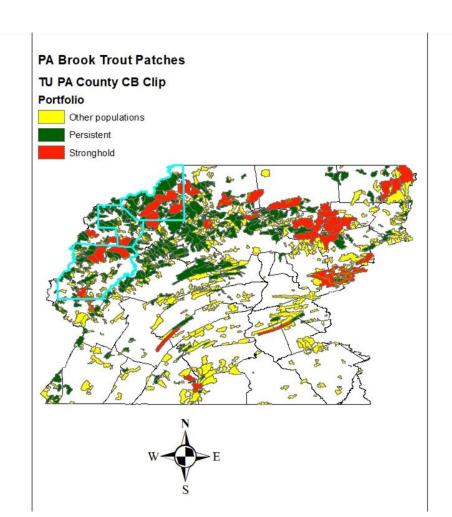

Habitat GIT Spring Meeting May 01, 2024

Brook Trout

Katie Ombalski Woods and Waters Consulting

Dan Goetz MD DNR

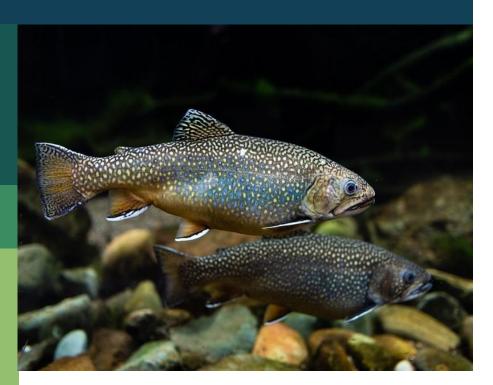
Co-Chairs, Brook Trout Workgroup


Continuing Projects

2022 GIT Funded Project: Facilitating Brook Trout Outcome Attainability through Coordination with CBP Jurisdictions and Partners

- Trout Unlimited (Shawn Rummel)-Eastern Brook Trout Joint Venture (Lori Maloney)
- Collect and compile existing data from stakeholders and analyze monitoring and implementation data necessary to adequately track progress. Final Report Due July 31st
- Will provide full presentation at Fall meeting.

Management Board


- Presented new strategy for engaging local jurisdictions and partners to increase brook trout conservation efforin stronghold areas
 - Considering Fall STAC funding proposal
- MB Supported: Working with MD (proposed: Garrett and Baltimore Counties) and PA (proposed: Potter, Clearfield, and Cameron)
- Awaiting threats assessment from selected counties-2022 GIT Project

Priority Practices for Outcome Attainment

- Increase Habitat Occupancy (i.e., net gain)
 - Restore streams polluted by Acid Mine Drainage (AMD)
 - Treat priority AMD sites that can quickly be repatriated by nearby Brook Trout populations
 - Often in Environmental Justice Areas
- Improve Aquatic Organism Passage (AOP)
 - Culvert replacements and dam removals
- Protect and Increase Resiliency of Existing Populations (i.e., no net loss)
 - Conserve stronghold and persistent Brook Trout patches
 - Conservation easements and land acquisitions Local zoning ordinances
- Increase forested cover in stronghold and persistent Brook Trout patches (≥75% forested threshold)
 - Riparian buffer implementation
 - Legacy mine land reforestation

Work Plan and Management Strategy

Work Plan- Condensed strategies from 20+ down to nine

- New Focus- Local partnerships/scaling up conservation
 - Groundwater and climate change
 - 6PPD-q???

Management Strategy- Needs a full update/revision.

 Waiting on states to submit brook trout catchment data to EBTJV

2024 GIT Proposal

Investigating the Potential for and Presence of 6PPD-Q in Brook Trout Habitat

Table 1. Reported 6PPD-quinone LC₅₀ concentrations (50% observed mortality) of salmonids.

Species	LC₅₀ (μg/L)	Test duration (h)	Toxicit Key
Coho salmon (Oncorhynchus kisutch)	0.04, ²⁴ 0.08, ²⁵ 0.095 ²	24	Highe
White-spotted char (Salvelinus leucomaenis pluvius)	0.51 26	24	
Brook trout (Salvelinus fontinalis)	0.59 ³	24	
Rainbow trout/steelhead (Oncorhynchus mykiss)	0.64, ²⁹ 1.0, ³ 2.26 ⁵	96	
Chinook salmon (Oncorhynchus tshawytscha)	67.3 ²⁴ , 82.1 ²⁵	24	
Sockeye salmon (Oncorhynchus nerka)	Not acutely toxic at 50 ²⁵	24	Lower
Atlantic salmon (Salmo salar)	Not acutely toxic at 12.2 ²⁸	48	
Brown trout (Salmo trutta)	Not acutely toxic at 12.2 ²⁸	48	
Arctic char (Salvelinus alpinus)	Not acutely toxic at 12.7 ³	24	
Southern Dolly Varden (Salvelinus curilus)	Not acutely toxic at 3.8 ²⁶	48	
Cherry salmon (Oncorhynchus masou masou)	Not acutely toxic at 3.5 ²⁶	48	

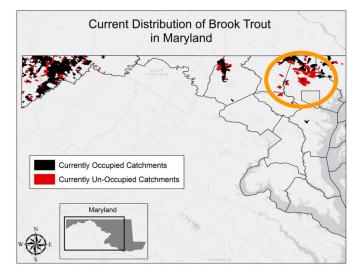


Figure 4. Current (2018) distribution of brook trout in Maryland at the catchment scale.

Publications

- Kessler, K., K.M. Rogers, C. Marsh, and N.P. Hitt. In press. Karst terrain promotes thermal resiliency in headwater streams.
 Proceedings of the West Virginia Academy of Science
- Hitt, N. P., Rogers, K. M., Kessler, K. G., Briggs, M. A., & Fair, J. H. (2023). Stabilising effects of karstic groundwater on stream fish communities. Ecology of Freshwater Fish, 00, 1–14. https://doi.org/10.1111/eff.12705

Publications

- White, S. L., Rash, J. M., & Kazyak, D. C. (2023). Is now the time? Review of genetic rescue as a conservation tool for brook trout. Ecology and Evolution, 13(5), e10142.
- White, S. L., Rash, J. M., & Kazyak, D. C. (2023). Is now the time? Review of genetic rescue as a conservation tool for brook trout. Ecology and Evolution, 13(5), e10142.
- Smith, R. J., Kazyak, D. C., Kulp, M. A., Lubinski, L. A., & Fitzpatrick, B. M. (2024) Genetic structure of restored Brook Trout populations in the Southern Appalachian Mountains indicates successful reintroductions. Conservation Genetics. https://doi.org/10.1007/s10592-024-01620-y

Publications

- Data Releases
 - Hitt, N.P. 2023. Brook trout abundance in streams across southern Appalachia from 1958-2021. U.S. Geological Survey data release
 - Hitt, N.P. 2023, Conductivity and temperature data for selected springs in the Potomac River headwaters from 2021-2023: U.S. Geological Survey data release

