Progress report on Phase 7 criteria assessment – Water clarity

Richard Tian and modeling team

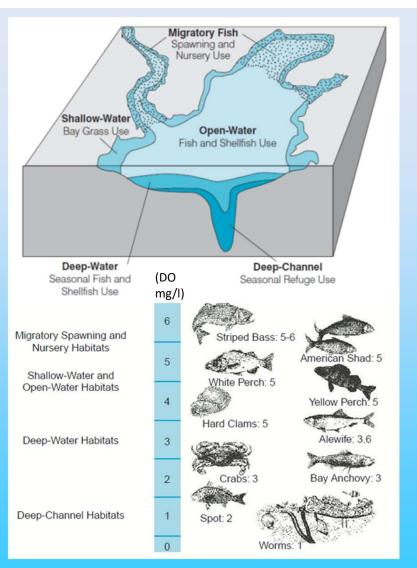
Modeling Quarterly Review Meeting

Annapolis, Oct. 09 2024

Designated Uses (DUs)

Six DUs:

DO DC: deep channel.

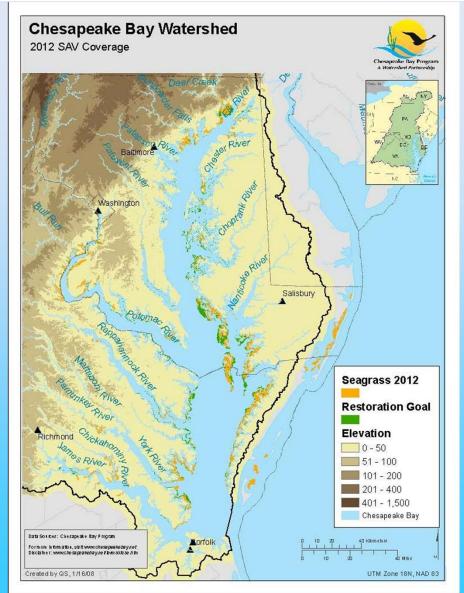

DO DW: deep water.

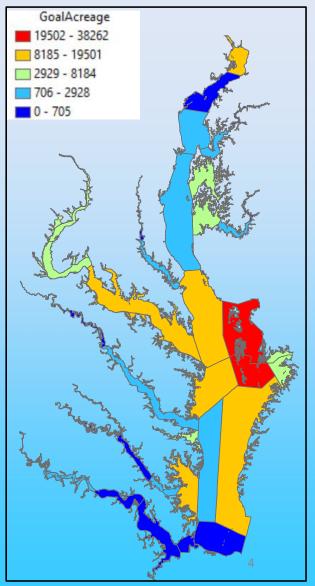
DO OW: open water.

DO MSN: migratory fish spawning and nursery.

Chlorophyll: James and Anacostia rivers.

SAV and Water clarity: Shallow waters.



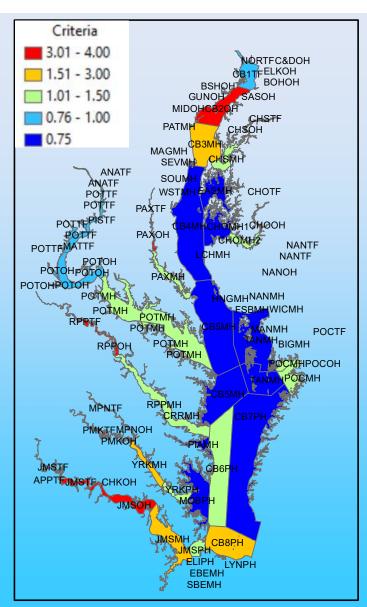

SAV restoration

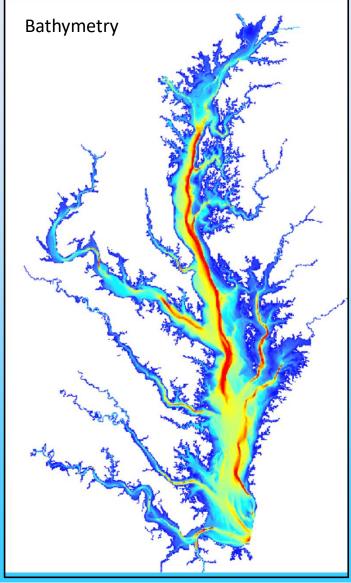
- Tier 1 restoration goal: Restored to the area where SAV has been observed (since 1971-)
- Tier 2 restoration goal: Restored to 1 m depth where SAV can potentially grow.
- Tier 3 restoration goal: Restored to 2 m depth where SAV can potentially grow.

Tier 1 is in practice

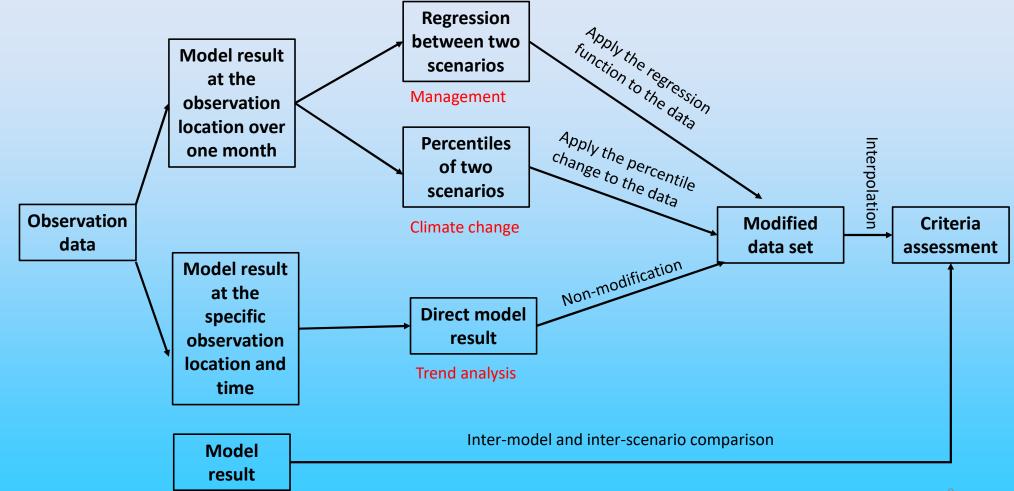
SAV restoration goal

Assessment methods


- Level 1 assessment: Largest SAV acreage of 3yr rolling period
 restoration goal acreage.
- Level 2 assessment: Largest attained water clarity acreage of 3yr rolling period >= 2.5 x restoration goal.
- Level 3 assessment: The sum of SAV and attained water clarity acreage >= 2.5 x restoration goal.


(Model application can only do level 2 assessment)

Examples of 3-levels assessment


	Growning									
	Season									
CBPSEG	Year	TOTAL	SAV Goal*	WCA Goal*	CUSAV	WCA	NSWCA	Level_1?	Level_2?	Level_3?
pmktf	2003	2522	187	468	214	337	310	yes	no	yes
pmktf	2004	2522	187	468	328	408	372	yes	no	yes
pmktf	2005	2522	187	468	563	955	742	yes	yes	yes
yrkph	2008	7138	2793	6982	463	279	180	no	no	no
	hesapeake Bay									
	I Acreage of a									
VCAG = Wat	er Clarity Acres	age Goal (0-	2m)							
VCA = Mean	Annual Acrea	ge Meeting V	Vater Clarity T	hreshold (0-2m))					
ISWCA = Me	an Annual Acr	eage Outsid	e of Current Sa	AV Areas that N	Meet the Water	r Clarity Thr	eshold (0)-2m)		
CUSAVa = To	tal SAV acrea	ge as reporte	ed by Orth et a	l.						
CUSAV = Cur	rent SAV acrea	age (0-2m) a	s used in Leve	el 1 and Level 2	attainment ar	alysis, whe	reas Orth	et al. num	bers are use	d to determi
	USAVa >= SA									
	/CA >= WCAG									
_	USAV+NSWC		ì							
A TOTAL CONTINUES OF	and the second second								+	

Water clarity (Kd) criteria (m⁻¹)

Methods to modify the data based on model scenarios

SECCHI depth and Kd conversion

kd = 1.45 / secchi

TABLE III-5. Conversion of Secchi depth (SD) to $K_{\rm d}$, Secchi depth equivalences, and percent light at the 1-meter depth for Secchi depths equal to 0.5, 1.0 or 2.0 meters.

Perce	nt light at 1	meter	References	Source	
SD = 0.5	SD = 1.0	SD = 2 m			
m	m				
5.5	23.5	48.4	Batiuk et al. 1992		
3.3	18.3	42.7	Poole and Atkins 1929	Geisen 1990 Duarte 1991	
5.6	23.7	48.7	Holmes 1970	Geisen 1990	
8.2	28.7	53.5	Visser 1970	Geisen 1990	
44.1	49.9	58.9	Weinberg 1976	Geisen 1990	
21.8	34.9	48.4	Pellikaan 1976	Geisen 1990	
5.3	23.0	48.0	Duarte and Kalff 1987		
5.4	23.0	48.0	Chambers and Kalff 1985		
1.8	13.3	36.4	Middleboe and Markager 1997		
2.2	15	38.7	Vollenweider 1971	Vincente and Rivera 1982	
3.3 to 5.7	18.1 to 23.9	42.5 to 48.9	Backman and Barilotti 1976	Vincente and Rivera 1982	
1.0	10.0	31.7	Chambers and Kalff 1985		
4.9	22.1	47.0	Megard and Berman 1989	Dunton 199	
	SD = 0.5 m 5.5 3.3 5.6 8.2 44.1 21.8 5.3 5.4 1.8 2.2	SD = 0.5 m SD = 1.0 m 5.5 23.5 3.3 18.3 5.6 23.7 8.2 28.7 44.1 49.9 21.8 34.9 5.3 23.0 5.4 23.0 1.8 13.3 2.2 15 3.3 to 5.7 18.1 to 23.9 1.0 10.0	m m 5.5 23.5 48.4 3.3 18.3 42.7 5.6 23.7 48.7 8.2 28.7 53.5 44.1 49.9 58.9 21.8 34.9 48.4 5.3 23.0 48.0 1.8 13.3 36.4 2.2 15 38.7 3.3 to 5.7 18.1 to 23.9 42.5 to 48.9 1.0 10.0 31.7	SD = 0.5	

Water clarity assessment for model scenarios

Scenario Nitrogen	name loading	Calib 325TN	Phase7_w ip 183TN	Phase6_w ip 183TN
Phosphor ous Start	loading	21.9TP 1993_199 5	11.9TP 1993_199 5	11.9TP 1993_199 5
Cbseg	State		WC_S_pol	
СВ6РН	VA	0.00%	0.00%	0.00%
СВ7РН				0.000
CD/FII	VA	56.82%	37.84%	45.04%
СВЯРН	VA VA	56.82% 0.00%	07.10.110	
		0.01.02.10	07.10.110	
СВ8РН	VA	0.00%	0.00%	0.00%

Scenario	name			Phase6_wip	
Nitrogen	loading	325TN	183TN	183TN	
Phosphorous	loading	21.9TP	11.9TP	11.9TP	
Start	End	1993_1995	1993_1995	1993_1995	
Cbseg	State	WC_S_mes	WC_S_mes	WC_S_mes	
CB1TF	MD	100.00%	100.00%	100.00%	
CB2OH	MD	0.00%	0.00%	0.00%	
CB3MH	MD	0.00%	0.00%	0.00%	
CB4MH	MD	100.00%	100.00%	100.00%	
CB5MH	MD	100.00%	95.03%	82.60%	
CHOMH1	MD	100.00%	100.00%	100.00%	
CHOMH2	MD	71.04%	0.00%	78.66%	
СНООН	MD	0.00%	0.00%	0.00%	
CHSTF	MD	100.00%	0.00%	100.00%	
CHSOH	MD	91.98%	0.00%	0.00%	
CHSMH	MD	0.00%	0.00%	0.00%	
EASMH	MD	100.00%	100.00%	100.00%	
JMSMH	MD	0.00%	0.00%	0.00%	
JMSOH	MD	0.00%	0.00%	0.00%	
JMSTF	MD	0.00%	0.00%	0.00%	
JMSTFL	MD	0.00%	0.00%	0.00%	
JMSTFU	MD	0.00%	0.00%	0.00%	
MPNOH	MD	0.00%	0.00%	0.00%	
MPNTF	MD	0.00%	0.00%	0.00%	
PAXMH	MD	36.48%	1.70%	7.75%	
PAXOH	MD	0.00%	0.00%	0.00%	
PAXTF	MD	39.61%	39.61%	39.61%	
PIAMH	MD	100.00%	100.00%	100.00%	
PMKOH	MD	0.00%	0.00%	0.00%	
PMKTF	MD	0.00%	0.00%	0.00%	
POCMH	MD	71.01%	0.00%	94.00%	
мрсмн	MD	100.00%	0.00%	100.00%	
VPCMH	MD	64.75%	0.00%	92.71%	
РОТМН	MD	6.72%			
РОТОН	MD	100.00%	A SECTION	17070-070	
POTTF	MD	100.00%			
RPPMH	MD	0.00%			
RPPOH	MD	0.00%			
RPPTF	MD	0.00%	0,00%	0.00%	
TANMH	MD	100.00%			
YRKMH	MD	0.00%	0.00%	0.00%	
VA5MH	MD	100.00%			
MD5MH	MD	100.00%	100.00%	10.0000000	

Water clarity assessment for model scenarios

Scenario	name	Calib	Phase7_wip	Phase6_wip
Nitrogen	loading	325TN	183TN	183TN
Phosphorous	loading	21.9TP	11.9TP	11.9TP
Start	End	1993_1995	1993_1995	1993_1995
Cbseg	State	WC_S_mes	WC_S_mes	WC_S_mes
CB1TF	MD	100.00%	100.00%	100.00%
CB4MH	MD	100.00%	100.00%	100.00%
СВ5МН	MD	100.00%	95.03%	82.60%
CHOMH1	MD	100.00%	100.00%	100.00%
CHOMH2	MD	71.04%	0.00%	78.66%
CHSTF	MD	100.00%	0.00%	100.00%
CHSOH	MD	91.98%	0.00%	0.00%
EASMH	MD	100.00%	100.00%	100.00%
PAXMH	MD	36.48%	1.70%	7.75%
PAXTF	MD	39.61%	39.61%	39.61%
PIAMH	MD	100.00%	100.00%	100.00%
POCMH	MD	71.01%	0.00%	94.00%
МРСМН	MD	100.00%	0.00%	100.00%
VPCMH	MD	64.75%	0.00%	92.71%
РОТМН	MD	6.72%	0.00%	0.00%
РОТОН	MD	100.00%	100.00%	100.00%
POTTF	MD	100.00%	98.39%	100.00%
TANMH	MD	100.00%	100.00%	97.93%
YRKMH	MD	0.00%	0.00%	0.00%
VA5MH	MD	100.00%	89.64%	77.99%
MD5MH	MD	100.00%	100.00%	86.85%

Certain segments have <=2m area smaller than the water clarity goal

Areas of Segments and Split Segments to 2 Meters in Depth and their Relationship to the Water Clarity Goal								
CBPSEG	ACRES to 2m	GOAL ACRES	CBPSEG	ACR				

CBPSEG	ACRES to 2m	GOAL ACRES	CBPSEG	ACRES to 2m	GOAL ACRES
ANATF -DC	273		MPNOH	554	0
ANATF -MD	54		MPNTF	1,409	213
APPTE	1,603	948	NANMH	7.712	8
BACOH	2,859	0	NANOH	2,053	30
BIGMH1	4,302	5,053	NANTE	0	0
BIGMH2	763	55	NORTF	2,742	223
вонон	1,904	885	PATMH	3,418	973
BSHOH	4,605	875	PAXMH1	5,497	3,648
C&DOH	171	18	PAXMH2	2,206	430
CB1TF1	3,088	1,885	PAXMH3	282	0
CB1TF2	17,820	30,373	PAXMH4	348	3
СВ2ОН	8,787	1,763	PAXMH5	378	5
СВЗМН	4,671	3,425	PAXMH6	82	0
CB4MH	10,630	6,333	PAXOH	2,072	288
CB5MH - MD	15,586	20,675	PAXTF	54	513
CB5MH - VA	14,514	14,514	PIAMH	8,014	8,014
CB6PH	5,569	3,168	PISTF	914	1,973
CB7PH	34,085	34,085	PMKOH	806	0
CB8PH	1,050	28	PMKTF	2,652	468
CHKOH	4,501	1,338	POCMH - MD	5,049	2,193
CHOMH1	20,857	20,460	POCMH - VA	9,368	9,368
CHOMH2	6,833	4,053	POCOH	457	0
СНООН	1,284	180	POCTF	0	0
CHSMH	11,500	7,320	POTMH - MD	32,323	17,720
CHSOH	2,308	193	POTMH - VA	13,481	10,625
CHSTF	870	0	POTOH1 -MD	6,576	3,468
CRRMH	2,611	1,920	РОТОН2	1,079	655
EASMH	20,805	15,523	РОТОН3	2,687	2,883
ELKOH1	3,648	4,610	POTOH - VA	4,851	3,758
ELKOH2	1,377	475	POTTF - DC	1,466	
FSBMH	13,643	493	POTTF - MD	5,958	5,355
GUNOH1	3,540	4,650	POTTF - VA	10,078	5,233
GUNOH2	3,819	1,430	RHDMH	710	150
HNGMH	16,456	19,403	RPPMH	30,108	5,000
JMSMH	26,598 10,944	500 38	RPPOH RPPTF	2,510 4,512	0 165
JMSOH JMSPH	2.402	750	SASOH1	1,772	2.683
JMSTF1	9,947	2,500	SASOH1	1,772	2,083
JMSTF2	2.888	500	SEVMH	2.108	1.138
LCHMH	12.368	10.190	SOUMH	2,108	1,198
LYNPH	3.941	268	TANMH1 - MD	43,558	61,708
MAGMH	2.055	1,448	TANMH - VA	22,064	22.064
MANMH1	8,615	10,735	TANMH2	4.251	185
MANMH2	2.085	148	WICMH	5,911	8
MATTE	1,389	1,980	WSTMH	1.468	595
MIDOH	2,479	2.198	YRKMH	12.715	598
MOBPH	33,990	33,990	YRKPH	6,998	6,982
	05,000	00,000		0,000	0,502

2m acreage less than WC goal 2m acreage equal to WC goal WC goal unkown Certain segments have <=2m area smaller than the water clarity goal

		CI	aiii	y 5'	Jai	
CBPSEG	ACRES to 2m					
BIGMH1	4,302					
CB1TF2	17,820					
CB5MH - MD	15,586					
CB5MH - VA	14,514					
CB7PH	34,085					
ELKOH1	3,648					
GUNOH1	3,540					
HNGMH	16,456	Scenario		Oalib		Phase6_w
MANMH1	8,615		name loading	Calib 325TN	ip 183TN	ip 183TN
MATTF		Phosphor				
MOBPH	33,990	ous	loading	21.9TP	11.9TP	11.9TP
PAXTF		Start	End	1993_199 5	1993_199 5	1993_199
PIAMH	8,014	Start	Liid	J	3	J
PISTF	914	Cbseg	State	WC_S_pol	WC_S_pol	WC_S_pol
POCMH - VA	9,368	СВ6РН	VA ,	0.0004	0.000%	0.0004
РОТОН3	2,687		VA V	0.00% 56.82%	0.00% 37.84%	0.00% 45.04%
SASOH1	1,772		VA	0.00%		0.00%
AL IS AN AN ANNA PORTA OF UNIT AND THE STATE OF		JMSPH	VA ,	0.00%		0.00%
TANMH1 - MD	43,558	МОВРН	VA 1	97.59%	72.63%	97.34%
TANMH - VA	22,064	YRKPH	VA	23.03%	23.03%	23.03%

Scenario	name	Calib	Phase7_wip	Phase6_wip	
Nitrogen	loading	325TN	183TN	183TN	
Phosphorous	loading	21.9TP	11.9TP	11.9TP	
Start	End	1993_1995	1993_1995	1993_1995	
Cbseg	State	WC_S_mes	WC_S_mes	WC_S_mes	
	,				
CB1TF	MD V	100.00%	100.00%	100.00%	
СВ4МН	MD	100.00%	100.00%	100.00%	
СВ5МН	MD √	100.00%	95.03%	82.60%	
CHOMH1	MD	100.00%	100.00%	100.00%	
CHOMH2	MD	71.04%	0.00%	78.66%	
CHSTF	MD	100.00%	0.00%	100.00%	
CHSOH	MD	91.98%	0.00%	0.00%	
EASMH	MD	100.00%	100.00%	100.00%	
PAXMH	MD	36.48%	1.70%	7.75%	
PAXTF	MD $\sqrt{}$	39.61%	39.61%	39.61%	
PIAMH	MD $\sqrt{}$	100.00%	100.00%	100.00%	
POCMH	MD	71.01%	0.00%	94.00%	
МРСМН	MD	100.00%	0.00%	100.00%	
VPCMH	MD	64.75%	0.00%	92.71%	
POTMH	MD	6.72%	0.00%	0.00%	
РОТОН	MD √	100.00%	100.00%	100.00%	
POTTF	MD	100.00%	98.39%	100.00%	
TANMH	MD √	100.00%	100.00%	97.93%	
YRKMH	MD	0.00%	0.00%	0.00%	
VA5MH	MD 🗸	100.00%	89.64%	77.99%	
M D 5MH	MD √	100.00%	100.00%	86.85%	

Message

- Model scenarios can provide Level 2 water clarity assessment based on the delta approach
- Should the water clarity goal be reduced to the maximum available area?