AgWG Beyond 2025 Discussion-Climate Small Group Recommendation #5 Overview

Ruth Cassilly- Nonpoint Source Policy Analyst

UMD CBPO

7-18-24

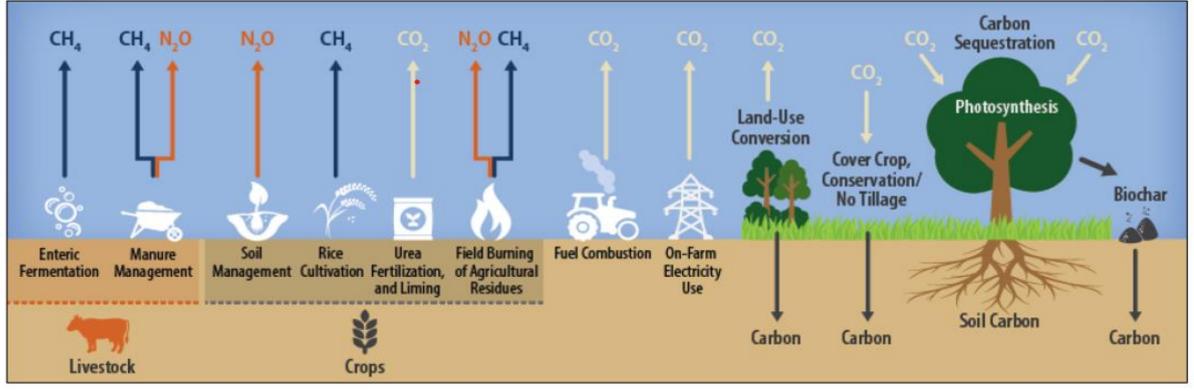
Climate Small Group Materials: Outcomes-agriculture

Steering Committee: meeting page

One Pager Recommendations: page 10

https://d18lev1ok5leia.cloudfront.net/chesapeakebay/documents/Beyond-2025-Small-Group-Findings-and-Considerations_FINAL.pdf

Supplemental Information for Climate Small Group Recommendations: page 6

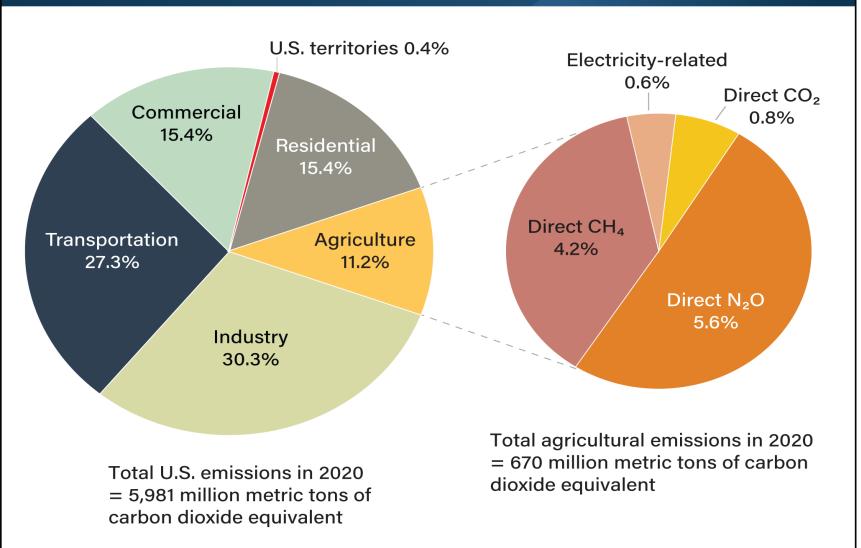

https://d18lev1ok5leia.cloudfront.net/chesapeakebay/documents/Supplemental-Information-for-Climate-Small-Group-Recommendations-2.27.24-1.pdf

Vision, Value, Vanguard: Excel Workbook-

https://d18lev1ok5leia.cloudfront.net/chesapeakebay/documents/Beyond-2025-Climate-Small-Group-Recommendations-2.27.24.xlsx

Connecting Agriculture to Climate

Examples of Greenhouse Gas Emission Sources and Sinks from Agricultural Activities



Enteric fermentationdigestive process in ruminant animals Sources of Agricultural GHG Emissions figure does not include:

- Potentially offsetting agricultural sinks
- Forestry activities, which are accounted for in LULUCF.
- Emissions from generating the electricity that farms use.
- Emissions from activities in the food system more broadly, such as production of agricultural inputs and post-harvest transportation and processing of foods.

Estimated U.S. greenhouse gas emissions by sector, including electricity use, 2020

Notes: CH_4 = methane. N_2O = nitrous oxide. CO_2 = carbon dioxide. Carbon dioxide emissions associated with electricity consumption are allocated to each end-use sector in the left pie chart.

Source: USDA, Economic Research Service using data from the U.S. Environmental Protection Agency's Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2020, April 2022.

- The U.S. EPA 2020
 emission
 estimates for
 agriculture +
 forestry sectors
- Largest
 contribution is
 nitrous oxide
 (N2O) followed
 by methane (CH4)
 and lastly carbon
 dioxide CO2

Agricultural Production Transformation

Regenerative/Agro-ecological Transition:

6 principals of soil health and associated practices such as cover crops, rotational grazing, animal/crop integration, increased use of agroforestry/perennial cropping

Effects:

Improved: soil, air, water quality, biodiversity, carbon sequestration, economic, climate resilience and equity on farms

Reduced: chemical fertilizer, pesticide, feed inputs, and emissions

HIGH PROFILE CROSS-CUTTING TOPICS

Climate Change

Healthy Watersheds

Clean Water

People

Shallow Water Habitats

Food Systems Transformation

Community based agriculture:

Supports local production, sourcing, processing, and consumption, regenerative and organic food, reduced food waste, improved land and healthy food access-vulnerable communities

Effects:

Improved: soil, air and water quality, nutrient density, biodiversity, carbon sequestration, supply chain resiliency, community and economic health and equity Reduced chemical inputs and emissions

Regenerative agriculture- Decrease sources, increase sinks, improve health and resiliency for all cross-cutting concepts

Key Elements:

- Systems approach to supporting climate mitigation and community health and resiliency
 - Soil health
 - Diversification
 - Regional production and consumption

Primary Supporting Reference Materials:

- Presentation on Effects of Soil Health and Associated Practices: Lisa Blazure (Stroud Water Institute) PA Soil Health
 Coalition Coordinator
- COP 28 Findings: https://www.cop28.com/en/food-and-agriculture
- **Fifth National Climate Assessment**: Chapter 11 Agriculture, Food Systems, and Rural Communities Full report available online at: https://nca2023.globalchange.gov/chapter/11/
- <u>Environmental and Energy Study Institute- Nonprofit Think Tank: https://www.eesi.org/agriculture-and-climate-series</u>
- Soil Health and Regenerative Production: https://farmland.org/soil-health-case-studies/
- https://soilhealthinstitute.org/our-work/initiatives/economics-of-soil-health-systems-on-30-u-s-farms/#overview
- UMD Extension- Soil Health Lawns: https://extension.umd.edu/resource/improve-soil-health-climate-resilient-garden/
- Using climate-smart food and forestry practices: https://www.usda.gov/climate-solutions
- NACD, the Soil Health Institute, and NRCS recently released economic findings from 30 farmers who adopted soil health management systems. Link to Story map: https://storymaps.arcgis.com/stories/04966854d9c84b9784fed74d5b6ddfc2

Primary Food Systems Transformation References:

- Johns Hopkins Center for a Livable Future:
- https://clf.jhsph.edu/projects/food-system-resilience/resilience-planning-guide
- Healthy Food Access Policy Compendium for Metropolitan Washington (MWCOG)

 https://www.mwcog.org/committees/food-and-agriculture-regional-member-policy-committee-farm-/
- <u>Waste to Energy Farm Solution Case Studies:</u> https://mda.maryland.gov/resource_conservation/Pages/sustainable-chesapeake.aspx
- USDA: Framework for Shoring Up the Food Supply Chain and Transforming the Food System to Be Fairer, More Competitive, More Resilient:
- https://www.usda.gov/media/press-releases/2022/06/01/usda-announces-framework-shoring-food-supply-chain-and-transforming
- The Chesapeake Foodshed Assessment: Harry Hughes Center
- https://agnr.umd.edu/sites/agnr.umd.edu/files/files/documents/Hughes%20Center/2019 Chesapeake-Foodshed-Assessment 02.pdf
- Appalachian Sustainable Development https://www.asdevelop.org/
- https://www.asdevelop.org/programs-resources/food-hub/
- Regional Analysis of Nitrogen Flow within the Chesapeake Bay Watershed Food Production Chain Inclusive of Trade, Paniz Mohammadpour and Caitlin Grady, Environ. Sci. Technol. 2023, 57, 4619–4631
- Case Study: Regenerative Local Production: https://whiteoakpastures.com/pages/our-transition

Clean Water Small Group Rec. #4: Provides a broad framework that Climate Recommendation 5 can fall within

- Increase and incentivize nonpoint source management implementation and identify, track, and address nutrient mass imbalances.
 - Provide opportunities to increase nonpoint source implementation.
 - Incentivize effective and innovative nonpoint source management across all sectors.
 - Target and empower small-scale watershed restoration that addresses the needs of the community.
 - Promote outcome-based efforts.
 - Address known challenges associated with nutrient mass imbalances to include fertilizers and unknown sources.