P Loss in Ag and Natural Section 4.5.1

L2W & S2R Section 4.7.5

BMP effectiveness Section 4.6

Loads from Flooding Section 5.1.5

Climate Change Topics

Gary Shenk – CBPO 10/8/19

Presentation to Modeling Workgroup

This information is being provided to meet the need for timely best science. The information is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government shall be held liable for any damages resulting from the authorized or unauthorized use of the information.

Preliminary Information-Subject to Revision. Not for Citation or Distribution

Phosphorus Loss Sensitivity to Climate Change in Agricultural and Natural Land

- No new analysis
- Using sensitivities that are already part of the phase 6 model
- Natural land and pasture land have increasing loads due to increased stormwater runoff and increased sediment washoff
- Soil P loss is accelerated under conditions of increased stormwater runoff and increased sediment washoff, leading to a decreased sensitivity to these factors.

Sensitivities already part of the Phase 6 Model

Land use Category	Flow Sensitivity Range	Sediment Sensitivity Range	
Natural	0.007, 0.019, 0.042	0.012, 0.031, 0.067	
Pasture	0.080	0.126	
Cropland	0.041	0.121	

- Flow sensitivity is pounds P per inch of stormwater
- Sediment sensitivity is pounds P per ton of sediment

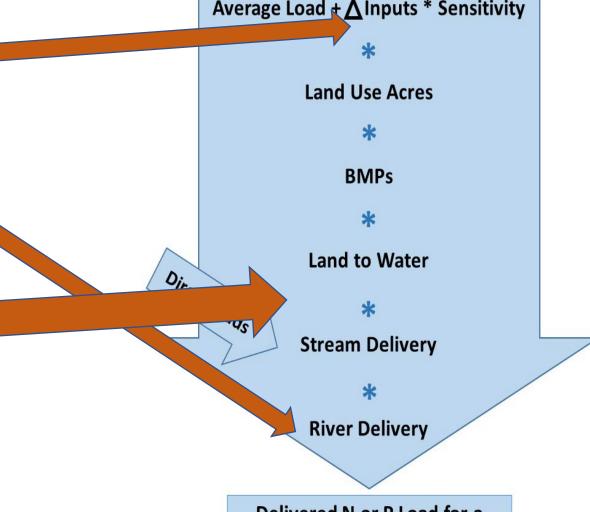
Sensitivity of soil P to flow and sediment

APLE emulator model

$$M_{i+1} = M_i + \left(\sum_{n=1}^{Nfactors} (Factor * Coefficient)\right) * (1 - 0.95 * \log_{75} i)$$

- Predicts change in soil P for a given management scenario
- Runs 25 iterations
- Reduces soil sensitivity by 20%
- Reduces runoff sensitivity by 12%

	Factor	unit	Coefficient		
\	Solid Manure	pound/acre/year TP	0.151		
	Liquid Manure	pound/acre/year TP	0.154		
	Fertilizer	pound/acre/year TP	0.0559		
1	Biosolids	pound/acre/year TP	0.00463		
/	Uptake	pound/acre/year TP	-0.159		
	Sediment Loss	ton/acre/year	-0.208		
	Stormflow	inches/year	-0.0355		
	Percent	percent	0.0479		
	Incorporation		991.4.549		
	Percent Mixing	percent	-0.0508		
	Depth of	inches	0.183		
	Incorporation				
	Precipitation	inches/year	-0.00152		
	Clay percent	percent	Clay > 15: 0.160		
			Else: 0.000		
	Organic Matter	percent	Clay >15: -0.549		
			Else: 0.000		
	Local Adjustment	ppm Mechlich 3	4 Varies		


Delivery Effects

 Most of the work has been on inputs and sensitivities

Rivers are directly simulated

 How to consider effects on delivery?

Phase 6 Model Structure Average Load + △Inputs * Sensitivity

Delivered N or P Load for a Land Use Within a Segment

Delivery Effects - Nitrogen

Land use category	Land to water	Stream delivery	River delivery	
Agricultural	Captured in literatu	Captured in literature review and analysis		
Developed	Captured in literatu	Captured in literature review and analysis		
Natural	Captured in literature review and analysis		Simulated in HSPF	

- Section 4.4 deals with a literature review and an analysis of in-stream data.
- Nitrogen analysis performed at the watershed scale, so it incorporates the land to water and stream delivery effects
- Additional temperature and stream velocity considerations are modeled in the HSPF river simulation

Delivery Effects – Phosphorus

Land use category	Land to water	Stream delivery	River delivery
Agricultural	Already represented in sensitivities	Not adjusted for climate	Simulated in HSPF
Developed	Added based on literature and analysis	Not adjusted for climate	Simulated in HSPF
Natural	Already represented in sensitivities	Not adjusted for climate	Simulated in HSPF

- Spatial variability of phosphorus delivery is based on stormwater runoff, sediment washoff, and soil P levels. These three factors are already considered in the climate change modeling
- Additional temperature and stream velocity considerations are modeled in the HSPF river simulation
- Stream delivery is not changed due to lack of information

Delivery Effects

Land use category	Land to water	Stream delivery	River delivery
Agricultural	Captured in literatur	Simulated in HSPF	
Developed	Captured in literatur	Simulated in HSPF	
Natural	Captured in literature review and analysis		Simulated in HSPF

Land use category	Land to water	Stream delivery	River delivery
Agricultural		Not adjusted for	Simulated in HSPF
	sensitivities	climate	
Developed	Added based on	Not adjusted for	Simulated in HSPF
	literature and analysis	climate	
Natural	Already represented in	Not adjusted for	Simulated in HSPF
	sensitivities	climate	

BMP performance

- Some literature evidence of modeled decreasing BMP performance under climate change
- Discussed at the Principals' Staff Committee and Management Board
 - Begun prototype program on BMP responsiveness to climate change
- WQGIT, CRWG are aware of the issues
- The CBP partnership has determined that there is not sufficient information available to model the effect of climate change at this time.

Loads from tidal flooding

Loads from tidal flooding

 Brought to our attention by recent news reports based on research by Margie Mulholland

- Insufficient data
- Added to the documentation so that it could be considered next time

Request approval of documentation

- Section 4.5.1
 - Use existing simulation for P loss in agricultural and natural settings
- Section 4.7.5
 - Climate effect on land to water, stream to river, and river to bay factors adequately modeled except stream to river phosphorus, which is ignored
- Section 4.6
 - BMP effectiveness will likely decrease with climate change, but not enough evidence to for values to use in modeling
- Section 5.1.5
 - Acknowledge tidal flooding as a possible source