Methodologies and Tools to Support Climate-Resilient Stormwater Best Management Practices

Community Health and Environmental Policy Program

Project Overview

- Objective: Create an integrated toolkit of guidance materials, web-based tools, and references for integrating climate considerations into stormwater planning, management and/or design, as well as enhancements to Chesapeake Bay modeling. Including:
 - i) a two-part vulnerability assessment tool,
 - ii) a decision-support tool and framework for integrating the information from a widely-used future precipitation tool,
 - iii) guidance on resilient design adaptations for stormwater infrastructure and restoration, and
 - iv) modeling enhancements to characterize the sensitivity of BMPs to climate change.
- Timeline: April 2024 12/31/2028
- Funder: U.S. EPA

Project Team

Dr. Michelle Miro (PI)

Dr. Krista Romita

Grocholski (Co-PI)

David Wood

Dr. David Rounce

Dr. Sarah Fakhreddine

Dr. Jordan Fischbach

Dr. Nastaran Tebyanian

Dr. Ioannis Georgiou

Dr. Art DeGaetano

Activity 4: BMP Climate Sensitivity Modeling

Objectives:

- Estimate impact of future hydrology on a range of widely used BMPs in Chesapeake Bay watershed.
- Produce model simulations that provide pollutant removal efficiencies for different BMPs and uncertainties associated with future hydrological conditions.

Research Steps:

- Develop two types of rainfall-runoff hydrologic models to evaluate different urban and agricultural water quality BMPs.
- Mechanistic models for urban and agricultural settings will be used to quantify nutrient and sediment removal efficiencies for range of BMPs on representative sites, under a broad set of climate futures.
- Each individual BMP will be evaluated under an ensemble of downscaled climate projections using a subset of global climate models.

Output:

- One technical report that contains: literature review of existing urban and agricultural BMPs; synthesis
 of model simulations that provide pollutant removal efficiencies for BMPs; look up tables for pollutant
 removal efficiencies under a range of conditions
- One to two peer reviewed journal articles

General Approach

1. Research design

- a. Literature Review
- Understand past efforts
- Evaluate data availability
- Ensure consistency with larger modeling efforts
- b. Stakeholder input
- Prioritize BMPs
- Identify representative sites

2. Implementation

- a. Baseline scenario
- Model calibration
- Historic simulation (1991 2000)
- No BMPs or existing BMPs
- b. Future climate scenarios
- Multiple climate projections
- BMP scenarios (one-at-a-time)
- c. Output analysis
- Hydrologic changes (runoff timing, magnitude, frequency)
- Loading of TN, TP, TSS (exceedances, frequency, totals)
- Relative BMP removal efficiencies
- Uncertainty analysis

3. Synthesis of Outputs

- a. Technical Report
- Literature review
- Detailed modeling procedure and outputs
- b. BMP Curves/Tables
- Simplified relationships for BMP type, hydrologic condition, and removal efficiency

Proposed Modeling Approach

Agricultural Model Selection:

- Agricultural: APEX
 - Updated model selection

Model Development:

- Simplified representations of physiographic regions and land uses using prior calibrated parameters
- Allows for more complex design of experiments

Design of Sensitivity Experiments

- Climate (1 base period, 2 future hydrologic regimes)
- Physiographic regions (4 types)
- Land use
 - Agriculture: 4 types (row crops, hay land, forest, pasture)
 - Urban: varying levels of development
- BMPs (prioritize based on most implemented and most effective)

APEX Model Selection

Mechanistic representation of nutrient cycling and transport (key advantage)

Both empirical and process-based representations available

BMP implementation

 Compared to other models considered (HSPF, SWAT), can model a wider range of agricultural BMPs (model was specifically developed for this purpose)

Precedent in literature

- Existing body of work using APEX to simulate non-point source BMPs in CBW (e.g., USDA NRCS Conservation Effects Assessment Project (CEAP)
- Availability of documentation for user support

Additional considerations

- Subdaily (hourly or less) time steps for rainfall-runoff simulation; other processes modeled at daily time steps
- Infiltration-excess runoff: SCS curve number or Green and Ampt for runoff

Proposed Modeling Approach

Watershed Settings

Land Use (LU)

Hydrologic regimes

- 1. Base (e.g., 1991-2000)
- 2. Future 1 (e.g., 2035)
- 3. Future 2 (e.g., 2065)

PR
0
.00
a
œ
<u>.0</u>
2
<u>Q</u>
ர
<u> </u>
.0
Š
_ >
立

		Row crops	Hay land	Pasture	Forest
	Ridge & Valley	LU1 PR1	LU2 PR1	LU3 PR1	LU4 PR1
)	Appalachia	LU1 PR2	LU2 PR2	LU3 PR2	LU4 PR2
	Coastal Plain	LU1 PR3	LU2 PR3	LU3 PR3	LU4 PR3
•	Piedmont	LU1 PR4	LU2 PR4	LU3 PR4	LU4 PR4

Test BMPs

- 1. Cover crops
- 2. Buffers (grass, riparian)
- 3. Tillage (high residue, conservation)
- 4. More (in progress)

Looking for feedback or initial short list and narrowing definitions

Thank you.

Contact Information
Krista Romita Grocholski: kristarg@rand.org

