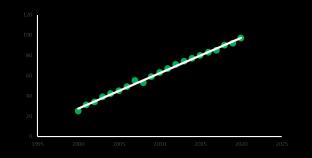




## Outline

Computation and communication of status and trends for stream health, fish habitat, and aquatic conditions


Regional (watershed-wide) assessments of stream condition

Presentation of a preliminary web-based geonarrative on the regional assessments work



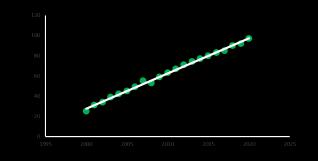
# Objective

# Status and Trends



Computation and communication of status and trends for stream health, fish habitat, and aquatic conditions

### Topic areas:


Aquatic communities
Physical habitat and geomorphology
Flow and ecological flows
Water temperature

Water Quality – Nutrients and SS Conductivity and associated ions Toxics



# Objective

## **Status and Trends**



Computation and communication of status and trends for stream health, fish habitat, and aquatic conditions

### Topic areas:

#### Aquatic communities

Physical habitat and geomorphology Flow and ecological flows Water temperature Water Quality – Nutrients and SS Conductivity and associated ions Toxics



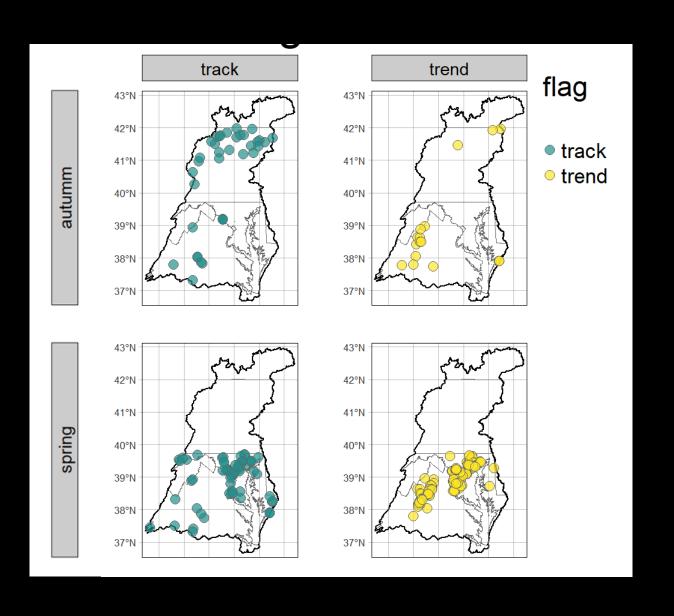
## Status and Trends

# Identifying suitable stations

- 1) Use existing available data (benthic macroinvertebrates).
- 2) A current repeatedly sampled station.
- 3) Station must have at least 7 individual years of samples collected in the same season.
- 4) Station must have at least 5 yearly samples collected on or after 2008.



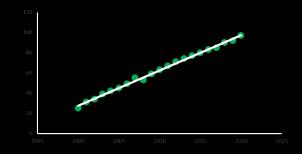
# Status and Trends


### Results

# Benthic Macroinvertebrates (Boyle)

190 Trend sites – ≥7 yearly samples, at least five samples ≥2008.




102 Track sites – Not enough samples yet, but likely to qualify in next data collection round.





**Next Steps** 

# Status and Trends



Identify appropriate analytic approaches to quantify trends.

Identify reason for station being sampled long-term (need help here).

Identify any other long term data sets (need help here).

Identify factors behind trends?



# Regional Assessments

# Objective

Computation and communication of a multivariate assessment of stream conditions

1:100,000 map scale 2023

1:24,000 map scale 2025

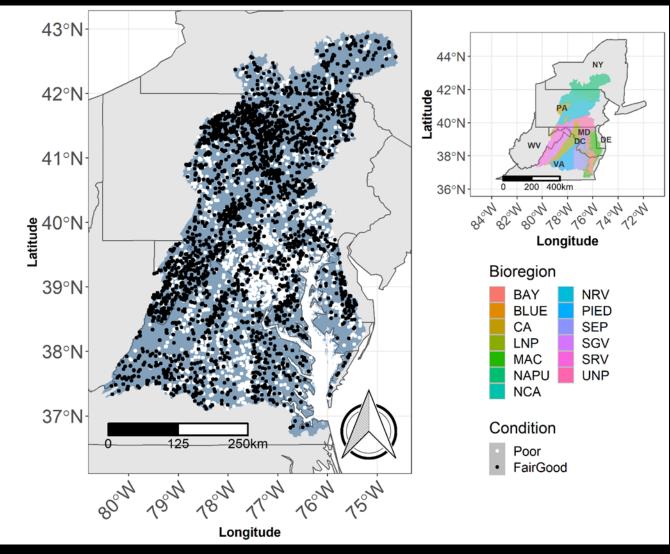
Topic areas:

Aquatic communities (bugs and fish)
Physical habitat and geomorphology
Flow and ecological flows

Water temperature\*
Conductivity

## Methods

# Benthic Macroinvertebrates (Maloney)


Chessie BIBI as response (n = 4,605 independent stations)

Ecosheds 1:24,000 network as base layer, ≤200 km² drainage area

19 landscape predictors

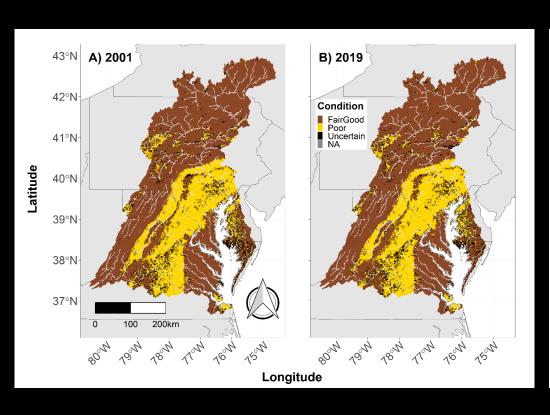
Analysis: Random forest Machine Learning; predictions for each NLCD year

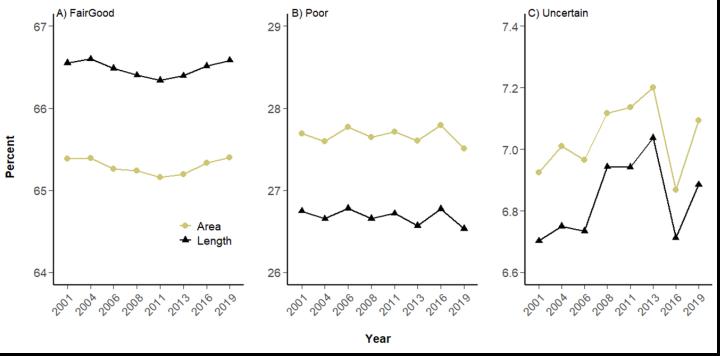
# Regional Assessments








## Results-Benthic Macroinvertebrates


# Regional Assessments

FairGood were predicted in mountainous and coastal plains regions; Poor conditions were predicted in Piedmont regions.

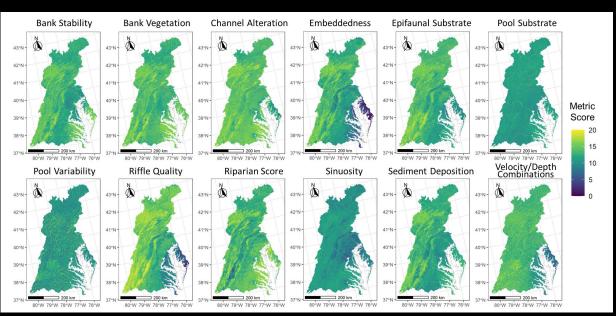
Total stream length and catchment area predicted in FairGood conditions decreased then increased over 19-years (length/area:

66.6/65.4% in 2001, 66.3/65.2% in 2011, and 66.6/65.4% in 2019).

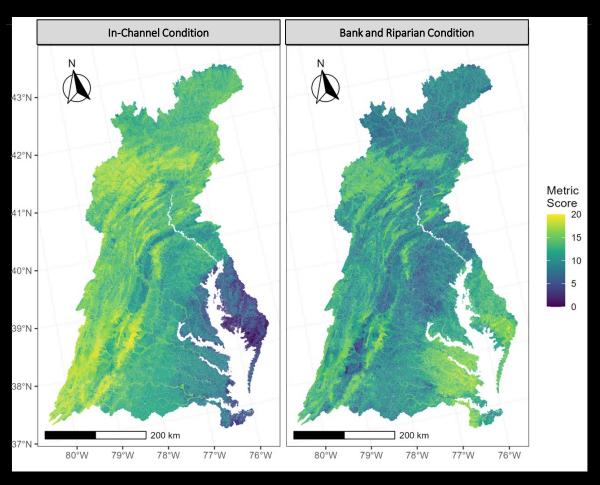




https://doi.org/10.1016/j.jenvman.2022.116068


## Results

### Hydrogeomorphology (Cashman)


Using habitat data collected with EPA Rapid Habitat Protocols contained in CBP DataHub

 $\sim$ 1,500 – 14,000 observations per metric

Random forest and landscape models similar to other assessments at 1:100k NHDPlus



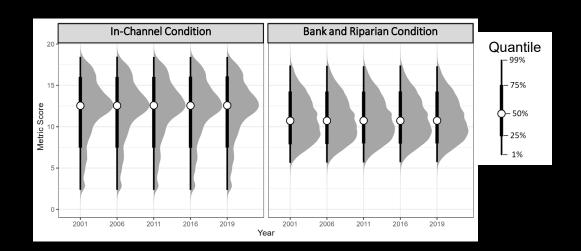
# Regional Assessments



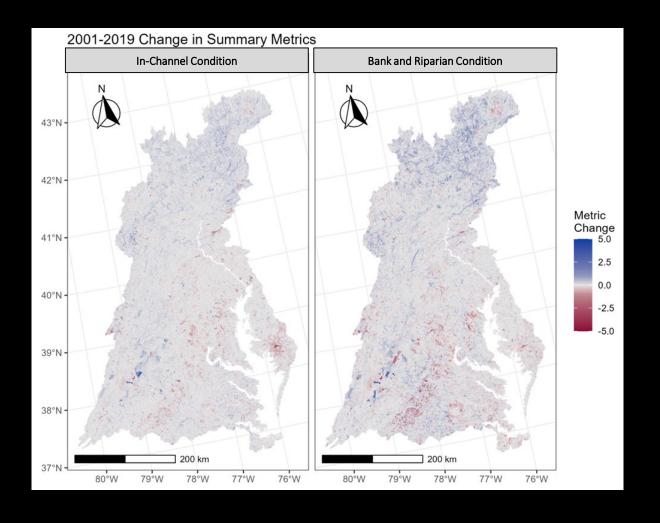
### 2 summary scores



**12 Predicted RBP Scores** 


## Results

### Hydrogeomorphology (Cashman)


We predict change in condition from 2001-2019

There are clear clusters of improvement and deterioration across Chesapeake Watershed

These areas roughly balance out on average, for negligible overall change



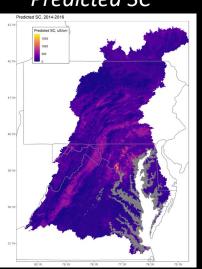
# Regional Assessments



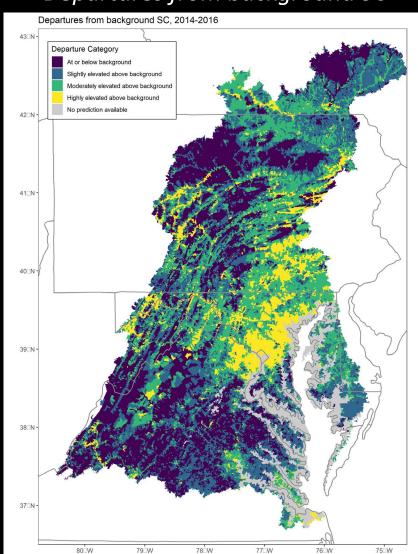
Preliminary data, not for citation or distribution

## Methods

## Specific Conductance (Fanelli)


- Input datasets
  - Observed SC (Water Quality Portal)
  - Modeled background SC (Olson and Cormier 2019; ES&T)
  - Watershed characteristics (land use, climate, geology, point sources)
- Modeling
  - Grouped observations into four time periods to center around major NLCD years (2001, 2006, 2011, 2016)
  - Used random forests regression models to predict median annual SC for four time periods
  - Applied background SC (or equivalent) to determine departures from background SC

# Regional Assessments

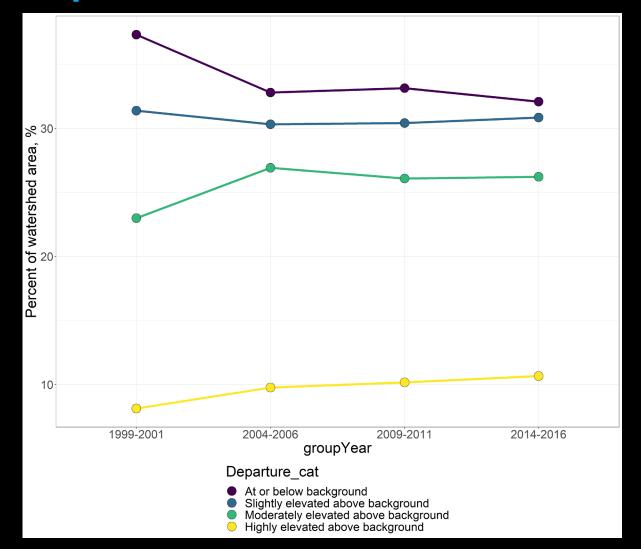

Modeled background SC

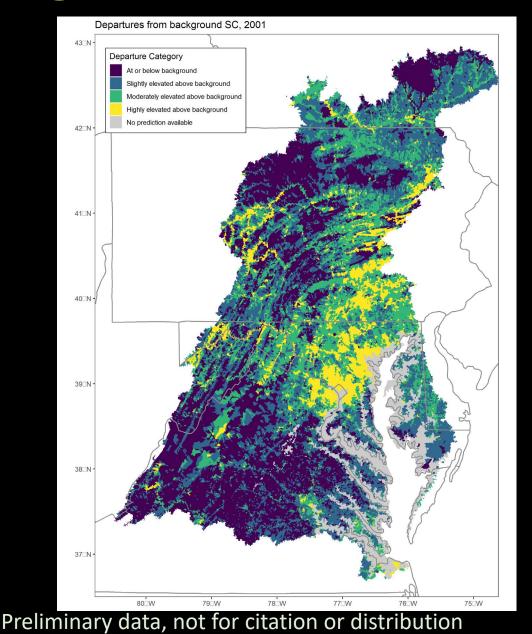


Predicted SC



#### Departures from background SC

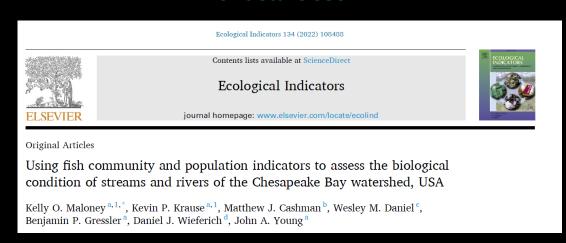


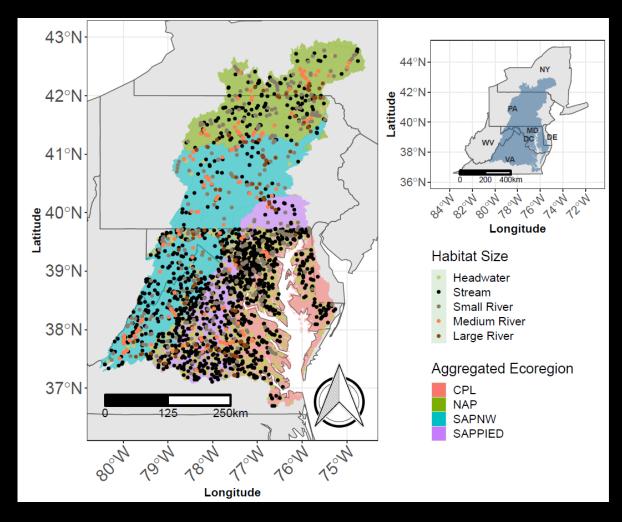

## Results

# Regional Assessments

# Specific Conductance (Fanelli) Departures have worsened over time







# Methods Fish (Maloney)

- Unable to use reference sites and develop MMI
- Developed a decile approach based on multiple metrics (measures like %intolerant) of assemblage
- Mean of decile scores across suitable metrics used as condition indicator
- Higher mean decile infers less altered system

#### For details see:



# Regional Assessments





# Results-Fish (Maloney)

# Regional Assessments

Higher deciles infer less altered system.



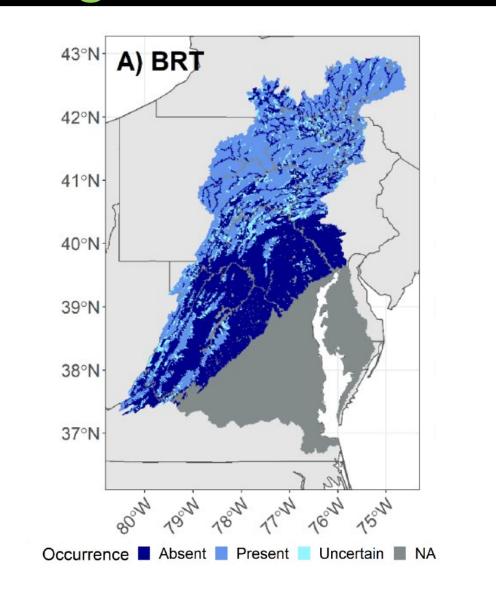
https://doi.org/10.1016/j .jenvman.2022.116068





## **Results-Fish Population**

4 species (Brook Trout, Smallmouth Bass, Torrent Sucker, N. Hog Sucker)


Species occurrence, with presence indicating suitable habitat.



Example shows presence, absence and uncertain predictions for Brook Trout.

https://doi.org/10.1016/j.jenvman.2022.116068

# Regional Assessments





# Regional Assessments

# **Next Steps**

Incorporate additional indicators (e.g., other measures of the biological community, water temperature, etc.)

Move all assessments to the NHDPlus High Resolution (1:24,000) framework.

Include higher resolution data (e.g., 1m LULC).

Utilize causal inference approaches.



# Thank you!

Status and Trends Fact Sheet: <a href="https://doi.org/10.3133/fs20233003">https://doi.org/10.3133/fs20233003</a>

#### **Manuscripts:**

Woods et al. 2023 Global change and riverine fish: https://doi.org/10.1111/gcb.16707

Maloney et al. 2022 latest Chessie BIBI modeling effort: <a href="https://doi.org/10.1016/j.jenvman.2022.116068">https://doi.org/10.1016/j.jenvman.2022.116068</a>

Maloney et al. 2022 latest fish habitat assessment effort: https://doi.org/10.1016/j.ecolind.2021.108488

Maloney et al. 2021 eflow effort: <a href="https://doi.org/10.1007/s00267-021-01450-5">https://doi.org/10.1007/s00267-021-01450-5</a>

Maloney et al. 2020 global change and Chessie BIBI: https://doi.org/10.1111/gcb.14961

#### **Data releases:**

Fish and Chessie BIBI linked to NHDPlus V2.1: <a href="https://www.sciencebase.gov/catalog/item/60677b1cd34edc0435c09d82">https://www.sciencebase.gov/catalog/item/60677b1cd34edc0435c09d82</a>

Model predictions latest Chessie BIBI effort: <a href="https://www.sciencebase.gov/catalog/item/622f9e7cd34ec9f19eeaa61c">https://www.sciencebase.gov/catalog/item/622f9e7cd34ec9f19eeaa61c</a>

Model predictions latest fish habitat assessment: https://www.sciencebase.gov/catalog/item/61533111d34e0df5fb9c5bc5

Community metrics Chesapeake compiled fish dataset: https://www.sciencebase.gov/catalog/item/606cdef4d34e670a7d5cfff1



# **Contact Information**

#### **Status and Trends:**

Biology: Lindsey Boyle (<a href="mailto:lboyle@usgs.gov">lboyle@usgs.gov</a>) and Kelly Maloney (<a href="mailto:kmaloney@usgs.gov">kmaloney@usgs.gov</a>)

Physical habitat and geomorphology: Matthew Cashman (mcashman@usgs.gov)

Flow and ecological flows: Sam Austin (saustin@usgs.gov)

Water temperature: John Clune (jclune@usgs.gov)

Water Quality – Nutrients and SS: Christopher Mason (camason@usgs.gov) or Doug Moyer (dlmoyer@usgs.gov)

Conductivity and associated ions: Rosemary Fanelli (rfanelli@usgs.gov)

Toxics: Trevor Needham (tneedham@usgs.gov) or Emily Majcher (emajcher@usgs.gov)

#### **Regional Assessments:**

Biology: Kelly Maloney (kmaloney@usgs.gov)

Physical habitat and geomorphology: Matthew Cashman (mcashman@usgs.gov)

Flow: Sam Austin (saustin@usgs.gov), Kelly Maloney (kmaloney@usgs.gov) and Taylor Woods (tewoods@usgs.gov)

Water temperature: John Clune (<a href="mailto:jclune@usgs.gov">jclune@usgs.gov</a>), Kelly Maloney (kmaloney@usgs.gov) and Taylor Woods (tewoods@usgs.gov)

Conductivity: Rosemary Fanelli (<u>rfanelli@usgs.gov</u>)

#### **Geonarrative:**

Stephanie Gordon (sgordon@usgs.gov) and Allison Sussman (asussman@usgs.gov)



# Geonarrative

#### USGS Assessments of Stream Health Condition in the Chesapeake Bay Watershed

Assessing Freshwater Habitats in the Chesapeake

General Assessment Trends

Detailed Results

About

#### **Understanding Habitat Condition**

In order to provide science for the environmental management of stream health, fish habitat, fish health, and water quality, the USGS and Chesapeake Bay Program partners are conducting multiple habitat assessment efforts throughout the Chesapeake Bay Watershed. The goal of this work is focused on understanding and modeling aquatic communities, physical conditions, water quality, and toxic contaminants in the streams and rivers throughout the Watershed.

These assessments rely on collected and modeled data to build estimates of condition, and localized information generated with these models allows managers to focus restoration and protection efforts in Chesapeake Bay watershed.

Each section (below) in this geonarrative describes the data inventory/generation and modeling steps undertaken for a given Assessment:

- Aquatic Communities
  - Fish
  - Benthic
- Physical Conditions
  - Hydrogeomorphology
  - Specific Conductance
  - Stream Temperature
  - Freshwater Flows
- Additional Assessments
  - Toxic Contaminants
  - Water Quality

All results are incorporated into an interactive dashboard, as to inform healthy watershed, fish habitat and health decision-making. General trends in regional assessments can be found on the Detailed Time Series tab. For links to all journal articles, data releases, and contact information, see the About page.

**Allison Sussman and Stephanie Gordon**