# Integrating a Rapid Assessment Protocol (RAP) into monitoring of subtidal oyster reefs

Allison Tracy\*, Rob Aguilar, Carmen Ritter, Keira Heggie, Matthew Ogburn

March 25, 2025

**IMET Press release:** 

https://imet.usmd.edu/news/hybrid-approach-oyster-reef-monitoring

Manuscript in *Restoration Ecology* (2025) https://onlinelibrary.wiley.com/doi/10.1111/rec.14370







# The Hybrid Approach: Integrating 3 Tools

Patent tong



2. Diving



Existing metrics = oyster and reef measurements currently used

3. RAP = "Rapid Assessment Protocol"



Qualitative scores collected via GoPro cameras

# The Hybrid Approach: Integrating 3 Tools

Patent tong



3. RAP = "Rapid Assessment



Diving



Existing metrics = oyster and reef measurements currently used

- Oyster density
- Oyster biomass
- Size classes
- Reef height

Protocol"



GoPro cameras



**Hybrid approach** 

Combination of existing metrics & RAP

# From scientific data to an applied framework

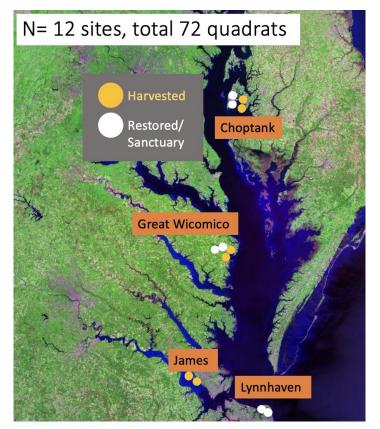
• **Results** from field study

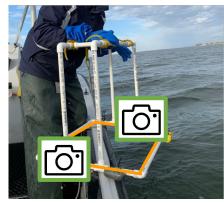
• Trade-offs: Quantitative and Qualitative



• Use scenarios

### **Research Questions**


- → How do GoPro scores compare to existing oyster metrics?
- → How does this comparison depend on the type of site (salinity, restoration status, etc.)?
- → What is the relative time investment for diving vs. remote rapid assessment?







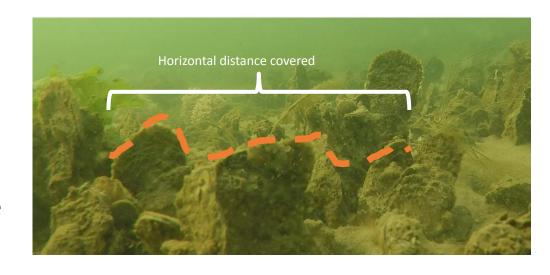

# Field Study Methods



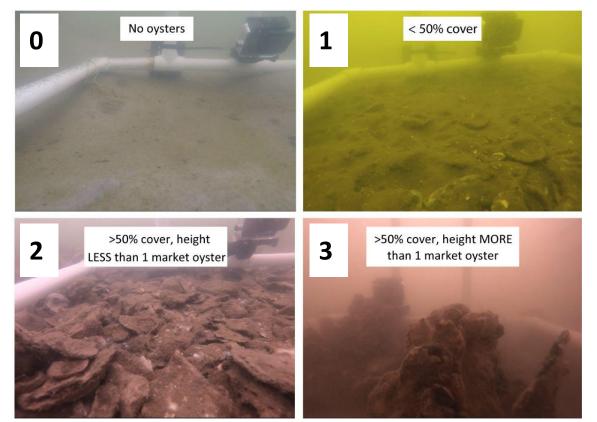




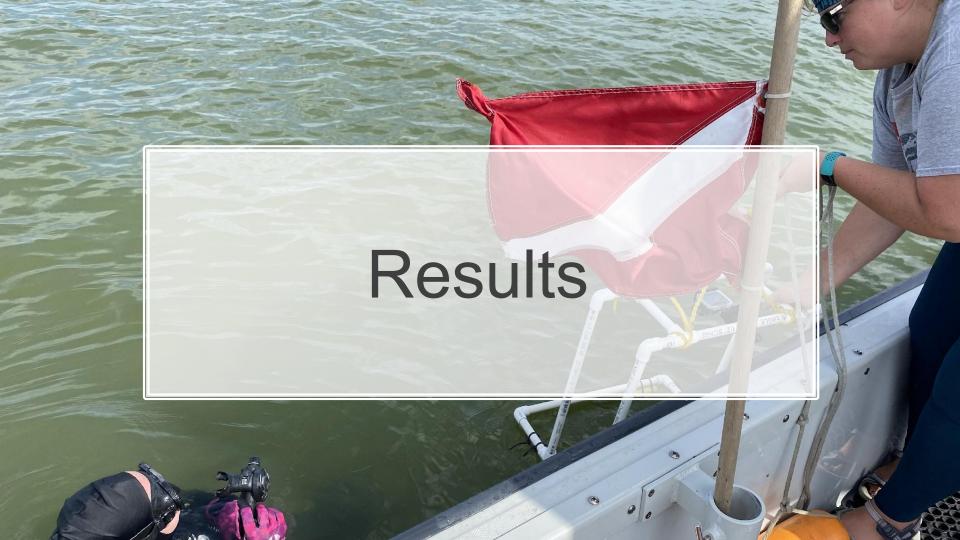
- Paired harvested and restored/ sanctuary reefs
- Collect data on the exact same quadrat
- Time the components of data collection


### **Diver-collected Metrics**

- 1. Oyster density
- 2. Oyster biomass
- 3. Multiple size classes
- 4. Reef height


#### 5. Rugosity

= length of chain/ distance covered

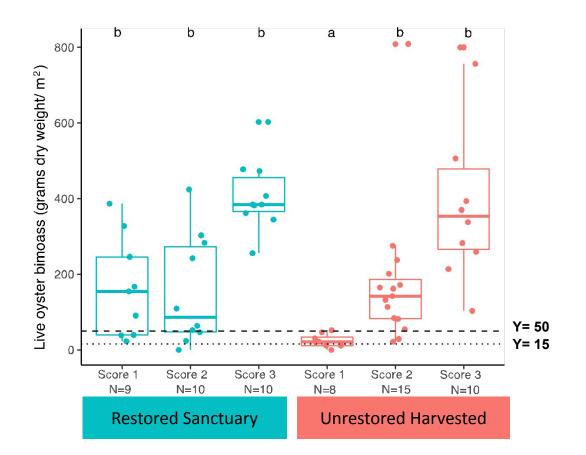

The higher the value, the more rugose



# **RAP Habitat Photo Analysis**



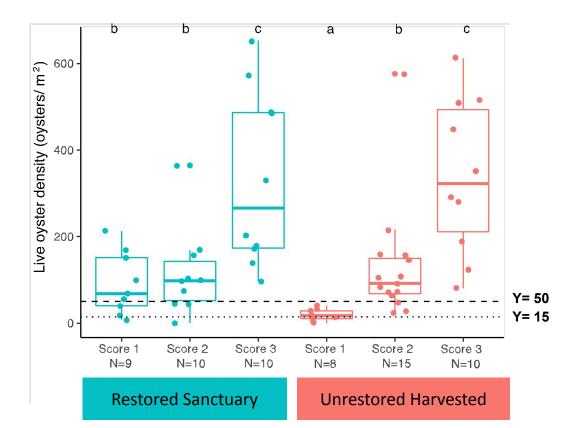
<sup>\*</sup> And likely in clumps




# **Field Study Results**

- The highest score (3)
  from the RAP
  captured high values
  of existing metrics
- Scores of 3
   consistently met the
   metrics while other
   scores did not

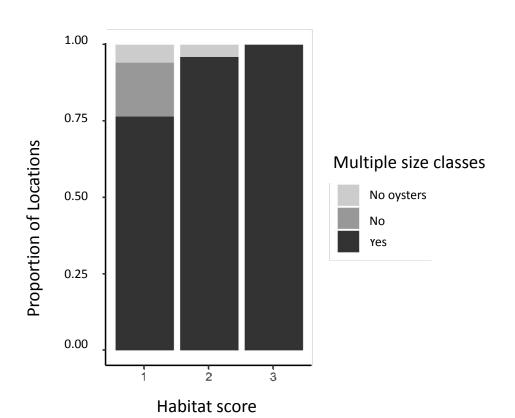
| Metric                | Successful Rapid    |  |  |
|-----------------------|---------------------|--|--|
|                       | Assessment Protocol |  |  |
| Oyster biomass        |                     |  |  |
| Oyster density        |                     |  |  |
| Multiple size classes |                     |  |  |
| Reef height           |                     |  |  |
| Rugosity              |                     |  |  |
| Efficiency            |                     |  |  |


## Oyster Biomass



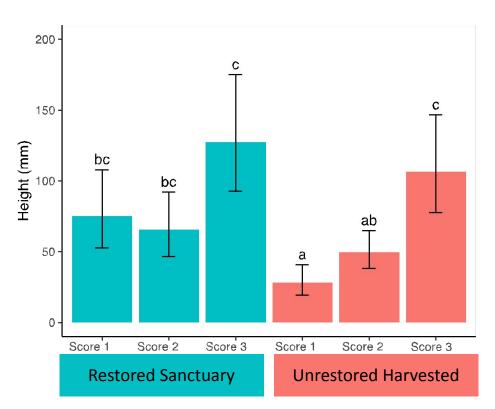
- Restoration\*
   GoPro score is the best model
- Did not depend on salinity

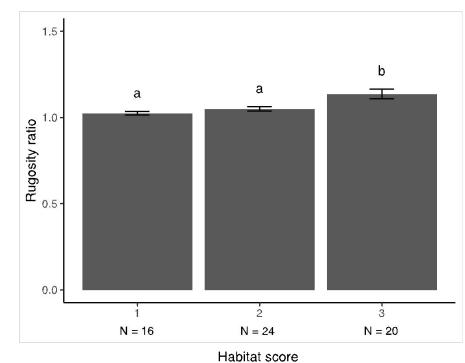
Tracy et al. 2025 Rest. Ecol.


## **Oyster Density**



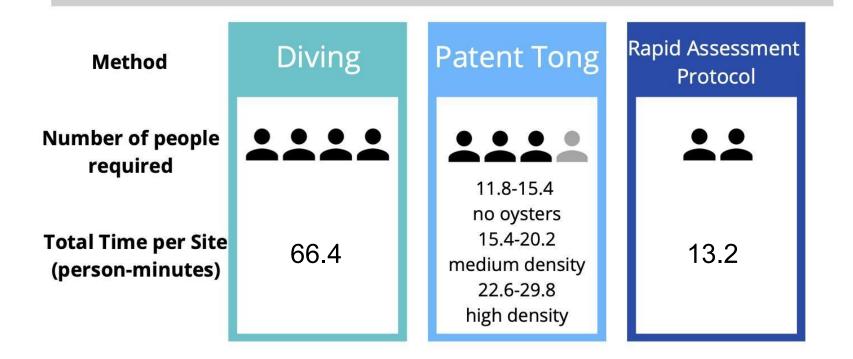
- Restoration\*
   GoPro score is the best model
- Did not depend on salinity


Tracy et al. 2025 Rest. Ecol.


### Size Variation



Tracy et al. 2025 Rest. Ecol.


# Reef Height & Rugosity





Tracy et al. 2025 Rest. Ecol.

# **Efficiency Comparison**



Efficiency depends on the monitoring tool and oyster density.

# From scientific data to an applied framework

Results from field study

• Trade-offs: Quantitative and Qualitative



Use scenarios

| (1) Diving (existing tool) | Collect oysters for physical counts | <ul> <li>Differentiates between reef quality at low and medium densities</li> <li>Provides data on spat</li> </ul> | <ul><li>Warm water months</li><li>Better in high visibility</li></ul> |
|----------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
|                            |                                     |                                                                                                                    |                                                                       |

Strengths

Seasonality

Tool

Method

| (1) Diving (existing tool)      | Collect oysters for physical counts | <ul><li>Differentiates between reef<br/>quality at low and medium<br/>densities</li><li>Provides data on spat</li></ul> | <ul><li>Warm water months</li><li>Better in high visibility</li></ul>                                       |
|---------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| (2) Patent tong (existing tool) | Collect oysters for physical counts | <ul><li>See diving strengths</li><li>Fast at low densities</li></ul>                                                    | <ul> <li>Waterman availability varies<br/>and requires switching out<br/>crabbing gear for tongs</li> </ul> |
|                                 |                                     |                                                                                                                         |                                                                                                             |

Strengths

Seasonality

Tool

Method

| Tool                                      | Method                                      | Strengths                                                                                                                                                                                                                      | Seasonality                                                                                                                                                                                      |
|-------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1) Diving (existing tool)                | Collect oysters for physical counts         | <ul> <li>Differentiates between reef quality at low and medium densities</li> <li>Provides data on spat</li> </ul>                                                                                                             | <ul><li>Warm water months</li><li>Better in high visibility</li></ul>                                                                                                                            |
| (2) Patent tong (existing tool)           | Collect oysters for physical counts         | <ul><li>See diving strengths</li><li>Fast at low densities</li></ul>                                                                                                                                                           | <ul> <li>Waterman availability varies<br/>and requires switching out<br/>crabbing gear for tongs</li> </ul>                                                                                      |
| (3) Rapid<br>Assessment<br>Protocol (RAP) | Collect and score<br>GoPro camera<br>images | <ul> <li>More efficient, cost-effective - allows for more sampling pts</li> <li>Direct info on habitat</li> <li>Low tech allows diverse users</li> <li>Non-destructive</li> <li>Creates a record of reef appearance</li> </ul> | <ul> <li>Best visibility in November to April, low in July/ August</li> <li>Year-round visibility in southern bay</li> <li>May be low visibility ~2 days after heavy wind and/or rain</li> </ul> |

# From scientific data to an applied framework

Results from field study

Trade-offs: Quantitative and Qualitative

Use scenarios (Supplemental User Guide)

# Use Scenario #1: Post-restoration monitoring ex) Harris Creek Sampling > 6 years

Survey <u>307</u> sites post-restoration for monitoring: Are they meeting the metrics?



# Use Scenario #1: Post-restoration monitoring ex) Harris Creek Sampling > 6 years

Survey <u>307</u> sites post-restoration for monitoring: Are they meeting the metrics?



Consult conversion table for RESTORED sites with this goal in mind.

# Conversion Table: Post-restoration monitoring

| Metric                                                                                                                 | RAP Score 0<br>(no oysters present) | RAP Score 1 (<50% cover) & Score 2 (>50% cover, height < 1 oyster |                                | RAP Score 3 (>50% cover, height > 1 oyster, clumping) |  |
|------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------|--------------------------------|-------------------------------------------------------|--|
| Biomass Threshold = 15 g dry weight/ m2 Target = 50 g dry weight/ m2                                                   | X  Does not meet metric             | May meet metric                                                   | M                              | eets metric                                           |  |
| Density Threshold = 15 oysters/ m2 Target = 50 oysters/ m2                                                             | X                                   |                                                                   | Scores of 3 consistently       | <b>√</b>                                              |  |
| Multiple Year Classes (Y/N) Presence of oysters in at least 2 size classes: market (>76 mm); small (40-75); spat (<40) | X                                   | O                                                                 | meet<br>metrics in<br>restored | <b>✓</b>                                              |  |
| GoPro-based Reef Height Height of 1 adult oyster (relative to oysters in image) with oysters likely in clumps          | X                                   | X                                                                 | areas                          | ✓                                                     |  |
| Rugosity (Y/N) Ratio of horizontal distance covered by 1m chain relative to 1m                                         | X                                   | O                                                                 |                                | <b>✓</b>                                              |  |
| Inferred Shell Budget Based on biomass & density (above)                                                               | X                                   | O                                                                 |                                | <b>✓</b>                                              |  |

# Use Scenario #1: Post-restoration monitoring ex) Harris Creek Sampling > 6 years

Survey <u>307</u> sites post-restoration for monitoring: Are they meeting the metrics?



Consult conversion table for post-restoration sites with this goal in mind.

What proportion of the sites are 3s?

88 of the 307 sites are very high density (>80 / m2) and would likely score a 3.

# Use Scenario #1: Post-restoration monitoring ex) Harris Creek Sampling > 6 years

Survey <u>307</u> sites post-restoration for monitoring: Are they meeting the metrics?



Consult conversion table for post-restoration sites with this goal in mind.

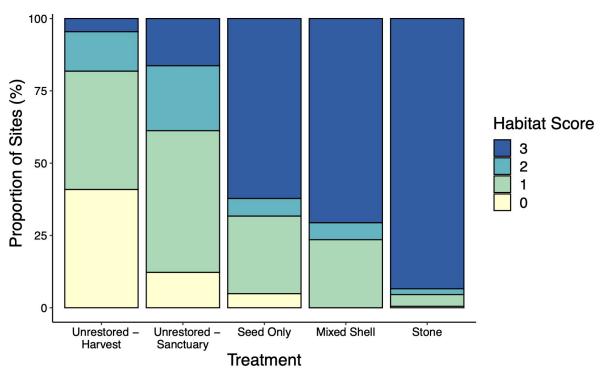



**Estimate efficiency & consider trade-offs** 

What proportion of the sites are 3s?

88 of the 307 sites are very high density (>80 / m2) and would likely score a 3.

# Harris Creek Hybrid Approach




#### **Efficiency Comparison**

- 1. Existing metrics (242 patent tong sites + 65 diving sites): 130 hours
- 2. Hybrid approach (219 patent tong sites + 88 RAP sites): 72 hours

It's ~ 44% faster to use the hybrid approach instead of the existing monitoring methods alone

# NCBO Study on 484 Harris Creek Sites



Tracy *et al.* in submission (Jay Lazar & Anna He summer 2022 data, NCBO)

# **Integrating Multiple Considerations**

How do trade-offs differ based on the organization conducting monitoring?
Alternative substrates

Which sites are important enough to warrant collection of data with more than 1 of the 3 tools? (E.g. high density sites, mortality events)

When are habitat data vs. existing metrics (e.g. densities) most helpful?

### Conclusions

- High RAP scores successfully capture high oyster density, biomass, reef height, rugosity, and multiple size classes
- The RAP is the most efficient and cost-effective tool across oyster densities
- Stakeholder discussions highlight strengths of each tool in the Hybrid Approach toolkit

### Acknowledgments

#### **IMET** IMET Press release:



https://imet.usmd.edu/news/hybrid-approach-oyster-reef-monitoring

Manuscript in Restoration Ecology (2025)

https://onlinelibrary.wiley.com/doi/10.1111/rec.14370

#### **RAP Workgroup**

Allison Colden (CBF)

Doug Myers (CBF)

Rom Lipcius (VIMS)

Lisa Kellogg (VIMS)

Rochelle Seitz (VIMS)

Russ Burke (CNU)

Sara Coleman (ORP)

Olivia Caretti (ORP)

Jay Lazar (NOAA)

David Bruce (NOAA)

Jason Spires (NOAA)

Stephanie Westby (NOAA)

#### **SERC**

Jack Olson

Kim Ritchie

Henry Legett

Gabriel Ng

Sarah Mallette

Caitlyn Dittmeier





#NA21NMF0080474

Ward Slacum (ORP)

Andrew Button (VMRC)

Melissa Southworth (VMRC)

David Schulte (USACE)



**MD Oyster Workgroup** 

**VA Oyster Workgroup** 

**MDNR** 







