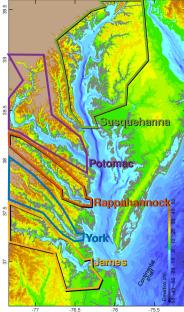
Update from the Rappahannock MTM team

Pierre St-Laurent¹, J.Shen¹, Z.Wang¹, Q.Qin²

¹Virginia Institute of Marine Science (VIMS) ²East Carolina University

CBP Modeling Workgroup Quarterly Review 8 January 2025

Update


Over the past quarter, Zhengui and others have been heavily involved in the linkage between the MBM and the Phase 7 watershed model.

The work on the Rappahannock MTM was on pause during that time.

Next quarter, we will be in position to present a formal update on the Rappahannock MTM.

In the meantime, Jian suggested that I present unpublished work on the **Rappahannock's estuarine circulation**, while comparing it to other tributaries of the Bay.

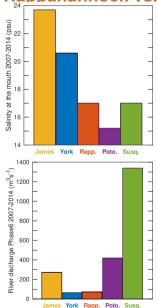
Rappahannock vs. 4 other Bay tributaries

- ► 5 tributaries, together receiving 95% of the watershed's freshwater (cf. Phase 6).
- Upstream boundary: limit of salinity intrusion (S = 0) or farther inland. Downstream boundary: head (except Susquehanna).
- ▶ Similarities: ~ partially-mixed, have a ~ 20 m channel at their mouth.
- Differences: Tidal range, salinity at their mouth (S_{in}) , freshwater input (Q_{riv}) , area/length of the tributaries...

Questions:

- 1. Where does the Rappahannock rank among the 5 in *how vigorous its estuarine circulation is?*
- 2. What causes this ranking?
- 3. What is the primary driver of its temporal variability?

RANGE feet


Rappahannock vs. 4 other Bay tributaries

- ► 5 tributaries, together receiving 95% of the watershed's freshwater (cf. Phase 6).
- Upstream boundary: limit of salinity intrusion (S = 0) or farther inland. Downstream boundary: head (except Susquehanna).
- ▶ Similarities: ~ partially-mixed, have a ~ 20 m channel at their mouth.
- Differences: Tidal range, salinity at their mouth (S_{in}) , freshwater input (Q_{riv}) , area/length of the tributaries...

Questions:

- 1. Where does the Rappahannock rank among the 5 in *how vigorous its estuarine circulation is?*
- 2. What causes this ranking?
- 3. What is the primary driver of its temporal variability?

Rappahannock vs. 4 other Bay tributaries

- ▶ 5 tributaries, together receiving 95% of the watershed's freshwater (cf. Phase 6).
- Upstream boundary: limit of salinity intrusion (S = 0) or farther inland. Downstream boundary: head (except Susquehanna).
- Similarities: ~ partially-mixed, have a ~ 20 m channel at their mouth.
- Differences: Tidal range, salinity at their mouth (S_{in}) , freshwater input (Q_{riv}) , area/length of the tributaries...

Questions:

- 1. Where does the Rappahannock rank among the 5 in *how vigorous its estuarine circulation is?*
- 2. What causes this ranking?
- 3. What is the primary driver of its temporal variability?

Methods

Simplified representation of reality (MacCready et al. 2011,2018):

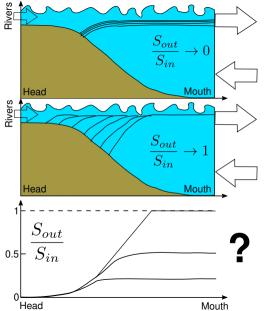
For cross-sections of the tributaries, sample the 3-D model every 30 min and compute:

$$Q(S) = \left(\int_{A(S)} u \, dA \right),$$
 then decompose into Q_{in}, Q_{out} and S_{in}, S_{out} (2 layers).

 Q_{in} is how we define the "strength" of the estuarine circulation (we are not focusing on the salt transport in this study).

After averaging over 8 years (2007–2014), we get:

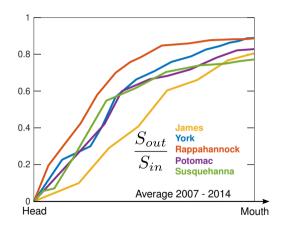
$$Q_{in} + Q_{out} \approx -Q_{riv}$$
, (here, Q_{in}, Q_{riv} are > 0 while $Q_{out} < 0$),


 $Q_{in} S_{in} \approx -Q_{out} S_{out},$

 $Q_{in} \approx Q_{riv} \, \frac{S_{out}}{S_{in} - S_{out}}$

insight into what dictates the strength of circulation:

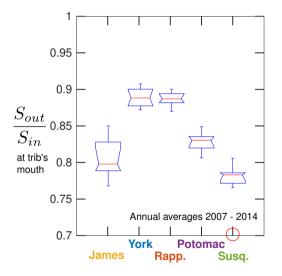
river discharge (Q_{riv}) , and mixing (S_{in}, S_{out}) .



Extreme scenarios:

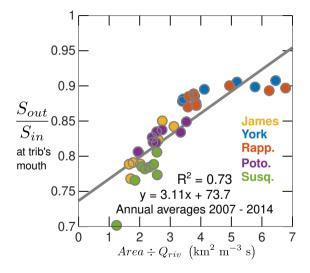
- 1. Nearly no mixing of the riverine freshwater,
- 2. Near-complete mixing of the riverine freshwater.

Where does the Rappahannock (and the other tributaries) stand within this continuum?


- After a rapid increase in the upstream portion of the tributary, **Rappahannock** exhibits an **asymptote** while approaching the mouth.
- Same is true for the other 4 tribs, in spite of their differences in size, tidal range, Q_{riv}...
- Why is no tributary reaching beyond $\sim 0.8?$

"Mixing"
$$\equiv \sum_{i=1}^{3} \iiint 2K_i \left(\frac{\partial s'}{\partial x_i}\right)^2 dV.$$

Gradients $\rightarrow 0$ while moving downstream, so it's increasingly harder to mix additional freshwater as you move toward the mouth.

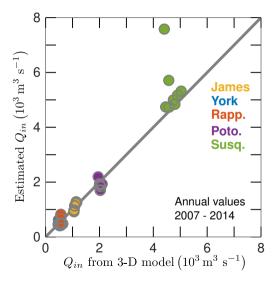

Contributes to the plateauing of S_{out}/S_{in} .

Can we explain the small variations in S_{out}/S_{in} between Rappahannock and 4 other tributaries?

- Zooming in over S_{out}/S_{in} at the mouth, do we see a pattern?
- **Rappahannock** is being paired with the York.
- Tributaries with higher Q_{riv} exhibit less complete mixing.
- Can we express this as an equation?

- We try regressing S_{out}/S_{sin} against known characteristics of the tributaries.
- ~ Inversely proportional to Q_{riv},
 ~ proportional to area (km²) of the tributary.
- Interpretation:
 - (1) The more freshwater is coming in, the harder it is to reach a given S_{out}/S_{in} ;
 - (2) The larger (or longer) the tributary is, the easier it is to reach a given S_{out}/S_{in};
 - *I.e*, **Rappahannock** has $S_{out}/S_{sin} \sim 0.9$ because of its lower Q_{riv} and its smaller area.

Circling back to *Q*_{in} (the estuarine circulation)

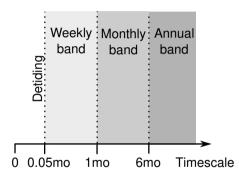

$$Q_{in} \approx Q_{riv} \frac{S_{out}}{S_{in} - S_{out}}$$
 (on timescales ≥ 1 year; 'steady state'),

... and we know:

- Q_{riv} (from watershed model),
- S_{in} (predictable from distance to continental shelf),
- \checkmark *S*_{out} (from *Area*, *Q*_{riv}, *S*_{in}),

We can predict the 5 estuarine circulations based on those characteristics of the tributaries (MAE = 14%). **Rappahannock** ranks 4th, just ahead of York, primarily because of its low Q_{riv} .

Outlier corresponds to year 2011 of the Susq. (Tropical storm Lee).

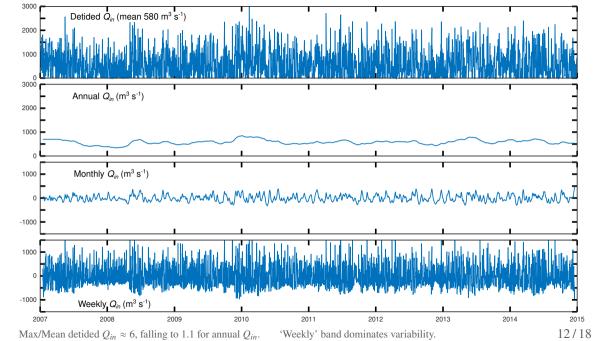

Partial summary

- 1. There are large differences between the 5 tributaries: tidal range, salinity at mouth, freshwater input, area...
- In steady state, river discharge, and mixing completeness (S_{out} versus S_{in}), determine the 'vigor' of the estuarine circulation (Q_{in}).
- 3. Model indicates variations in S_{out}/S_{in} at mouth are small (~ 0.8). Increasingly weak salinity gradients prevent values > 0.9 from arising.

 Q_{riv} becomes the primary determinant of Q_{in} .

- 4. The small variations in S_{out}/S_{in} can be linked to the tributaries' area and Q_{riv} .
- 5. The annual estuarine circulation is then predicted with a MAE = 14%.

Part 2: Temporal variability of the Rappahannock's circulation


- Everything presented so far assumed a steady state.
- Band-pass filtering is used to focus on 3 different timescales:

(1) "Weekly", 35 hours to 1 month: Meteorological and hydrological events;

(2) "Monthly", 1–6 months: Persistent weather/river conditions, *e.g.* droughts or El Nino;

(3) "Annual", > 6 months: Wet vs. dry years, hurricane vs. no hurricane...

Model results cover a period of 8 years (2007–2014).

What drives the variability at each timescale?

Correlation analysis between Q_{in} and plausible drivers, allowing for lags up to 15 days.

Attempt #1: Turbulent diffusivity (*K*) comes into play in mixing, and in Hansen & Rattray 1965's solution:

```
estuarine circulation \propto S_x H^3 K^{-1}.
```

We use the rate of work of tidal currents/winds as a proxy for their contribution to diffusivity:

$$\left\langle \iint \left| \boldsymbol{\tau} \cdot \mathbf{u}_{water} \right|_{bottom}^{surface} dx \, dy \right\rangle$$

No substantial correlation at any timescale.

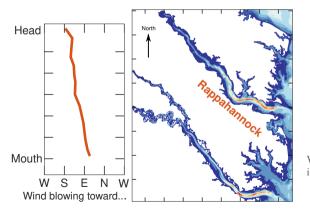
Timescale		Work _{tides}	Workwind
	annual	-0.04	0.22
Q_{in}^{Rapp}	monthly	-0.06	0.29
	weekly	0.08	0.16

What drives the variability at each timescale?

Attempt #2: Riverine freshwater discharge Q_{riv} ; contributes to term S_x in Hansen & Rattray's solution.

 Q_{riv} explains a large fraction of the variance at **annual timescale**.

Reflects spring freshet (peak discharge ~March) but also large rain events (tropical storms).


However, correlation drops rapidly at shorter timescales.

Timescale		Q_{riv}
	annual	0.63
Q_{in}^{Rapp}	monthly	0.11
	weekly	0.08

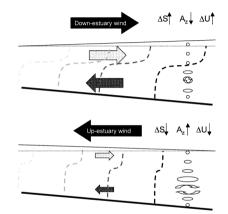
What drives the variability at each timescale?

Attempt #3: Wind stress components τ_x , τ_y .

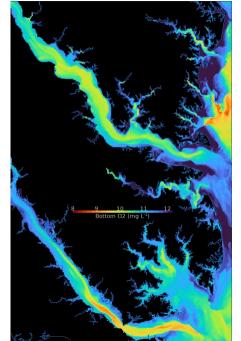
At monthly/weekly timescales, we see higher correlations than with other predictors.

Timescale		$ au_{\chi}$	$ au_y$
	annual	0.04	0.01
Q_{in}^{Rapp}	monthly	0.56	0.43
	weekly	0.42	0.26

Wind direction that maximizes the correlation is south-eastward, i.e. **down-estuary**.


Why down-estuary winds? A possible interpretation

Scully et al. 2005 (based on fieldwork in the York):


- Down-estuary winds strain the salinity field and increase vertical stratification;
- this leads to a reduction in the vertical turbulent viscosity,
- and the circulation ($\propto S_x H^3 K^{-1}$) increases in response.
- (vice versa for up-estuary winds.)

More analyses would be necessary to confirm this interpretation.

Thank you for your attention.

Appendix

3-D model

- SCHISM's implementations of the MBM / MTM were not available at the time of the study.
- 3-D model was an implementation of ROMS, 600 m resolution for the Bay, and a 120 m "MTM" for the Rappahannock + York.
- Realistic forcings from CBPWSM (Phase 6), ERA5, NOAA water levels on shelf.