CBP Watershed Model Plan for 2025

Scale
 Connection Plans
 Timing

CBPO Staff 1/7/2025

Remember the Four I's Core Values of the Modeling Workgroup

Integration - Integration of the most *recent science* and knowledge in air, watershed, and coastal waters to support ecosystem modeling for restoration decision-making.

Innovation - Embracing creativity and encouraging *improvement* in the development and support of transparent and robust modeling tools.

Independence – Making modeling decisions on the basis of the **best available evidence** and using the most appropriate methods to produce, run, and interpret models, independent of policy considerations.

Inclusiveness - Commitment to an open and transparent process and the engagement of relevant partners that results in strengthening the CBP **partnership**'s decision-making tools.

Cast/CalCast/DM

Phase 7 CAST

"The watershed model"

1000s of scenarios once finalized

Phase 7 Model Structure

Will only be used for research after P7 finalized

Phase 7 Dynamic Model

Tool for

- loading estuarine models
- Comparing against observations
- Other potential collaborative projects

CalCast informs CAST; CAST constrains the DM

Scale

Definitions

- Land segment
- Land-river segment
- NHD catchment

Watershed Models Scales

- **CalCAST** is being developed at the **NHD100k** scale to incorporate more monitoring data and to support finer scale modeling
- The **Dynamic Model** will run at the **NHD100k** scale because it is required by the estuarine model
- Phase 7 CAST will be built at the scale that the WQGIT decided on 12/9/24
- HUC12-based river segments

River Segments Phase 6 Phase 7 N = 979 N = 1978

This is a similar arrangement to Phase 6

- In general,
 - Inputs are estimated at the county level
 - Land management is estimated at the LRseg level
 - Watershed delivery is estimated at the NHD level
- Information is upscaled or downscaled and calculations are made at the land-river segment scale

Phase 6 CAST Structure

Inputs (Fertilizer, Manure, **Atmospheric Deposition**, Countv **Fixation**, Wastewater) * LRseg Land management * NHD Watershed Delivery Load by land-river segment and land¹Use

Multiple Scales in Phase 6

• In general,

- Inputs are estimated at the county level
- Land management is estimated at the LRseg level
- Watershed delivery is estimated at the NHD level
- Information is upscaled or downscaled and calculations are made at the land-river segment scale

Phase 6 CAST Structure

Inputs (Fertilizer, Manure, **Atmospheric Deposition**, LRseg **Fixation**, Wastewater) * LRseg Land management * Watershed Delivery < LRseg

Load by land-river segment and land use

Multiple Scales in Phase 6

• Point Sources are kept a the NHD scale

Phase 6 CAST Structure

2025 is the year of getting specific!

CAST model documentation; section 1 https://cast.chesapeakebay.net/Documentation/ModelDocumentation

Constituent	Average Annual	Annual Flow- Normalized	Annual True Condition
Flow	Х		Х
Baseflow	Х		Х
Nitrogen	Х	Х	Х
Phosphorus	Х	Х	Х
Sediment	Х	Х	Х

Specific plan #1; use AFN and AA CalCAST

Constituent	Average Annual	Annual Flow- Normalized	Annual True Condition
Flow	In Use		
Baseflow	In Use		
Nitrogen	Plan B	Plan A	
Phosphorus	Plan B	Plan A	
Sediment	Plan B	Plan A	

- Annual Flow-Normalized parameters best predict flow-normalized trends
 - Ultimate management purpose
- Average annual is a fallback option similar to phase 6 but *using CBP inputs*.

Specific plan #1; use AFN and AA CalCAST

Specific Plan #2; Pass through CAST with upscaling and downscaling

Scenarios won't have CalCAST for N, P, S

N, P, S

downscale

Specific plan #2; Upscale and Downscale to maintain scenario consistency with calibration

Phase 7 CAST Structure

Inputs * Sensitivity

BMPs

Acres Land to Water River Delivery

Specific plan #3 – use DWM and USGS load information to set final river delivery

- CalCAST determines the best global parameters
 - However, some river input stations not good enough for estuarine model.
- Modifications to the delivery factors to better match WRTDS loads
- Similar to:
 - Phase 6
 - SPARROW model

Specific plan #4 – Automate the system

Specific plan #4 – Automate the system

CBP Watershed Model Plan for 2025

CBPO Staff

1/7/2025