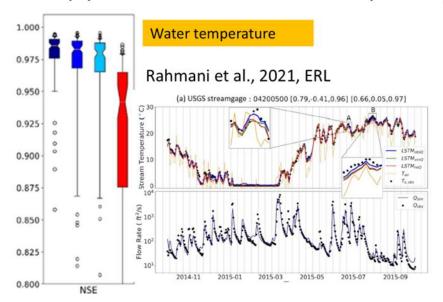
Research Letter | 🗂 Full Access

A multiscale deep learning model for soil moisture integrating satellite and in-situ data

Jiangtao Liu, Farshid Rahmani, Kathryn Lawson, Chaopeng Shen 🔀

First published: 14 March 2022 | https://doi.org/10.1029/2021GL096847

LSTM applications in water quality



Deep learning insights into suspended sediment concentrations across the conterminous United States: Strengths and limitations

A deep learning-based novel approach to generate continuous daily stream

Contents lists available at ScienceTirect

Science of the Total Environment

Journal homenage: www.elsevier.com/locate/scitotenu

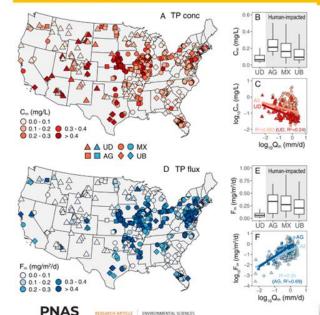
Nitrate time series

Gourab Kumer Saha ^a, Farshid Rahmani ^b, Chaopeng Shen ^b, Li Li ^b, Raj Cibin ^{a,b,a}

* Organization of Agricultural and Biological Engineering, The Prenighnesia State University, United States of America.
* Department of Criti and Environmental Engineering, The Prenighnesia State University, United States of America.

nitrate concentration for nitrate data-sparse watersheds

Dissolved Oxygen & Total Phosphorous (Wei Zhi & Li Li)



Increasing phosphorus loss despite widespread concentration decline in US rivers

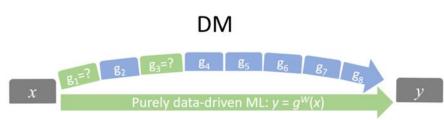
Article | Euplished, 09, March, 2023

Temperature outweighs light and flow as the predominant driver of dissolved oxygen in US rivers

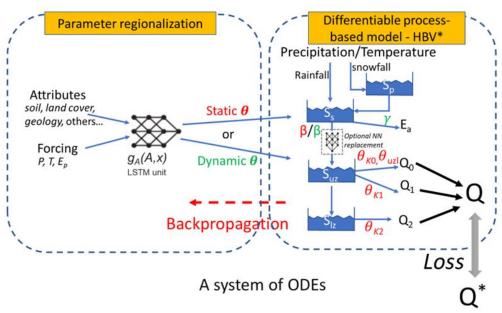
Will 2hi Witness Chayang, Cheopeng Shen & U.U. St.
Nature Water 1, 249–260 (2023) | Cite this article

Yalan Song ° 🎗 ≅ , Piyaphat Chaemchuen °, Farshid Rahmani °, Wei Zhi °, Li Li °, Xiaofeng Liu °, Elizabeth Boyer b, Tadd Bindas °, Kathryn Lawson °, Chaopeng Shen ° 🖇 ≅

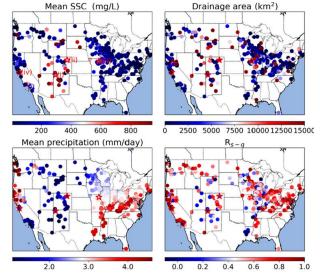
What is Differentiable Modeling?



- NNs ("?") mixed w/ process-based equations (priors)
- Breaks a problem into parts, with some as priors
- "end-to-end" training on big data
- The priors constrain the learning to an interpretable scope.
- Can be used a forward simulator as well as



This is NOT physics-informed neural network (PINN)!



Research papers

Deep learning insights into suspended sediment concentrations across the conterminous United States: Strengths and limitations

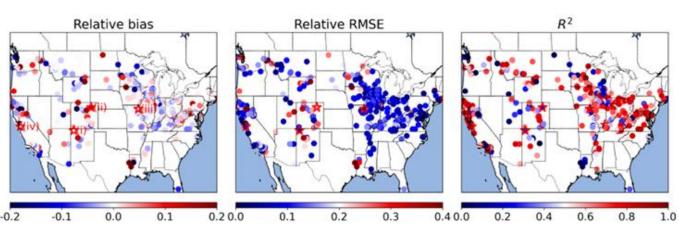
Show more V

+ Add to Mendeley 📽 Share 🗦 Cite

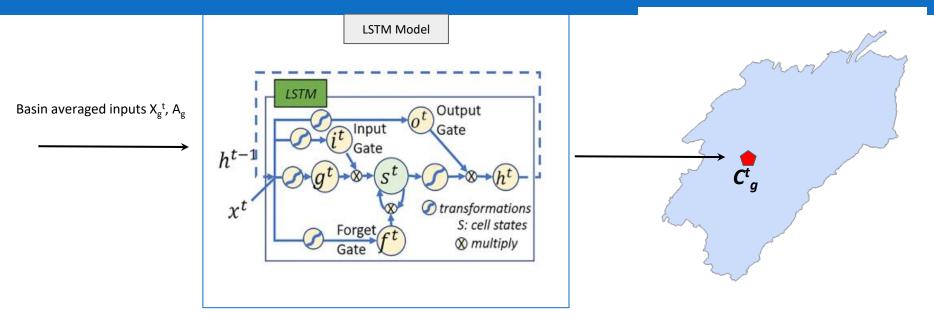
https://doi.org/10.1016/j.jhydrol.2024.131573 7

Get rights and content 7

Full text access



Lumped LSTM

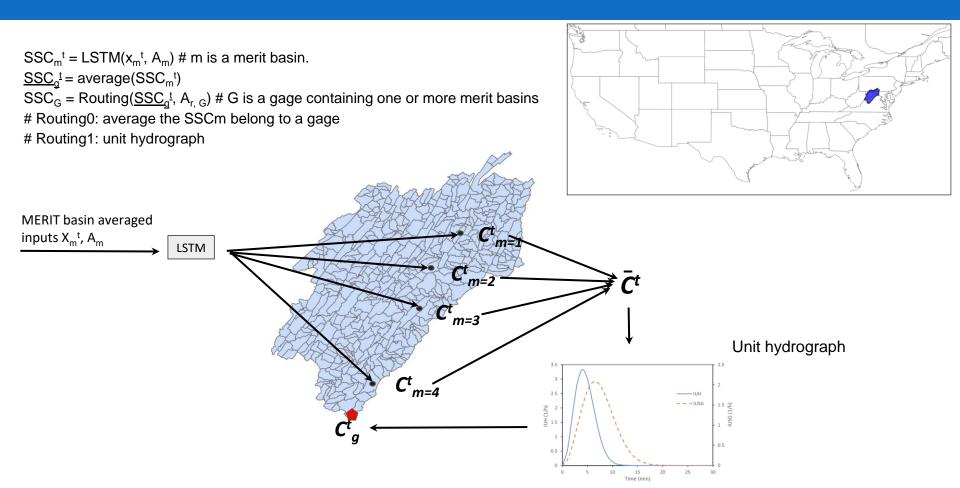


A=['ETPOT_Hargr', 'FW', 'HWSD_clay', 'HWSD_gravel', 'HWSD_sand', 'HWSD_silt', 'NDVI', 'Porosity', 'SoilGrids1km_clay', 'SoilGrids1km_sand', 'SoilGrids1km_silt', 'T_clay', 'T_gravel', 'T_sand', 'T_silt', 'aridity', 'glaciers', 'meanP', 'meanTa', 'meanelevation', 'meanslope', 'permafrost', 'permeability', 'seasonality_P', 'seasonality_PET', 'snow_fraction', 'snowfall_fraction', 'area']

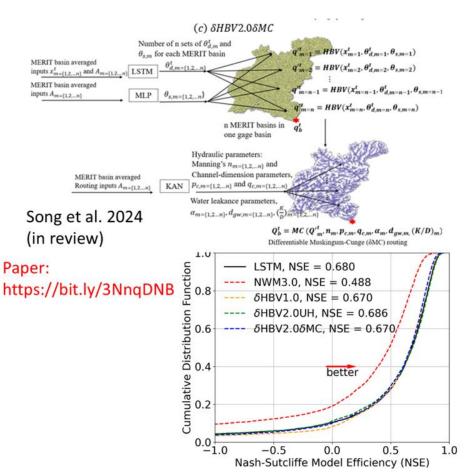
$$x = [P, PET, Temp]$$

$$SSC_g^t = LSTM(x_g^t, A_g)$$

Multiscale LSTM

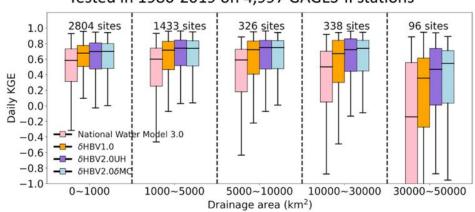


Large-scale, operational

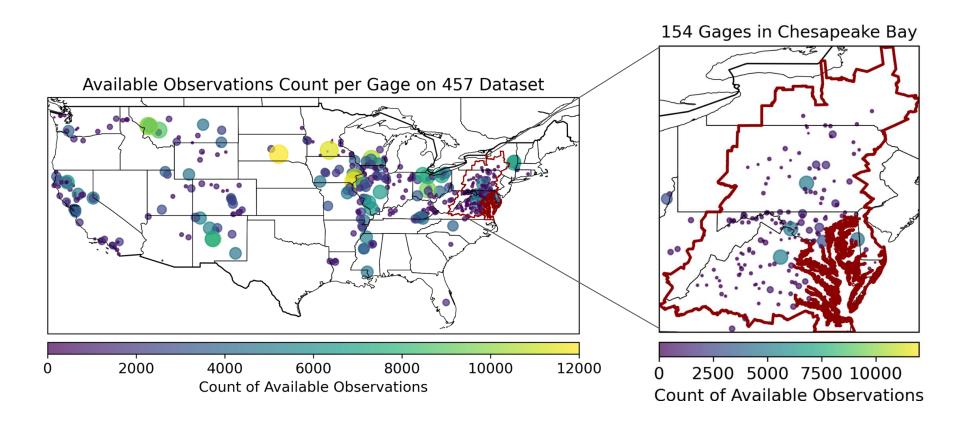


The mean seamless daily streamflow of 1995WY on the MERIT river network

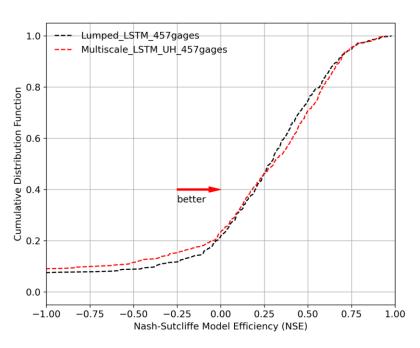
Tested in 1980-2019 on 4,997 GAGES-II stations

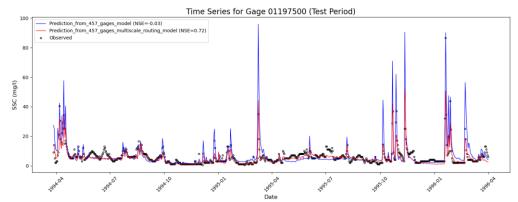


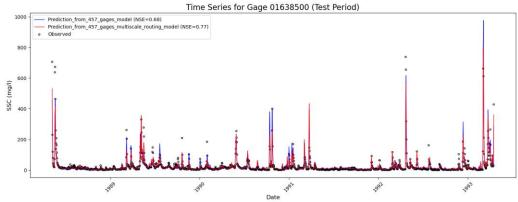
Dataset



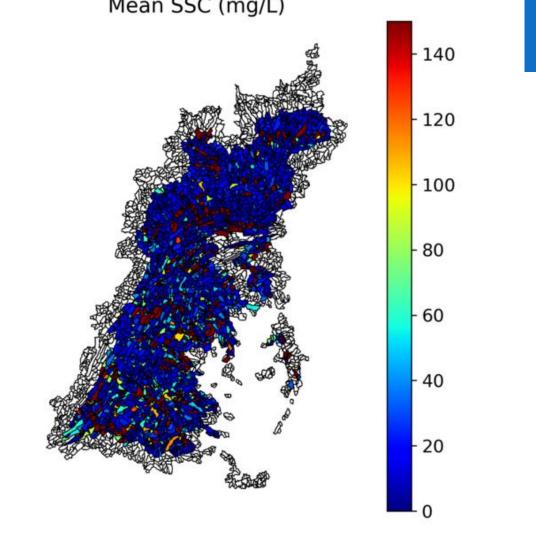
Results







Results



Next steps:

- Incorporate more input descriptors (connectivity? Buffer strips? Aggregated Geomorphic units? Management? Intersection(soil, slope, LULC)) and forcings (maximum rainfall?)
- Include more sites for training, small and large
- Add physical constraints (sensitivity, variance, known relationships)