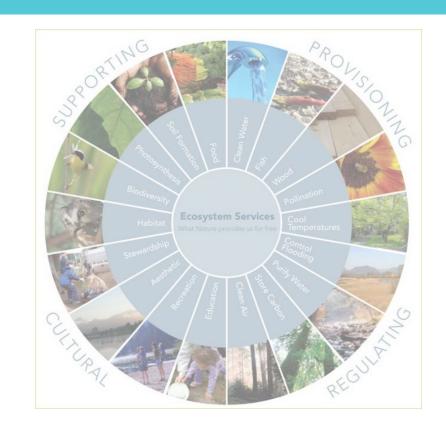
Valuation of ecological and social benefits provided by marshes and living shorelines for communities and fisheries

Donna Marie Bilkovic & Andrew Scheld **Virginia Institute of Marine Science**

PIs: Susanna Musick (VIMS), Robert Isdell (VIMS), Cirse Gonzalez (CBNERR), Pam Mason (VIMS), Molly Mitchell (VIMS), Randy Chambers (W&M), Matthias Leu (W&M), Sarah Stafford (W&M) NOAA CBO Partners: Andrew Larkin, Lauren Taneyhill Students: Maddie Helfer, Matthew Whalen, Nhu-Lan Pho, Jessica Fergel, Sophie Jackson, Madelyn Atkins (W&M), Kathleen Powers (UVA ERI program), Kati Grigsby (VIMS)

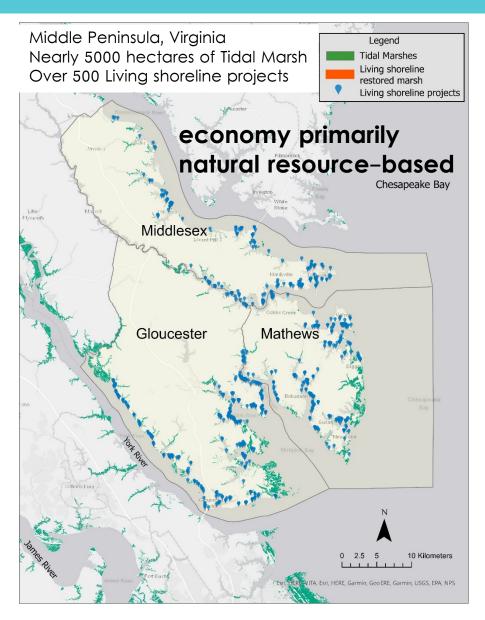


Ecosystem Services

- Benefits to people provided by nature (provisioning, regulating, supporting, cultural)
- Measuring ecosystem services in monetary terms facilitates straightforward analysis of tradeoffs
 - E.g., National Strategy to Develop Statistics for Environmental-Economic Decisions (2023)
- Variability in ESV across ecosystems due to service provision and associated human values

Study Objectives

- 1. Estimate the ecological and social benefits provided by marshes and living shorelines for local communities within the Middle Peninsula Virginia region
- 2. Develop a *Shoreline Restoration Benefit Calculator* that allows users to input project specific information and output net societal benefits.



Study area & Shoreline Marsh Value

Ecosystem services:

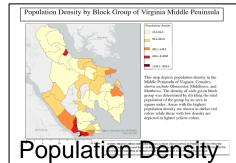

Storm/flood risk reduction ¹

Carbon storage²

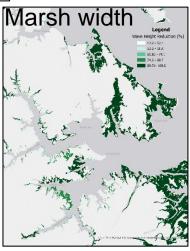
Nutrient storage³

Fish & crustacean habitat 4

Recreation – **fishing**, birding⁵


Multiple ES valuation approaches

- 1. Hybrid Benefit transfer Approach applied estimates of marsh ecosystem service values from existing studies to Middle Peninsula
 - Literature values refined with location specific information, such as pop density, marsh extent and mapped living shorelines extent
 - Stated preference survey of recreational fishers used to value angler use
- 2. Multicriteria decision analysis (MCDA) Es rankings from stakeholders (in progress)
 - Shoreline management stakeholders surveyed for ES preferences (DCE)
 - 2. Estimate WTP to derive rank and value of services



\$/yr for MP for each service

Values scaled for local conditions

1. PRELIMINARY BENEFIT TRANSFER ECOSYSTEM SERVICE VALUATION

Service	N	Mean (\$/ha/yr)	Total Benefit Transfer (\$/yr)		Total MP2 (\$/yr)
Carbon Removal/Storage	9	\$1,908.50	\$8.5M	\$0.7M	\$8.5M
Fish Habitat	8	\$1,679.82	\$7.4M	\$7.4M	\$7.0M _★
Recreation (e.g., Fishing)	9	\$1,422.61	\$6.3M	\$6.4M	\$6.3M
Storm/Flooding Risk Reduction	6	\$11,244.74	\$49.9M	\$3.3M	\$47.7M ×
Nutrient Removal/Storage	12	\$4,065.33	\$18.0M	\$22.0M	\$18.0M
Total	44		\$90.1M	\$39.9M	\$87.4M

Literature Review:

- 119 studies identified and reviewed for marsh ecosystem service value estimates
- 44 usable value estimates from 35 studies

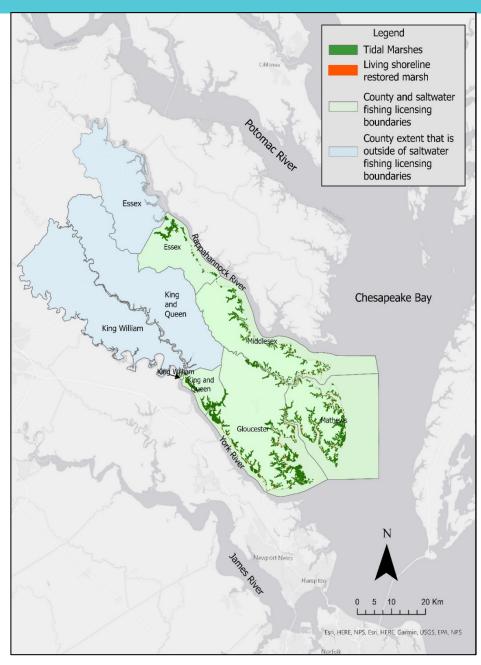
Benefit Transfer:

- Values in the literature adjusted in benefit functions to approximate local ESVs
- Middle Penninsula total ESV ~\$40M \$90M / yr
- Represents 1.5% to 3.4% of region GDP

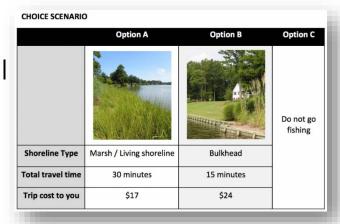
Location specific data function

Morgan's Branch, North River

Recreational Benefits - fisheries

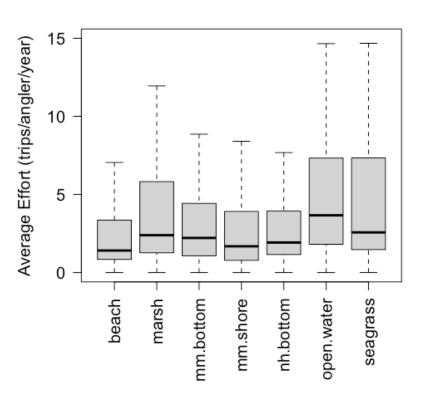


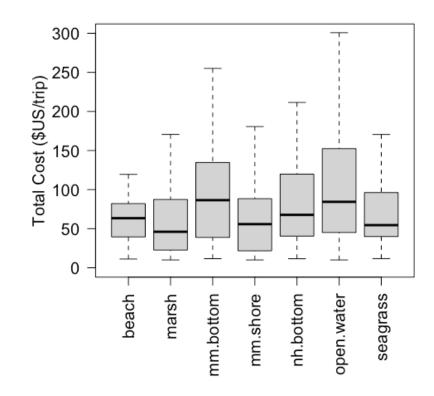
Louisiana Northshore


- Recreational fisheries provide significant economic benefits (~\$343M estimated annual economic impacts in Virginia, NOAA 2022)
- 90% of saltwater recreational fishing trips in MD/VA occur in nearshore coastal and inland waters
- Marshes provide critical nursery and forage habitat for many fish species and are frequent destinations of recreational anglers
- Surprisingly little information on habitat use \rightarrow complicates ability to assess ESVs

Recreational fisheries preference survey

- Collect information on saltwater angler effort, costs, and preferences across habitat types
- Estimate value of recreational fishing at different shoreline habitats (marsh, beach, hardened) with DCE


- Online survey (Qualtrics), ~25 questions; angler focus group to test/refine
- Invited all* licensed anglers in Middle Peninsula (n=5,420) and 2/3s of licensed anglers from counties that border Middle Peninsula (n=4,580)



Recreational fisheries preference survey - results

~1,500 response (15%).

angler response
demographics
(gender, age, income,
education, avidity)
similar to other recent
studies

Effort (highest): open water, seagrass, marsh Effort (lowest): beach, hardened shoreline Trip cost (highest): open water, bottom structure Trip cost (lowest): marsh, seagrass, hardened shoreline

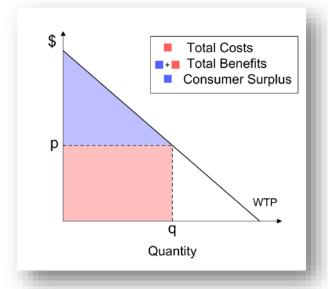
Recreational fisheries preference survey - results

 Willingness-to-pay constructed for trips to shoreline habitats as function of travel time using mixed logit model

	WTP, high mobility (\$US/trip)	WTP, low mobility (\$US/trip)	
Beach	\$39.27 (17.18)	\$90.89 (25.39)	Average trave
Bulkhead	\$60.02 (17.81)	\$132.79 (29.92)	times per
Revetment	\$109.66 (19.69)	\$140.76 (30.71)	mode used
Marsh	\$219.05 (33.61)	\$224.74 (43.19)	

 Trips to marshes yield larger benefits in comparison to hardened shorelines, particularly for high mobility anglers

Recreational fisheries preference survey - results


	Total Benefits (sd)	Net Benefits (sd)
Beach	\$0.78M (0.19M)	\$0.31M (0.19M)
Hardened shoreline	\$1.78M (0.31M)	\$1.01M (0.31M)
Marsh / living shoreline	\$6.42M (0.99M)	\$5.23M (0.99M)

For Middle Peninsula anglers, considering habitat-specific effort, costs, and WTP

Suggests ESV of marsh habitat in Middle Peninsula of \$1085.73/ha

-\$6.42M in annual benefits for recreational fishing provided by Marshes and living shorelines in the Middle Peninsula

-a total value which is more than **3.5X greater** than that produced by hardened shorelines (& more than **5X greater** in net benefits)

Summary & Next Steps

Hybrid Benefit Transfer ESV:

- Middle Peninsula total ESV ~\$40M \$90M / yr
- Represents 1.5% to 3.4% of region GDP
- Marshes & living shorelines provide 3.6X the value of hardened shorelines for rec fishing (\$6.42M in annual benefits)

Next steps

- Complete community survey analysis for Multicriteria decision analysis (MCDA) valuation
- Finalize ESVs
- Develop a Shoreline Restoration Benefit Calculator that allows users to input project specific information and output net societal benefits
- Manuscript on angler preferences and recreational fishing valuation submitted

Questions?

Special thanks to the recreational anglers who participated in the focus group and/or took the survey!

Project Partners:

PIs: Donna Marie Bilkovic (VIMS), Andrew Scheld (VIMS), Susanna Musick (VIMS), Robert Isdell (VIMS), Cirse Gonzalez (CBNERR), Pam Mason (VIMS), Molly Mitchell (VIMS), Sean Gregory (VIMS), Randy Chambers (W&M), Matthias Leu (W&M), Sarah Stafford (W&M), Jess Hendricks (VIMS)

NOAA CBO Partners: Andrew Larkin, Lauren Taneyhill Students: Maddie Helfer, Matthew Whalen, Nhu-Lan Pho, Jessica Fergel, Sophie Jackson, Madelyn Atkins (W&M), Kathleen Powers (UVA ERI program), Kati Grigsby (VIMS)

donnab@vims.edu