Road Map Exploration Tree of Stochastic Components of Daily Mean and Small Scale Variability.

Elgin Perry
eperry@chesapeake.net
BORG 5/20/2024

Conceptual diagram

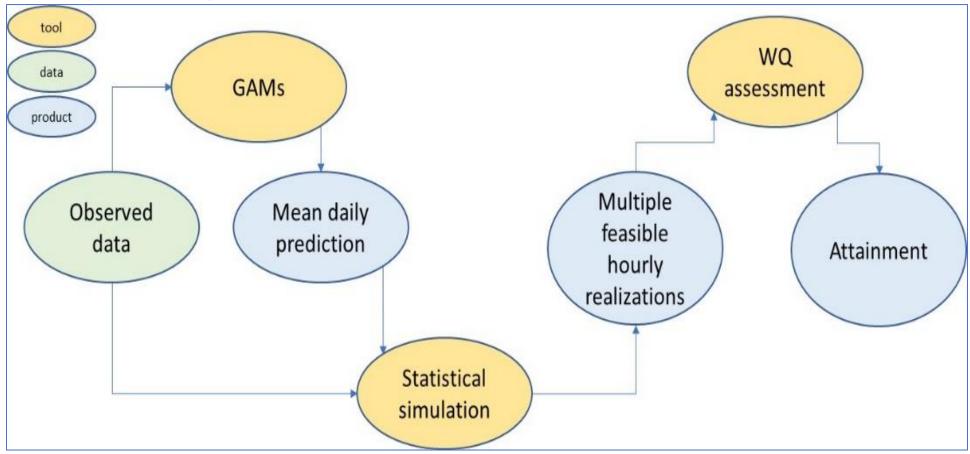


Figure 1: Interpolation and attainment assessment system

First: Consider stochastic components in the **Statistical Simulation** of small scale variability.

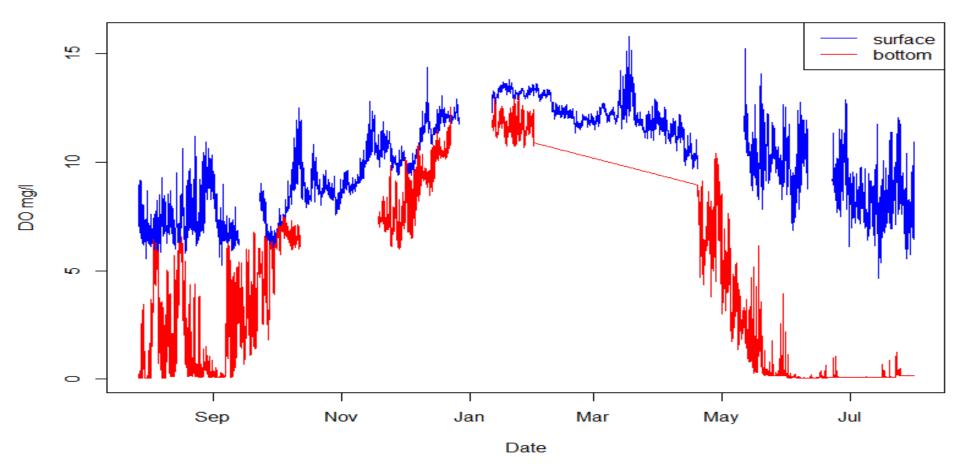
Second: Consider stochastic components in the **GAMs** tool for Daily Prediction.

Three Approaches to Stochasticity for Small Scale Variability.

- 1. Resample mean adjusted residuals with Day as Experimental Unit.
- 2. Model cycles with Fourier terms and resample cycle detrended residuals.
- 3. Model cycles with Fourier terms and Simulate cycle detrended residuals.

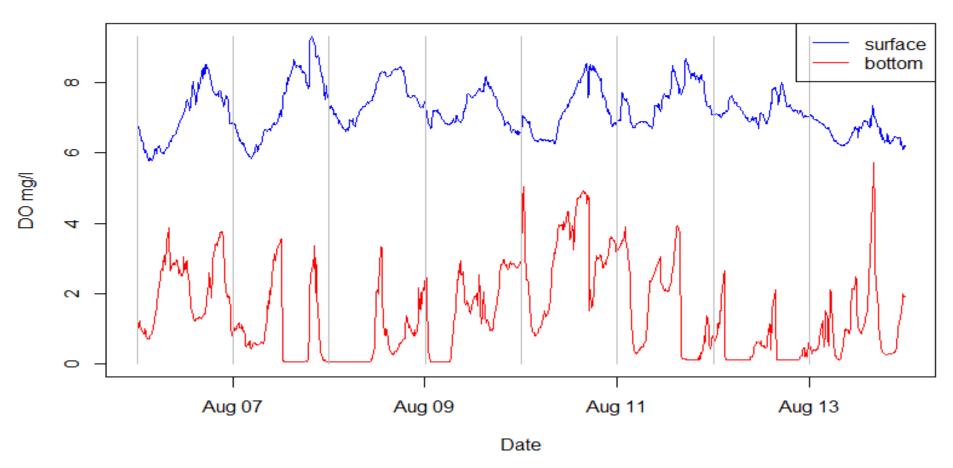
ConMon data.

Dominion Reef at the Gooses Bottom, 2010



Taking a closer look at a narrow window.

Dominion Reef, Aug 6 - Aug 14, 2010



This week of data shows a clear diel signal in the surface water and evidence of a tidal signal in the bottom water.

- 1. Resample mean adjusted residuals.
- 2. Model cycles with Fourier terms and resample cycle detrended residuals.
- 3. Model cycles with Fourier terms and Simulate cycle detrended residuals.

Partition ConMon into daily units.

Stratify units by Season and Space.

Compute a mean adjusted vector for each Unit

$$r_i = (oldsymbol{DO}_i - \overline{oldsymbol{DO}})$$
 i = 1,2,... 24

$$r_i = (DO_i - \overline{DO})$$
 i = 1,2,... 24 where: $\overline{DO} = \frac{1}{24} \sum_{1}^{24} DO_i$

Simulation for 1 day = 24 hours

$$(\widehat{DO_g} + r_i)$$
 i = 1,2,... 24

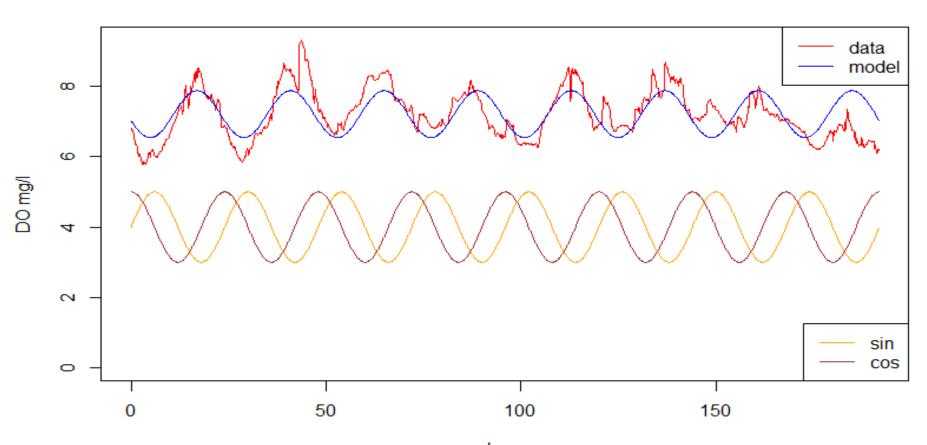
Where: $\widehat{DO_g}$ is a daily prediction from GAM.

This takes care of deterministic cycles and autocorrelated error all at once.

6

- 1. Resample mean adjusted residuals.
- 2. Model cycles with Fourier terms and resample cycle detrended residuals.
- 3. Model cycles with Fourier terms and Simulate cycle detrended residuals.

Dominion Reef surface, Aug 6 - Aug 14, 2010



$$DO_h = lc*h + Har(24) + Har(12.42) + v_h \quad h = 1:24$$

$$Har(p,h) = sc^p*sin\left(\frac{2\pi*h}{p}\right) + cc^p*cos\left(\frac{2\pi*h}{p}\right)$$

Partition ConMon into daily units.

Fit a Fourier model F(h) to obtain Harmonic Coefficients (HC) and residuals.

Use GAM to model HC (GAM_{HC}) as a function of space, season, and trend.

Simulation for 1 day = 24 hours

$$(\widehat{DO_g} + \widehat{F_h(HC)} + r_h) h = 1,2,...$$
 24

Where: $\widehat{\boldsymbol{D0}_g}$ is a daily prediction from GAM.

F(HC) Is a hourly prediction from the Fourier model

HC could be a prediction from the GAM_{HC} for HC or a random draw from a population of HC values.

 r_h $h=1,2,\ldots$ 24, is a one day set of hourly residuals $r_h=\left(DO_h-\widehat{F_h(HC)}\right)$ Randomly drawn from a suitable stratum.

- 1. Resample mean adjusted residuals.
- 2. Model cycles with Fourier terms and resample cycle detrended residuals.
- 3. Model cycles with Fourier terms and Simulate cycle detrended residuals.

This 3rd method follows method 2 up to the simulated residuals. Instead of resampling, simulated error estimates are obtained through the recursion

$$\tau_i = \phi_h \tau_{i-1} + \epsilon_i \quad \epsilon \sim N(0, \sigma_h^2)$$

Or equivalently

$$\tau = chol(\Sigma_h) x \epsilon$$

Where:

 ϵ is a vector with distribution $N(0, \sigma^2 I)$, τ is a vector with distribution $N(0, \sigma^2 \Sigma_h)$, and $chol(\Sigma_h)$ is the Choleski decomposition of Σ_h

AR(1) correlation matrix

$$oldsymbol{\Sigma}_H = egin{bmatrix} 1 & oldsymbol{arphi} & \cdots & oldsymbol{arphi}^{24} \ oldsymbol{arphi} & 1 & oldsymbol{arphi} & oldsymbol{arphi}^{23} \ draversigned & oldsymbol{arphi} & \ddots & draversigned \ oldsymbol{arphi}^{24} & oldsymbol{arphi}^{23} & \cdots & 1 \end{bmatrix}_{24x24} oldsymbol{\sigma}^2$$

It turns out

$$chol(\Sigma_h) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ \varphi & c & 0 & 0 & 0 \\ \varphi^2 & \varphi^1 c & c & 0 & 0 \\ \varphi^3 & \varphi^2 c & \varphi^1 c & c & 0 \\ \varphi^4 & \varphi^3 c & \varphi^2 c & \varphi^1 c & c \end{bmatrix} \text{ where } c = \sqrt{1 - \varphi^2}$$

The GAM tool for Daily Means (GAM_{dm})

Captures large scale variation in DO as a function of

Estuarine Longitude
Estuarine Latitude
Sample Depth
Bottom Depth
Long term trend
Seasonal Trend.

Produces a predictions in a time x depth x longitude x latitude lattice at a resolution of:

Time: one per day

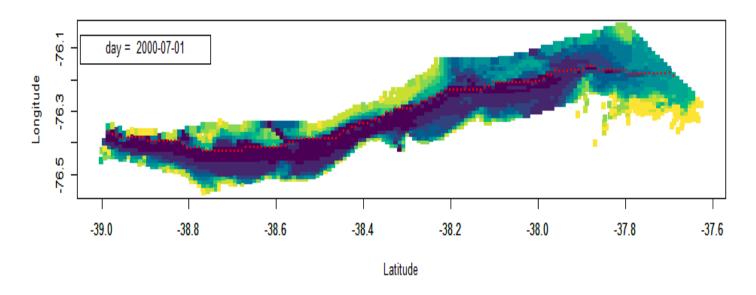
Depth: one per meter

Longitude: 1 per kilometer

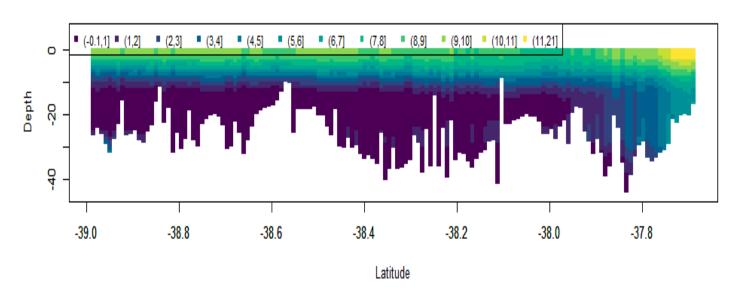
Latitude: 1 per kilometer

Plane and Profile views of the Model Prediction Space.

Cells at Bottom



Profile at Channel



Two Stochastic Elements in Daily Predictions:

Model uncertainties in GAMdm

Space-Time correlated Errors.

Model uncertainty:

The daily prediction GAM_{dm} fit yields:

A parameter vector, $\widehat{m{\beta}}$, and

an associated variance-covariance matrix $\widehat{\Sigma_{\beta}}$

To account for model uncertainty, simulate a prediction parameter vector $oldsymbol{eta}^*$ using a multivariate normal distribution,

$$\beta^* \sim MVN(\widehat{\beta}, \widehat{\Sigma_{\beta}})$$

$$\beta^* = \widehat{\beta} + chol(\widehat{\Sigma_{\beta}})\epsilon$$
 where $\epsilon \sim MVN(0, I)$

Length($\widehat{\beta}$) < 100, chol() requires order n³ operation

Daily Mean predictions are computed as

$$d^* = X\beta^* + \varepsilon$$

We would like ε to have realistic space-time dependence.

Space-Time correlated Errors

Consider building a small example of a Space Time Variance Covariance matrix:

Assume the predictions are sorted by Longitude, Latitude, Depth and Day.

For simplicity, assume five levels of each dimension.

The variance-covariance matrix = Σ_{st} has dimensions 625 x 625.

5 days at a point in space would have an AR(1) correlation matrix

$$oldsymbol{\Sigma}_T = egin{bmatrix} 1 &
ho &
ho^2 &
ho^3 &
ho^4 \
ho & 1 &
ho &
ho^2 &
ho^3 \
ho^2 &
ho & 1 &
ho &
ho^2 \
ho^3 &
ho^2 &
ho & 1 &
ho \
ho^4 &
ho^3 &
ho^2 &
ho & 1 \end{bmatrix} \sigma^2$$

Assume that observations across space are independent. Then the full VC matrix has the form.

$$\Sigma_{ST} = \sigma^2 \begin{bmatrix} \Sigma_T & \mathbf{0} & \cdots & \cdots & \mathbf{0} \\ \mathbf{0} & \Sigma_T & & & \vdots \\ \vdots & & \ddots & & \vdots \\ \vdots & & & \ddots & \mathbf{0} \\ \mathbf{0} & \cdots & \cdots & \mathbf{0} & \Sigma_T \end{bmatrix}_{625 \times 625}$$

Assume that adjacent layers in depth are dependent.

	Γ	1111	1112	1113	1114	1115	1121	1122	1123	1124	ן1125	
$\Sigma_{TS10} =$	1111	1	$oldsymbol{ ho}$	$oldsymbol{ ho^2}$	$oldsymbol{ ho}^3$	$oldsymbol{ ho^4}$	τ	0	0	0	0	
	1112	$oldsymbol{ ho}$	1	$oldsymbol{ ho}$	$ ho^2$	$oldsymbol{ ho}^3$	0	τ	0	0	0	
	1113	$oldsymbol{ ho^2}$	$oldsymbol{ ho}$	1	$oldsymbol{ ho}$	$oldsymbol{ ho}^2$	0	0	au	0	0	
	1114	$oldsymbol{ ho^3}$	$oldsymbol{ ho^2}$	$oldsymbol{ ho}$	1	$oldsymbol{ ho}$	0	0	0	τ	0	
	1115	$oldsymbol{ ho^4}$	$ ho^3$	$ ho^2$	$oldsymbol{ ho}$	1	0	0	0	0	τ	σ^2
	1121	τ	0	0	0	0	1	$oldsymbol{ ho}$	$oldsymbol{ ho^2}$	$oldsymbol{ ho^3}$	$oldsymbol{ ho^4}$	
	1122	0	au	0	0	0	$oldsymbol{ ho}$	1	$oldsymbol{ ho}$	$ ho^2$	$ ho^3$	
	1123	0	0	τ	0	0	$oldsymbol{ ho^2}$	$oldsymbol{ ho}$	1	$oldsymbol{ ho}$	$ ho^2$	
	1124	0	0	0	τ	0	$ ho^3$	$ ho^2$	$oldsymbol{ ho}$	1	$oldsymbol{ ho}$	
	1125	0	0	0	0	τ	$\boldsymbol{\rho^4}$	$ ho^3$	$ ho^2$	$oldsymbol{ ho}$	1	

At this point, Cholesky decomposition becomes a problem for a matrix of this size.

Solving Cholesky iteratively did not yield a simple pattern like for AR1

Possibly some expediency using block matrices.

Possibly come at this by postulating chol(Σ_{TS}) that yields a reasonable Σ_{TS} .

Possibly construct this as a nested random effects model.

Possibly assume dependence in space behaves like dependence in time so we have a big AR1.

Last resort, assume independence in space.

Resampling is not an option because we don't have data on a 1km x 1km grid.