Update on the 4-dimensional interpolator progress

Rebecca Murphy (UMCES) and Peter Tango (USGS)

Bay Oxygen Research Large Group

Feb. 12, 2024

Key input on presentation from:

Elgin Perry (statistics consultant) and Jon Harcum (Tetra Tech)

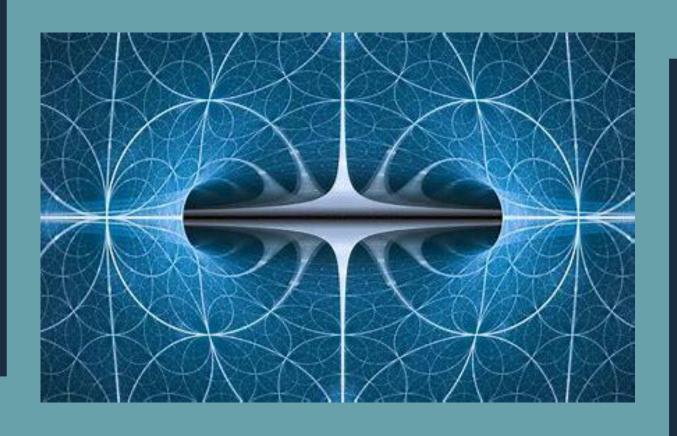
Breck Sullivan (USGS) and August Goldfischer (CRC)

Presentation outline

- Reminder Why a 4D interpolator?
- Data sources being used (more from Jay Lazar in next presentation)
- Daily DO interpolation (Rebecca)
- Hourly DO evaluation (Rebecca)
- Thoughts on feeding into criteria evaluation (Peter)
- Documentation (Peter)

Why a 4D interpolator?

- USEPA (2003) published Ambient Water Quality Criteria for Chesapeake Bay, need for criteria assessment protocols.
- 2007 STAC Workshop: Assessing the feasibility of developing a four-dimensional (4-D) interpolator for use in impaired waters listing assessment


Why is the Chesapeake Bay Program interested in 4d interpolation?

- To allow combining and integrating measurements from numerous disparate datasets
- To generate a more complete interpolation of available data in space and time.
- To improve the ability to evaluate water quality for the 303d listing process.

2007 STAC Workshop consensus

- Sampling frequency (biweekly to monthly) is insufficient
- Spatial resolution of the existing Chesapeake Bay datasets is insufficient
 - for successful extrapolation to four dimensions.

"However, there is an on-going effort among Chesapeake Bay partners to acquire funding to deploy continuous monitoring buoys, which are equipped with vertical profilers in deep water areas of the Chesapeake Bay and tidal tributaries. If these efforts succeed, then the shortcomings of existing datasets will be greatly alleviated."

17 YEARS LATER...WHERE ARE WE TODAY?

Welcome to the
Chesapeake Bay 4D
water quality interpolator
development program!

Bay Oxygen Research Group – Development Team

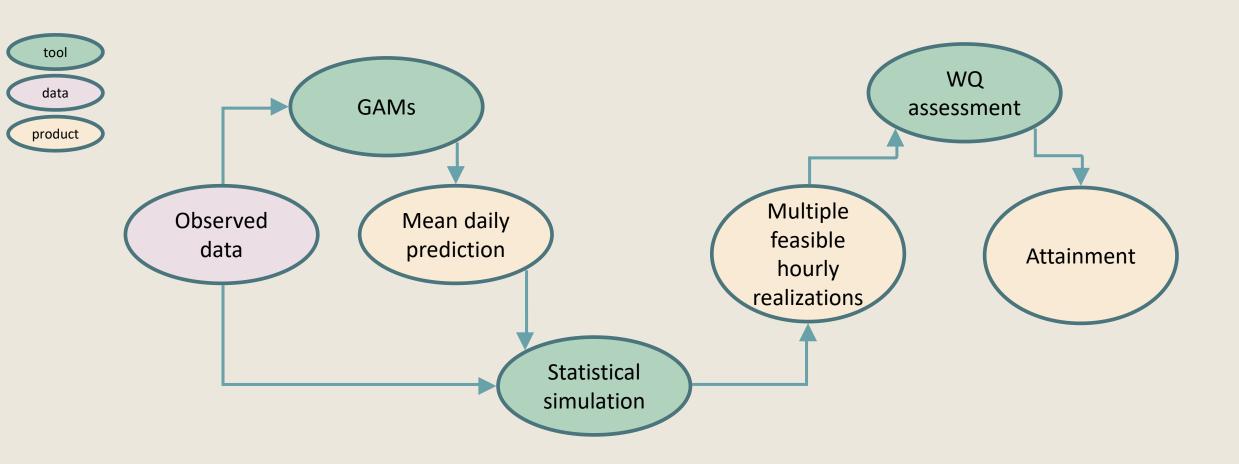
- Coordinators Rebecca Murphy (UMCES) and Peter Tango (USGS)
- STAR Staffer August Goldfischer (CRC)
- Development to-date Elgin Perry (statistician); Jon Harcum and Erik Leppo (Tetra Tech); Angie Wei and Rebecca Murphy (UMCES/CBP)
- Advisory Team
 - Richard Tian (UMCES), Gary Shenk (USGS), Isabella Bertani (UMCES), Jim Hagy (EPA), Breck Sullivan (USGS), Kaylyn Gootman (EPA)
- ORISE Fellow Wes Slaughter, U of MD Ph.D. candidate

4-D interpolator development timeline

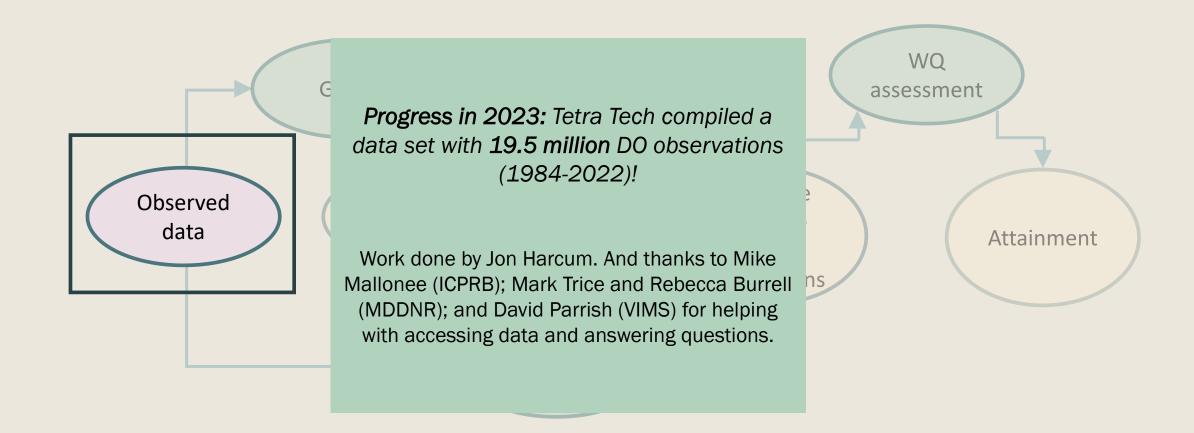
Draft January 2024																								
Priority categories for 2024 are in red																								
Calendar Year	2022				2023				2024				2025				2026				2027			
	Q1	Q2	Q3	Q4																				
	Jan-	Apr-	Jul-	Oct-																				
Calendar Quarter	Mar	Jun	Sep	Dec																				
Project Year		Yea	ar 1			Yea	ar 2			Yea	ar 3			Yea	ar 4			Yea	ar 5			Yea	ar 6	
1. Development-daily																								
estimates																								
2. Develoment-hourly																								
estimates																								
3. Development - shallow																								
water																								
4. Development - GIS tasks																								
5. Development -combined																								
daily & hourly																								
6. Development-criteria																								
evaluation																								
7.0.6																								
7. Software																								
O. Danumantina																								
8. Documenting																								-
9. Training																								
5. Halling																								
10. Year of Review																								
TO. TEAT OF NEVIEW																								
11. Operational																								

Future meeting considerations

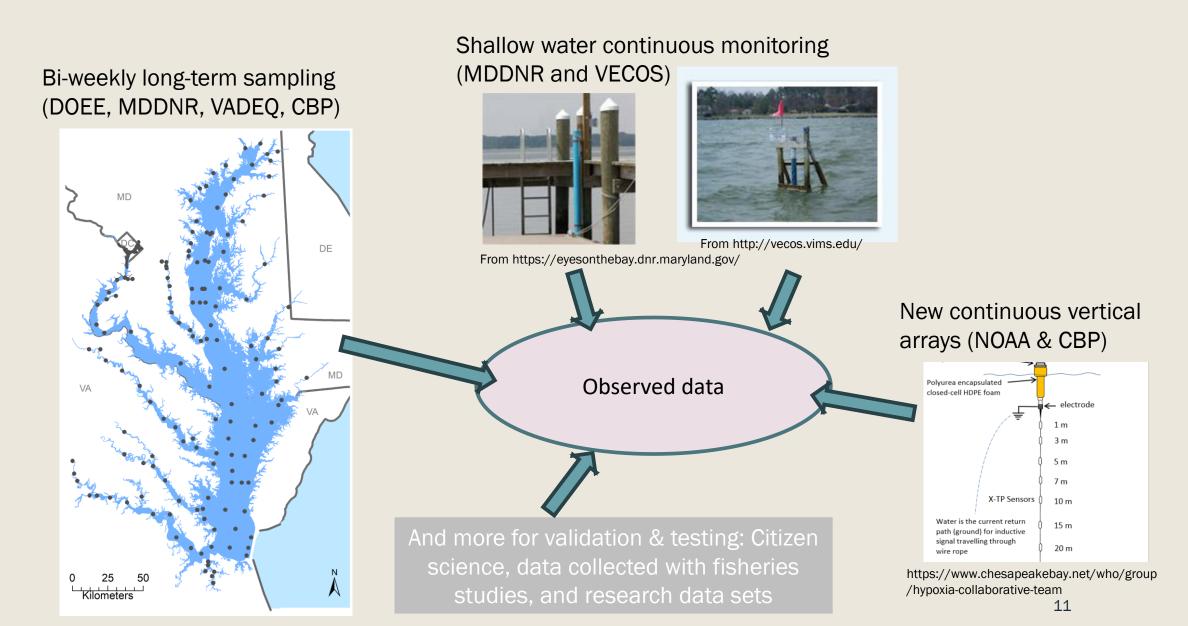
Through 2024-2025 development years:

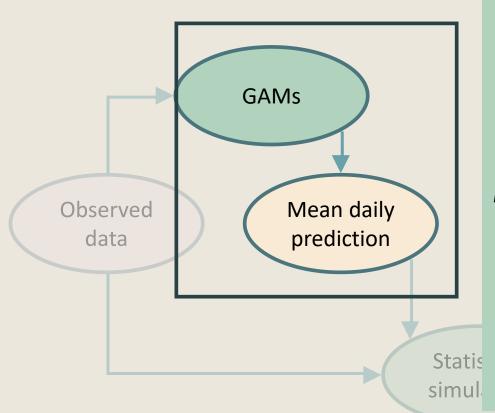

- 1. Bay Oxygen Research Group: This large group of developers, stakeholders, future users, researchers
 - We will meet approximately every 3 months

2. Smaller BORG development group -


- meets monthly 3rd Monday 12:00-12:50
- Currently: CBP staff, contractors, EPA researchers
- We'd like any future users to join the monthly meetings who want to know more details about the technical development

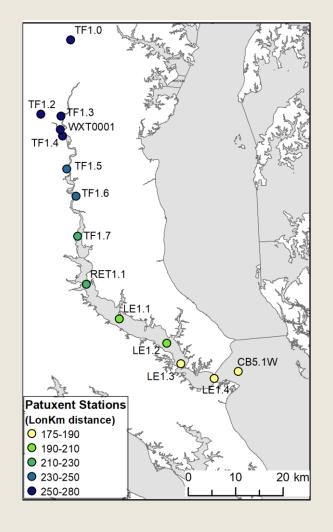
Based on what you hear today, let us know if you or someone in your group should be on the <u>Development Team invite</u>. We'll send a reminder with the minutes.

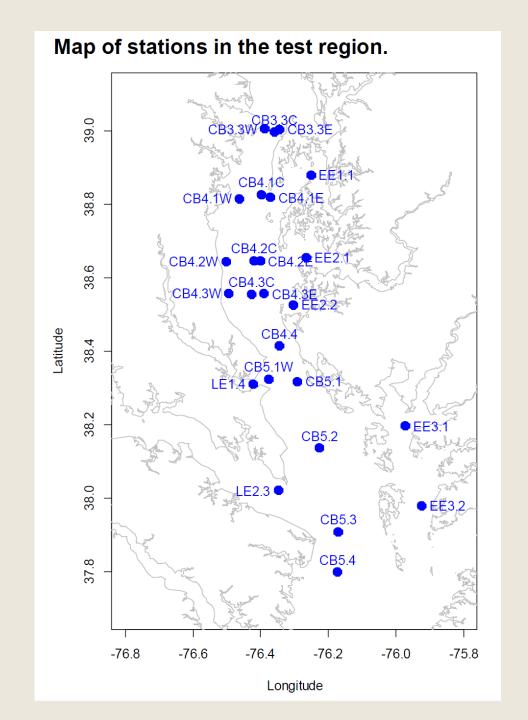

WQ Assessment with 4D interpolator


Full use of the data

Full use of the data

Generalized additive model (GAM):

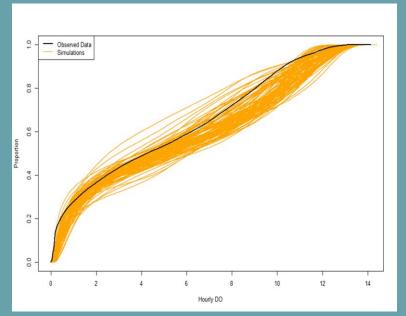


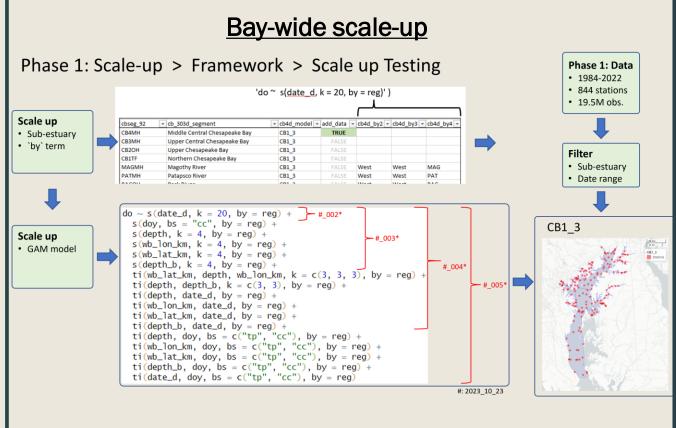

This is a statistical approach that uses data to generate a smooth function of DO in space and time.

Multiple fitted GAMs will be used to estimate oxygen daily throughout the tidal waters:

DO ~ smooth function(date, x, y, z)

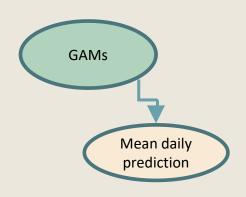
Daily mean: Test applications



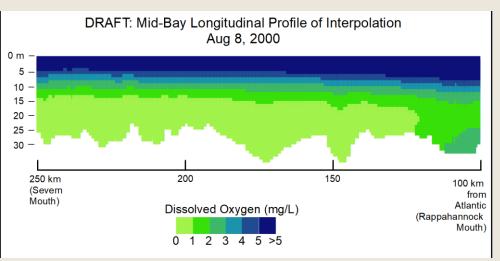

Daily mean: Current work

Transforming DO

- We have challenges with both bounded DO values and a high frequency of low DO.
- Result is that a normal distribution assumption being a poor choice.
- Elgin Perry has been working on an approach ("beta-logit") to address these.



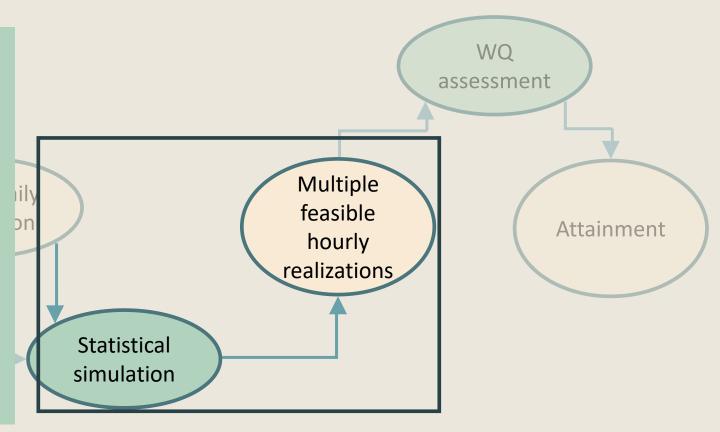
Example analysis: CDF of 1 station's bottom data superimposed on CDFs of 100 simulations using resampling with Beta-Logit Transform



- Basic code has been built in R to apply GAM to each segment (Jon Harcum, Tetra Tech).
- Currently testing spatial and temporal options.
- Modifications will continue as we develop the method and link it to other components.

Where we are:

Example: GAM-based DO predictions along part of main channel

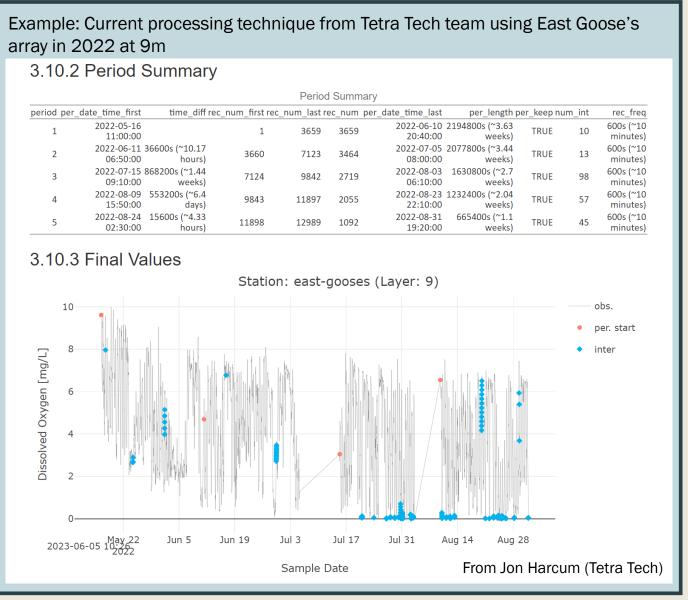

Development item
Pilot application to mid-bay
Test and modify approach in Patuxent
Identify appropriate statistical distribution for low DO
Build structure for bay-wide implementation
Test GAM approach on density/pycnocline
Draft of bay-wide implementation
Spatial validation of GAM estimates using additional data sets
Develop approach for daily error estimates
Continued updates as hourly approach is developed

Q1=Jan-Mar, Q2=Apr-Jun, Q3=Jul-Sep, Q4=Oct-Dec

Hourly prediction

Involves evaluating all existing continuous monitoring DO data for within-day variability.

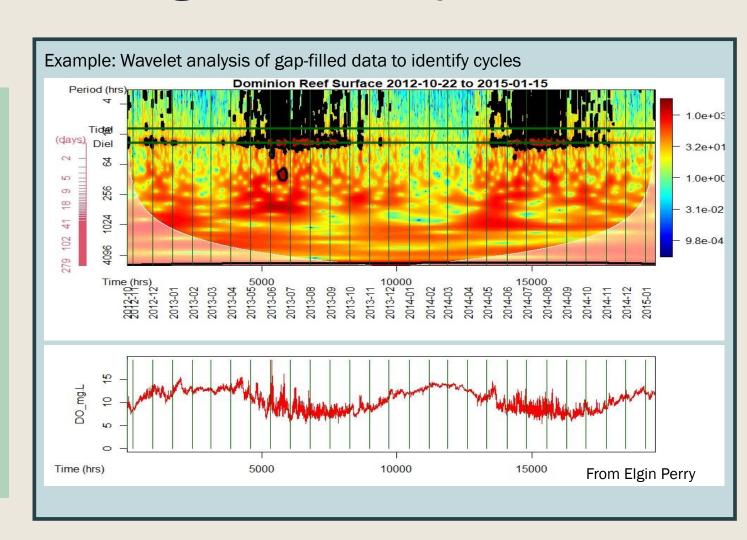
And then applying those patterns in a simulation to make hourly variability estimates baywide.



Method development with high frequency data

Have scanned through all conmon data from MDDNR and VECOS and recent NOAA vertical array data. Going to use this data to inform variability.

Work done by Erik Leppo and Jon Harcum at Tetra Tech.



Method development with high frequency data

Conducted preliminary work with wavelet analysis on high frequency data and identifying sub-daily cycles.

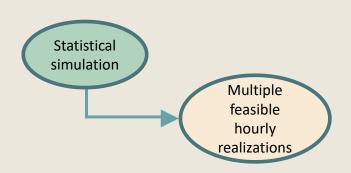
Processing of the results is underway.

Concept worked on by Elgin Perry with analysis of all high frequency by Erik Leppo and Jon Harcum.

Method development with high frequency data

Idea: Will fit a mathematical model to the sub-daily cycles observed in the data and use a statistical approach to account for the uncertainty in these estimates.

Development planned for 2024


Example: Fourier analysis with just daily cycle to fit hourly DO (DO_h)

$$DO_{h} = lc * h + sc * sin\left(\frac{2\pi * h}{24}\right) + cc * cos\left(\frac{2\pi * h}{24}\right) + \tau_{h}$$

$$coefficients$$

$$h = hour 1:24$$

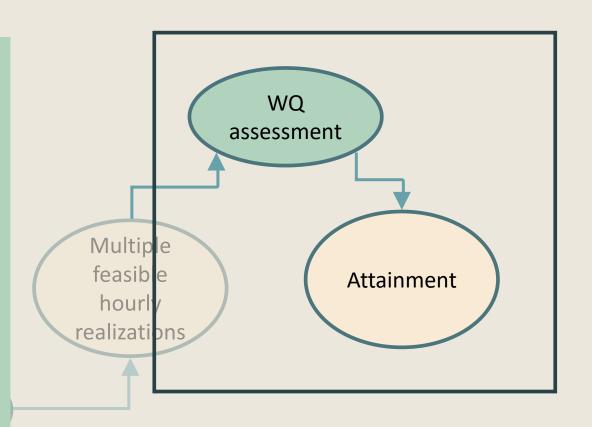
Where we are:

Example: High frequency data processing

2022-05-16 11:00:00 2022-06-11 3 06:50:00	time_diff rec_	num_first rec	_num_last re 3659	3659	_date_time_last 2022-06-10	per_length per_2194800s (~3.63			rec_free
2022-06-11	36600s (~10.17	1	3659	3659					
	36600s (~10.17				20:40:00	weeks)	TRUE	10	minutes
	hours)	3660	7123	3464	08:00:00	2077800s (~3.44 weeks)	TRUE	13	600s (~1 minutes
2022-07-15 8	868200s (~1.44 weeks)	7124	9842	2719	2022-08-03 06:10:00	1630800s (~2.7 weeks)	TRUE	98	600s (~1 minutes
2022-08-09	553200s (~6.4	98/13	11897	2055	2022-08-23	1232400s (~2.04	TRUE	57	600s (~1
									minutes 600s (~1
02:30:00	hours)	11898	12989	1092	19:20:00	weeks)	TRUE	45	minutes
					1		(1)		
1									
'									
	Helidade, Phillip								
	11 []					and the same			
		1		- 'I <u>- 1</u> IIII			1		
	15:50:00 2022-08-24 02:30:00	2022-08-24 15600s (~4.33	15:50:00 days) 9943 2022-08-24 15600s (~4.33 02:30:00 hours) 11898	15:50:00 days) 9943 11697 2022-08-24 15600s (*4.33 11898 12989 3 Final Values	15:50:00 days) 9843 11897 2053 2022-08-24 15600s (°4.33 02:30:00 hours) 11898 12989 1092	15:50:00 days) 9943 11997 2093 22:10:00 2022-08-24 15600s (*4.33 11898 12989 1092 2022-08-31 02:30:00 hours) 11898 12989 1092 19:20:00	15:50:00 days) 9943 11997 2093 22:10:00 weeks) 2022-08-24 15600s (~4.33	15:50:00 days) 9843 11697 2035 22:10:00 weeks) 1R0E 2022-08-24 15600s (~4.33 02:30:00 hours) 11898 12989 1092 2022-08-31 665400s (~1.1 TRUE	15:50:00 days) 9943 11897 2053 22:10:00 weeks) 1RUE 57 2022-08-24 15600s (~4.33 02:30:00 hours) 11898 12989 1092 2022-08-31 665400s (~1.1 TRUE 45 19:20:00 weeks) TRUE 45

Status and schedule	Development item
/	Investigate method for hourly prediction at 1 to 2 continuous monitoring stations
\	Standardize continuous data processing
Current work, Q2 2024	Compare (and update) approach at additional continuous monitoring stations
Q3 2024	Investigate approach for predicting hourly DO
Q4 2024	Evaluate need for small scale spatial error term
Q4 2024	Implement approach for modeling hourly predictions
Q4 2024 to Q4 2025	Continued development and integration of daily & hourly tools

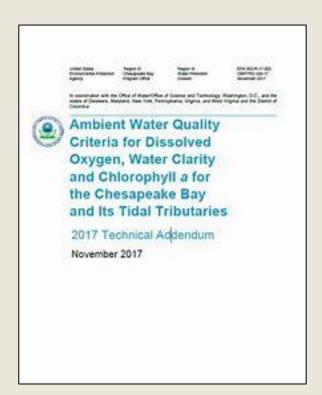
Q1=Jan-Mar, Q2=Apr-Jun, Q3=Jul-Sep, Q4=Oct-Dec


Link to WQ assessment

4d interpolator outputs will not be precise hourly DO estimates.

The goal is for them to provide a measure of segment impairment over the appropriate temporal and spatial scale for a criterion.

Timeline for development: ongoing through 2024-2025


Decision protocols: CAP WG, Modeling WG, EPA

Documentation

- Creating a new EPA Technical Document supporting
 - Dissolved oxygen chapters needed include
 - Development underpinnings of the new 4D tool
 - Updates on dissolved oxygen assessment protocols

Outline shared among team for review

Thank you!

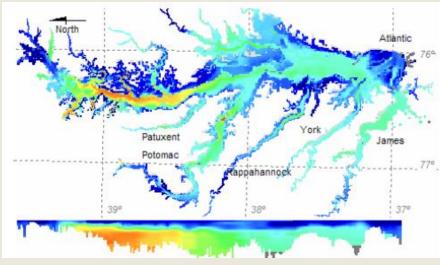
extras

Requirements for an Updated Chesapeake Bay Interpolator

New features:

- Temporal and spatial interpolation of water quality parameters in Chesapeake Bay
- Statistical estimates of uncertainty in the estimates
- Reproduce the short-term variability in the data
- Integrated vertical interpolation technique

Features to retain and update:


- Usability by partner analysts with automation for routine analyses
- Visualization of the results
- Analysis of dissolved oxygen, clarity, and chlorophyll a
- Post-processing to identify regions for each designated use (DU)
- Reasonable spatial extents for interpolation (e.g., not interpolating across land)
- Incorporation of new data streams & types, as available

Current interpolation

- Uses **inverse-distance weighting** of observations from long-term fixed stations, plus additional data as possible.
- Temporal: snapshots, generally using data collected within a week or two

■ Spatial:

- Horizontal: Grid 1km x 1km in mainstem, finer (50m) in tribs
- Vertically: Interpolation are done horizontally for every 1m in depth, and stacked to get 3d results

VOL3d program output, Bahner 2006