
4D Interpolator – But wait! There's more! Follow-up from the Phase 7 update to the WQGIT meeting.

Peter Tango and Rebecca Murphy
Co-chairs: Bay Oxygen Research Group
WQGIT 3/25/2024

Structure of the 4D water quality interpolator in-progress

Goal statement for new interpolator

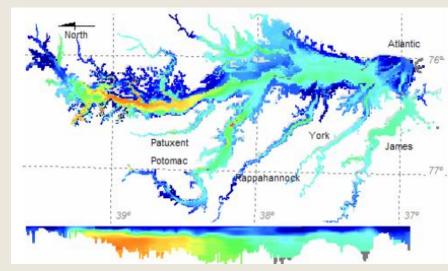
To develop a spatial-and-temporal interpolation tool for water quality monitoring data collected in the tidal waters of the Chesapeake Bay, thus enabling the evaluation of both long- and short-duration water quality criteria.

Specifically, the tool should be able to:

- Interpolate observed dissolved oxygen in space and time ("4D"),*
- Provide statistical estimates of uncertainty,
- Reproduce daily and hourly variability of the data, and
- Allow for post-processing of the interpolation output into designated uses (DU).

^{*}Note: Focus on development so far has been on dissolved oxygen, but ultimately chlorophyll a and clarity may be evaluated as well.

Current 3D interpolation


- Uses **inverse-distance weighting** of observations from long-term fixed stations, plus additional data as possible.
- **Temporal: snapshots,** generally using data collected within a week or two

Spatial:

- Horizontal: Grid 1km x 1km in mainstem, finer (50m) in tribs
- Vertically: Interpolation are done horizontally for every 1m in depth, and stacked to get 3d results

Pycnocline:

- An upper and lower pycnocline depth are interpolated horizontally as well
- 3D DO is split in DUs based on pycnocline

VOL3d program output, Bahner 2006

Current 3D interpolation

- Uses **inverse-distance weighting** of observations from long-term fixed stations, plus additional data as possible.
- Temporal: snapshots, generally using data collected within a week or two

Spatial:

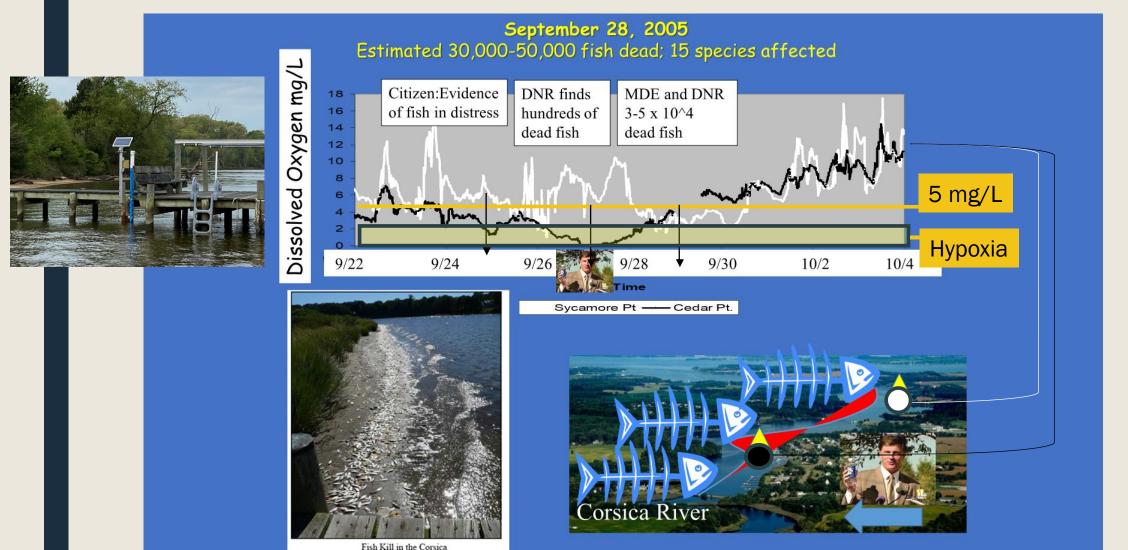
- Horizontal: Grid 1km x 1km in mainstem, finer (50m) in tribs
- Vertically: Interpolation are done horizontally for every 1m in depth, and stacked to get 3d results

Pycnocline:

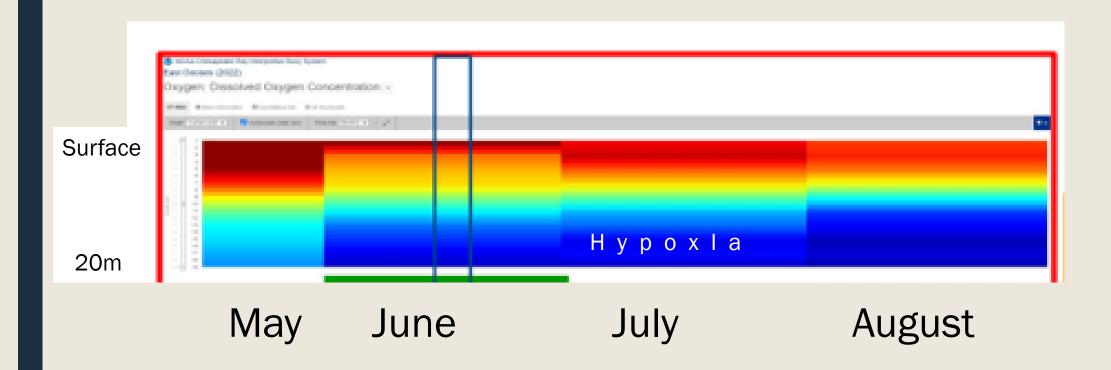
- An upper and lower pycnocline depth are interpolated horizontally as well
- 3D DO is split in DUs based on pycnocline

This is a key limitation.

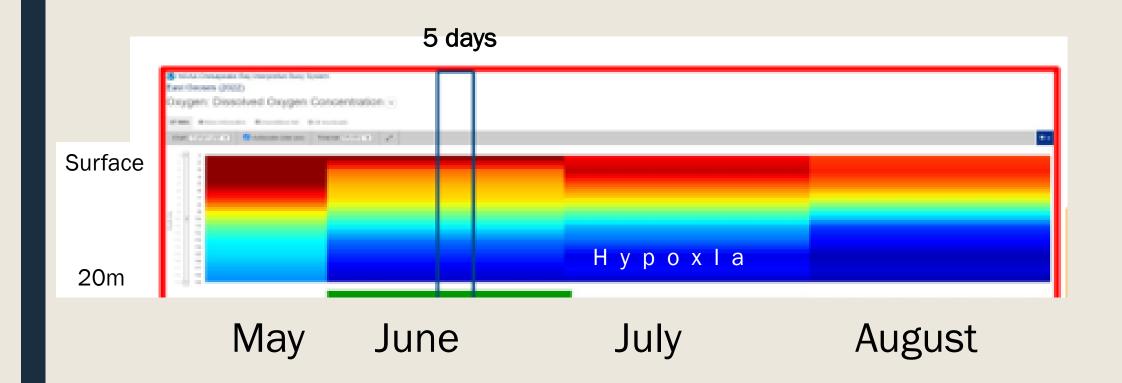
We need to interpolate in

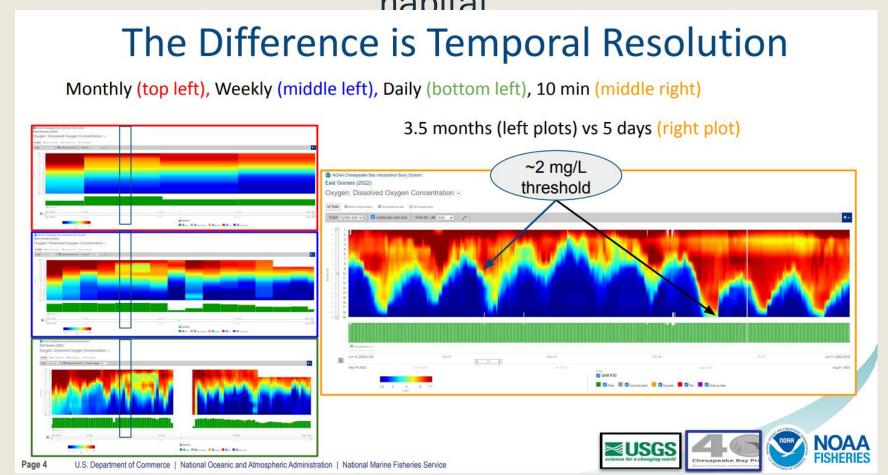

time (1-D) as well as

space (3-D) to evaluate all

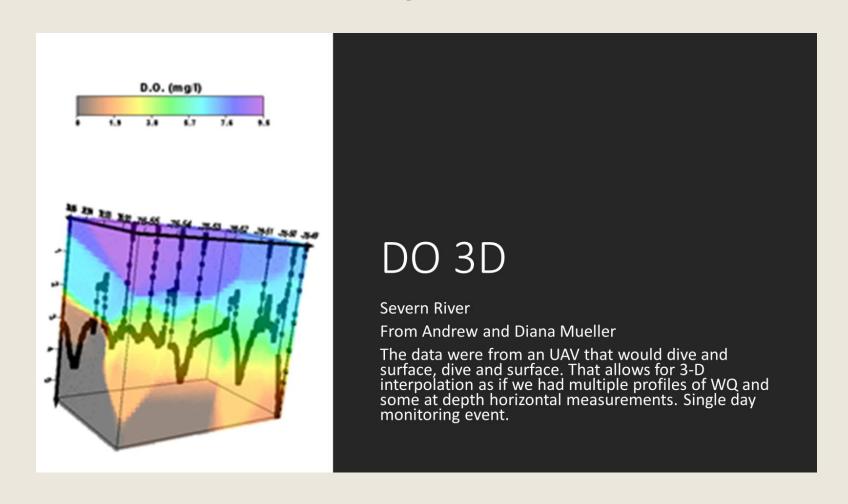

WQ criteria = "4-D"

1-dimensional assessment of water quality.


One depth, through time. High temporal resolution, 13 days. Catching the moment of a Corsica River, MD fish kill (2005).


1 sample a month to estimate conditions makes a monitoring site look like this:

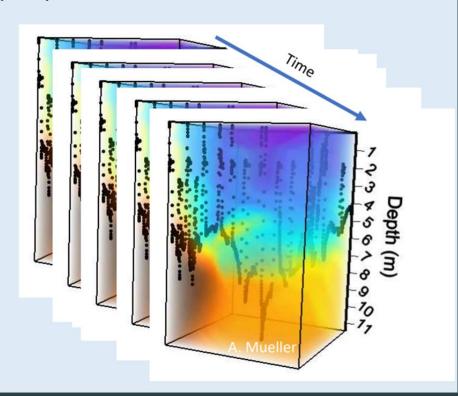
1 sample a month to estimate a 30-day mean condition looks like this


2-Dimensional improvement with new depth specific, water column data. More accurate information to inform criteria assessment, characterize habitat

2-Dimensional improvement with new depth specific, water column data. More accurate information to inform criteria assessment, characterize

1 sampling cruise in the bay allows us to compute a 3-D picture estimating habitat conditions as a snapshot volume in time

Interpolating 3D volume through time = 4D.


We fill in the time voids to get at short duration d.o. criteria assessment, high temporal and spatial habitat assessment.

4D Interpolator Tool Development

Decision-support needs: Improve water quality habitat characterization and assessment

Varied data resources are desired to feed a monitoring-based 4-D assessment.

 The Bay Oxygen Research Group formed in 2021 and started development of a 4-dimensional interpolator for Chesapeake Bay.

Purpose: Build a tool for more complete criteria assessment

DO criteria that currently can be evaluated with existing approaches and data

Table 1. Chesapeake Bay dissolved oxygen criteria.

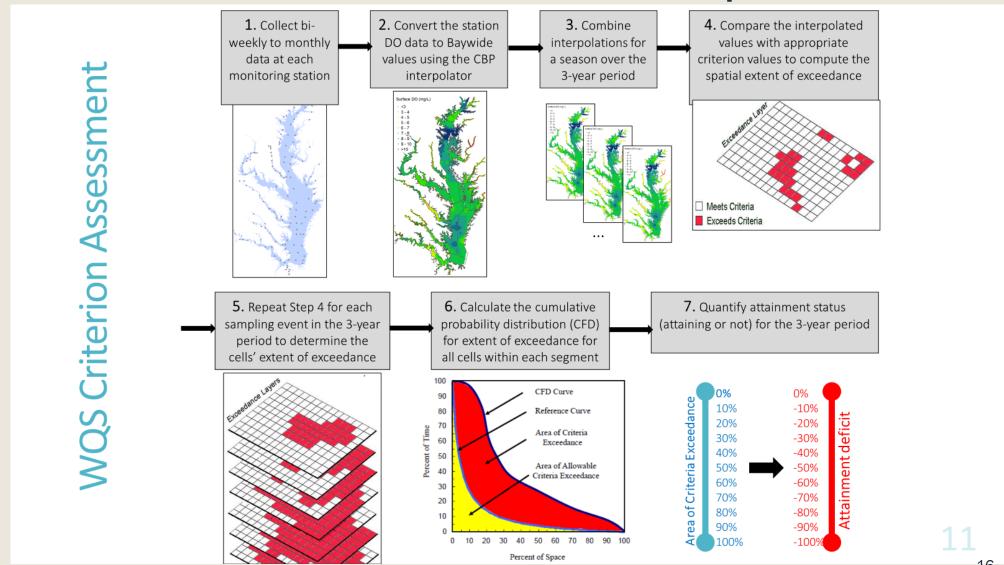
Designated Use	Criteria Concentration/Duration	Protection Provided	Temporal Application		
Migratory fish spawning and nursery use	7-day mean \geq 6 mg liter ⁻¹ (tidal habitats with 0-0.5 ppt salinity)	Survival/growth of larval/juvenile tidal-fresh resident fish; protective of threatened/endangered species.	February 1 - May 31		
	Instantaneous minimum ≥ 5 mg liter ⁻¹	Survival and growth of larval/juvenile migratory fish; protective of threatened/endangered species.			
	Open-water fish and s	June 1 - January 31			
Shallow-water bay grass use	Open-water fish and shellfish designated use cr	Year-round			
Open-water fish and shellfish use	30-day mean ≥ 5.5 mg liter ⁻¹ (tidal habitats with 0-0.5 ppt salinity)	Growth of tidal-fresh juvenile and adult fish; protective of threatened/endangered species.	V		
	30-day mean ≥ 5 mg liter ⁻¹ (tidal habitats with >0.5 ppt salinity)	Growth of larval, juvenile and adult fish and shellfish; protective of threatened/endangered species.	Year-round		
	7-day mean ≥ 4 mg liter ⁻¹	Survival of open-water fish larvae.			
	Instantaneous minimum ≥ 3.2 mg liter ⁻¹	Survival of threatened/endangered sturgeon species. ¹			
Deep-water seasonal fish and shellfish use	30 -day mean ≥ 3 mg liter ⁻¹	Survival and recruitment of bay anchovy eggs and larvae.			
	1-day mean ≥ 2.3 mg liter ⁻¹	Survival of open-water juvenile and adult fish.	June 1 - September 30		
	Instantaneous minimum ≥ 1.7 mg liter ⁻¹				
	Open-water fish and s	October 1 - May 31			
Deep-channel	Instantaneous minimum ≥ 1 mg liter ⁻¹	June 1 - September 30			
seasonal refuge use	Open-water fish and s	October 1 - May 31			

¹ At temperatures considered stressful to shortnose sturgeon (>29°C), dissolved oxygen concentrations above an instantaneous minimum of 4.3 mg liter⁻¹ will protect survival of this listed sturgeon species. From EPA 2003 Ambient Water Quality Criteria

*Note a 30-day mean 6 mg/L MSN value is evaluated for purpose of the WQ indicator.

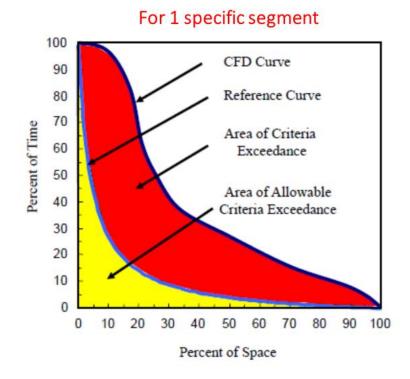
Water Quality Standards Indicator

The indicator provides an estimate of what a full accounting (i.e., hundreds of individual decisions we do not have data for) for water quality criteria will show us.


New data + New interpolator:

Building a tool for more complete criteria assessment

Designated Use	Criteria Concentration/Duration	Temporal Application				
Migratory fish	7-day mean ≥ 6 mg liter ⁻¹ (tidal habitats with 0-0.5 ppt salinity)	Survival/growth of larval/juvenile tidal-fresh resident fish; protective of threatened/endangered species.	February 1 - May 31			
spawning and nursery use	Instantaneous minimum ≥ 5 mg liter ⁻¹	Survival and growth of larval/juvenile migratory fish; protective of threatened/endangered species.				
	Open-water fish and	June 1 - January 31				
Shallow-water bay grass use	Open-water fish and shellfish designated use	criteria apply	Year-round			
Open-water fish and shellfish use	30-day mean ≥ 5.5 mg liter ⁻¹ (tidal habitats with 0-0.5 ppt salinity)					
	30-day mean ≥ 5 mg liter ⁻¹ (tidal habitats with >0.5 ppt salinity)	Growth of larval, juvenile and adult fish and shellfish; protective of threatened/endangered species.	Year-round			
	7-day mean ≥ 4 mg liter ⁻¹					
	Instantaneous minimum ≥ 3.2 mg liter ⁻¹					
	30-day mean ≥ 3 mg liter ⁻¹	Survival and recruitment of bay anchovy eggs and larvae.				
Deep-water seasonal fish and	1-day mean ≥ 2.3 mg liter ⁻¹	Survival of open-water juvenile and adult fish.	June 1 - September 30			
shellfish use	Instantaneous minimum ≥ 1.7 mg liter ⁻¹					
	Open-water fish and	October 1 - May 31				
Deep-channel	Instantaneous minimum ≥ 1 mg liter ⁻¹	June 1 - September 30				
seasonal refuge use	Open-water fish and	October 1 - May 31				

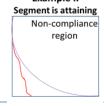

¹ At temperatures considered stressful to shortnose sturgeon (>29°C), dissolved oxygen concentrations above an instantaneous minimum of 4.3 mg liter⁻¹ will protect survival of this listed sturgeon species.

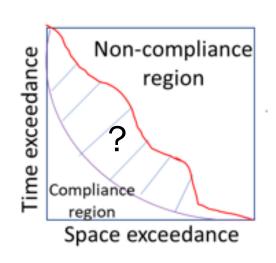
Reminder of our assessment procedure

WQS Criterion Assessment

- 3. Determine the compliance status of each cell in the segment volume.
- 4. Produce a percent compliance matrix with sample period and percent space in compliance.
- 5. Rank the percent compliance in space from greatest to lowest values and assign percent of time associated with the compliance values.
- 6. Plot ranked percent space (x-axis) against percent time (y-axis).
- 7. Evaluate compliance against the reference curve.

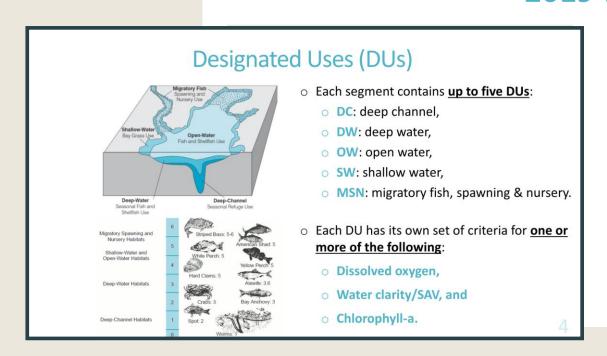
Source: Tango and Batiuk (2013)

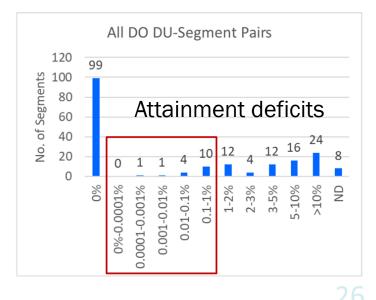

Breakdown of Attainment Status by Threshold 2019-2021


Example I. Segment is attaining

Segments attaining

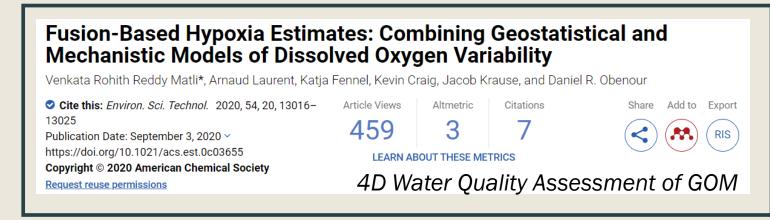
Segments approaching Attainment expressed as % away from attainment


<u>Deficit</u>	<u>Count</u>
0%	?
0%-0.0001%	?
0.0001-0.001%	?
0.001-0.01%	?
0.01-0.1%	?
0.1-1%	?
1-2%	?
2-3%	?
3-5%	?
5-10%	?
>10%	?
ND	?



Nearly 200 segment-designated use-dissolved oxygen criterion assessments evaluated: Some are fractionally close to attainment

Examples: Breakdown of Attainment Status by Threshold 2019-2021



Lessons on benefits of 4D dissolved oxygen assessment

The Gulf of Mexico dead zone

- More accurate representation of conditions, improved confidence in assessment
- Reduced hypoxic area uncertainties by 11% on average

 Reduced hypoxic area uncertainties up to 40% in months with sparse sampling.

Thank you's! Development Process & Community updates

1. Development team

- CBP staff, contractors, EPA researchers, state partners and academic future users
- Provides guidance and feedback on development details
- Meets monthly

2. Bay Oxygen Research Group (larger):

- Development team plus broader community of interested parties from partnership
- Provides feedback on big-picture impacts
- Approximately every 3 months

3. Collaboration among workgroups: Modeling workgroup, CAP workgroup, STAR Hypoxia Collaborative

- Overlapping team members and update presentations at these meetings will continue for coordination and feedback
- **4. STAC Review:** Coordination for 2026 with Phase 7 development timeline

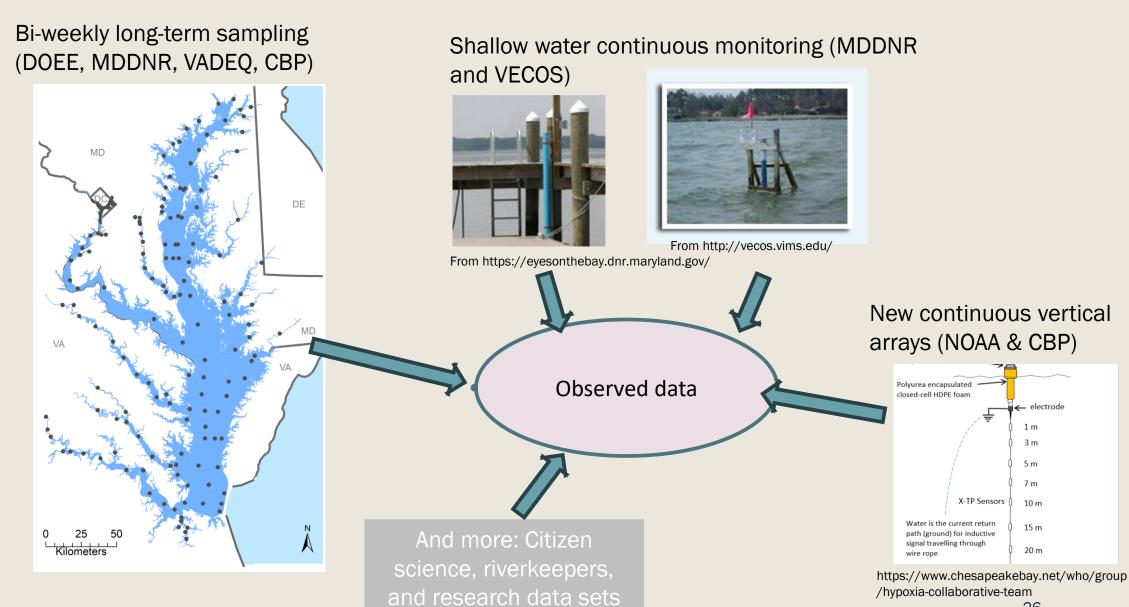
4-D interpolator development timeline

<u></u>																								
Draft January 2024									_	_														
Priority categories for 2024																								
Calendar Year	2022			2023				2024			2025				2026				2027					
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
	Jan-	Apr-	Jul-	Oct-	Jan-	Apr-	Jul-	Oct-	Jan-	Apr-	Jul-	Oct-	Jan-	Apr-	Jul-	Oct-	Jan-	Apr-	Jul-	Oct-	Jan-	Apr-	Jul-	Oct-
Calendar Quarter																Dec								
Project Year	Year 1			Year 2				Year 3		Year 4		Year 5				Year 6								
1. Development-daily																								
estimates																								
2. Develoment-hourly																								
estimates																								
3. Development - shallow																								
water																								
4. Development - GIS tasks																								
5. Development -combined																								
daily & hourly																								
6. Development-criteria																								
evaluation																								
7. Software																								
8. Documenting																								
9. Training																							<u> </u>	
10 // 12 /																								
10. Year of Review																								
44. On south and																								
11. Operational																								

Requirements for an Updated Chesapeake Bay Interpolator

- New features (compared to current interpolation approach):
 - Temporal and spatial interpolation of water quality parameters in Chesapeake Bay
 - Statistical estimates of uncertainty in the estimates
 - Reproduce the short-term variability in the data
 - Integrated vertical interpolation technique

Requirements for an Updated Chesapeake Bay Interpolator


New features (compared to current interpolation approach):

- Temporal and spatial interpolation of water quality parameters in Chesapeake Bay
- Statistical estimates of uncertainty in the estimates
- Reproduce the short-term variability in the data
- Integrated vertical interpolation technique

■ Features to retain and update:

- Usability by partner analysts with automation for routine analyses
- Visualization of the results
- Analysis of dissolved oxygen, clarity, and chlorophyll a
- Post-processing to identify regions for each designated use (DU)
- Reasonable spatial extents for interpolation (e.g., not interpolating across land)
- Incorporation of new data streams & types, as available

Combine existing and emerging data sets

26