

The State of the Science and Practice of Stream Restoration in the Chesapeake: Lessons Learned to Inform Better Implementation, Assessment and Outcomes

March 21-23, 2022 GMU Potomac Science Center | Woodbridge, VA

Greg Noe U.S. Geological Survey, Co-Chair
Neely Law Fairfax County, Co-Chair
Joe Berg Biohabitats
Sadie Drescher Chesapeake Bay Trust
Solange Filoso UMCES
Lisa Fraley-McNeal Center for Watershed Protection
Ben Hayes Bucknell University

Paul Mayer U.S. EPA
Chris Ruck Fairfax County
Bill Stack Center for Watershed Protection
Rich Starr Ecosystem Planning and Restoration
Scott Stranko MD DNR
Tess Thompson Virginia Tech

As well as **Meg Cole** (*CRC*), **Sherry Witt** (*General Dynamics*), & **Tou Matthews** (*CRC*), and many other presenters and participants

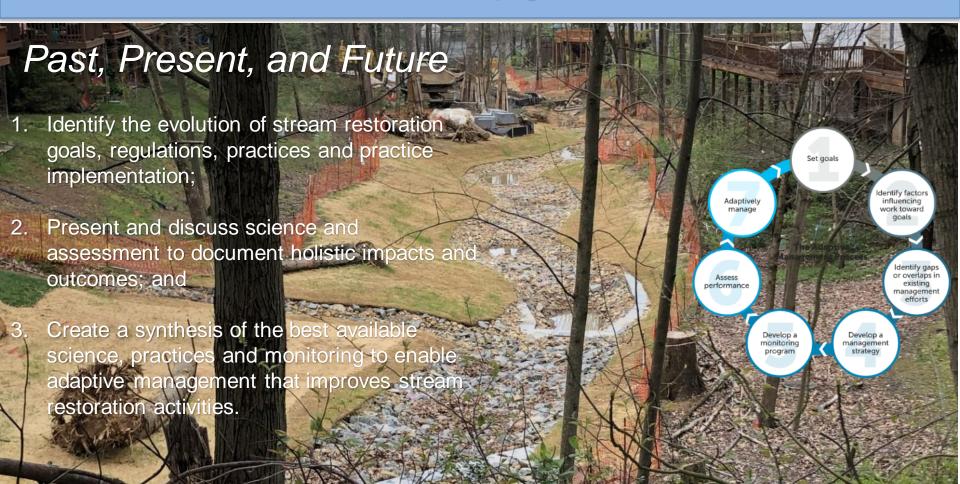
Why this workshop on stream restoration?

Stream restoration is a common management practice used for TMDLs, MS4, mitigation, infrastructure protection, and habitat improvement... success most often defined by getting hydraulics and geomorphology right.

Chesapeake Bay watershed: 266 miles completed as of 2019, 84 miles planned for 2019 to 2025 [CBP WIPs]

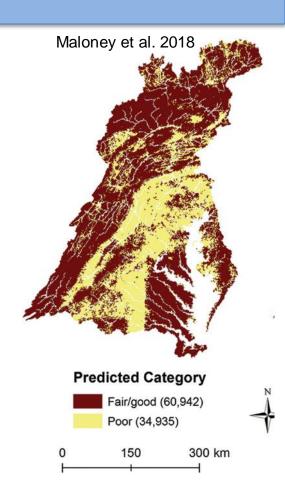
Growing interest and controversy about the effects of stream restoration on whole-ecosystem health and services.

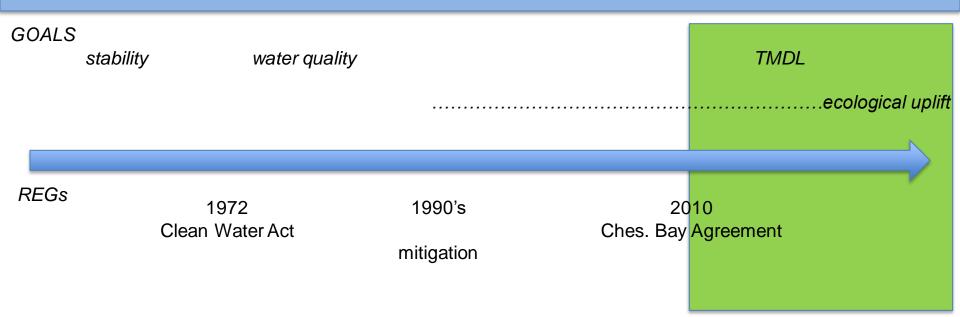
The overall purpose of the workshop was to bring together a <u>diverse cross-section of experts and stakeholders</u> in the field of stream restoration ...


to review and distill lessons learned from past stream corridor restoration projects to improve restoration outcomes.

These data are preliminary and are subject to revision. They are being provided to meet the need for timely 'best science' information. The assessment is provided on the condition that neither the U.S. Geological Survey nor the United States Government may be held liable for any damages resulting from the authorized or unauthorized use of the assessment.


Workshop goals


Past: Streams have been degraded over much of the Chesapeake watershed


Fanelli et al. 2022

Past: Evolution of stream restoration

Restoration approaches:

hydraulics, to channel evolution, to channel stabilization, to natural channel design, to softer structures, to floodplain reconnection.

These data are preliminary and are subject to revision. They are being provided to meet the need for timely 'best science' information. The assessment is provided on the condition that neither the U.S. Geological Survey nor the United States Government may be held liable for any damages resulting from the authorized or unauthorized use of the assessment.

Evaluating outcomes

In-channel biotic

Riparian

'Stabilization' of channel form over time

Water quality

Synthesis of restoration outcomes

In-channel biotic

Biological uplift is rare. Examples of biological uplift include single stressor removal projects, benthic macroinvertebrates where riparian areas have been improved, fish where blockages have been removed, and hyporheic taxa.

'Stabilization' of channel form over time

Natural channel design in the eastern US can stabilize channel form over typical monitoring periods of up to five years. There is little peer reviewed literature on new design techniques that focuses on channel and floodplain geomorphology.

Riparian

Often short-term negative impacts to riparian vegetation. Loss of existing trees in the riparian zone from stream restoration implementation occurs. But deliberate riparian restoration can improve ecosystem health. Amphibians in stream-wetland complexes can improve.

Water quality

Restoration effects are mixed but there are measurable improvements that make restoration a best management practice worth considering for attenuating nutrient pollution and sediment control. Tradeoffs and unintended consequences may occur.

Discussions of stream restoration

Many breakout sessions with the 109 participants

- 1. Why did we get these outcomes?
- 2. What do we do differently to get better outcomes?

Causal chain

Stream degradation → Regulatory/policy drivers → Goals → Design approaches/practices → Monitoring → **Outcomes**

Why did we get these outcomes?

Causal chain

Most stream restorations have occurred because of Chesapeake Bay TMDL

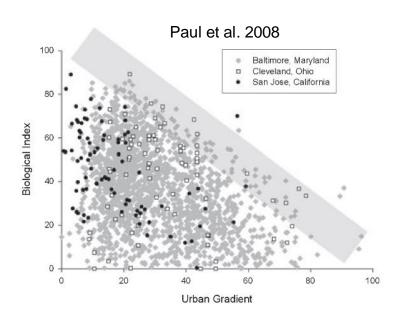
Their primary goal has been to reduce downstream loading of N, P, and sediment

Geomorphic stabilization has been largely successful, with moderate WQ improvements

But benthic macroinvertebrates and fish in the channel most often do not meaningfully improve (are we targeting wrong stressors, or the right stressors the wrong way?)

Riparian health can be temporarily impacted, but can also improve long-term

Tradeoffs can occur


But need more data

Stressors

Ultimately, watershed condition (including past land uses) determines uplift potential, and should set the expectations for stream restorations

What do we do differently to get better outcomes?

Where and why has biotic uplift occurred in response to stream restoration?

- Single known stressor
- Smaller streams
- Whole stream corridor (incl. riparian and floodplain zones)
- Intentional goal and approach to improve ecological uplift
- → Target headcuts, knickpoints, concrete channels, buried streams, headwaters, and disconnected floodplain-stream systems for ecological uplift.

Key Findings

The fundamental finding of the workshop was that often the primary goal of stream restoration projects is not to improve ecological uplift and therefore these projects often do not improve aquatic macroinvertebrate or fish communities

The outcome of stream restoration monitoring has revealed that while geomorphic and hydrodynamic functions of stream restoration projects may be achieved, ecological stream function improvements remain elusive.

It is also likely that current understanding of stressors and drivers of stream ecosystem health is insufficient, and that reach-scale restoration focused on geomorphic restoration is not removing the actual sources of stream health impairment that may arise in the upstream watershed.

Do No Harm. Projects that may risk resources in higher-quality streams should be avoided

Theme 1: Recommendations to achieve better outcomes from stream restoration

- •<u>If improved ecological functions (ecological uplift) are a main goal, then explicitly identify them and make them a goal, and use appropriate restoration design approaches to achieve that goal, and monitor those restoration outcomes.</u>
- •Identify the stressors to stream ecosystem health prior to restoration so that management approaches are likely to alleviate those stressors.
- •Consider the appropriate historical and contemporary conditions and processes that define the restoration potential of the stream in order to identify project goals, design approach, and assessment of sustainable outcomes.
- •Focus on holistic ecosystem condition and resilience, not only geomorphic stabilization, and allow sufficient dynamic change to promote stream evolution that optimizes ecological functional uplift and dynamic habitats at a rate that doesn't adversely impact biological and water quality resources.
- •Avoid harm. Target stream restoration for locations with more strongly disturbed stream reaches, use approaches that are more likely to address stream ecosystem stressors and generate improved functional uplift, and avoid harming higher quality streams.

Theme 2: Policy issues that impact outcomes of stream restoration

- Most stream restoration projects for the Chesapeake Bay TMDL have the primary goal of nutrient and sediment reduction to the Bay, but do not currently incentivize funding or prioritization for local stream biotic uplift.
- •FEMA rules discourage changing (increase or decrease) flood levels, restricting the rewetting of the riparian corridor and floodplain and potentially limiting functional uplift.
- •Long-term monitoring of holistic ecosystem outcomes from restoration, with clear linkage to project goals and objectives, could be incentivized in order to support adaptive management.
- •Current performance standards for stream restorations encourage relatively static channels. For improved biotic uplift, success criteria could be allowed to evolve over time, as appropriate for project goals, to allow for dynamic stream ecosystems.
- •Conflicting policies, funding availability, and funding source requirements can lead to divergence in restoration goals and objectives across jurisdictions.

Theme 3: Recommendations to improve assessments of stream restoration outcomes

- •Choose metrics of stream response to restoration that evaluate the project's goals and objectives.
- •Assess restoration outcomes to project goals using multiple metrics of stream ecosystem health (such as multiple taxonomic groups, ecological processes, human use and engagement, socioeconomics, the riparian zone, and functional processes) and a study design to test hypotheses and assess project goals and objectives.
- •Additional long-term focused monitoring is needed to understand and adaptively manage restoration outcomes.
- •Assessment of restoration outcomes should consider the possibility of differing time lags of the response times of different stream ecosystem health metrics to project implementation.

Theme 4: High priority science gaps

- Improved scientific understanding and predictions of stressors to the stream ecosystem are needed at the spatial scale of individual stream reaches.
- •Research is needed to identify the optimal amount of dynamic geomorphic change for various stream ecosystem attributes.
- •The terminology of "stream restoration" could be refined to be more specific of actual management goals, objectives, and practices of each project in order to better communicate project intentions.
- •Additional long-term monitoring of ecosystem responses to restoration is needed beyond regulatory and permit requirements, including the pre-restoration period.
- •Publicly available databases of stream restoration project goals, objectives, implementation information, and assessed outcomes are needed that are comprehensive and follow data usability guidelines.
- •Review and development of suggested best approaches and methods for assessing restoration outcomes in order to facilitate consistent, standardized, and effective evaluation techniques.

Summary

If improved ecological functions (ecological uplift) are a main goal, then explicitly identify them and make them a goal, and use appropriate restoration design approaches to achieve that goal, and monitor those restoration outcomes.

Improved scientific understanding and predictions of stressors to the stream ecosystem are needed at the spatial scale of individual stream reaches.

