
Evaluating the impacts of decarbonization scenarios on deposition

Chris Nolte, Dan Loughlin, and Uma Shankar Chesapeake Bay Program Quarterly Meeting June 20, 2023

Note: these are DRAFT slides that have not been cleared for dissemination

United States Community Multiscale Air Quality (CMAQ) model

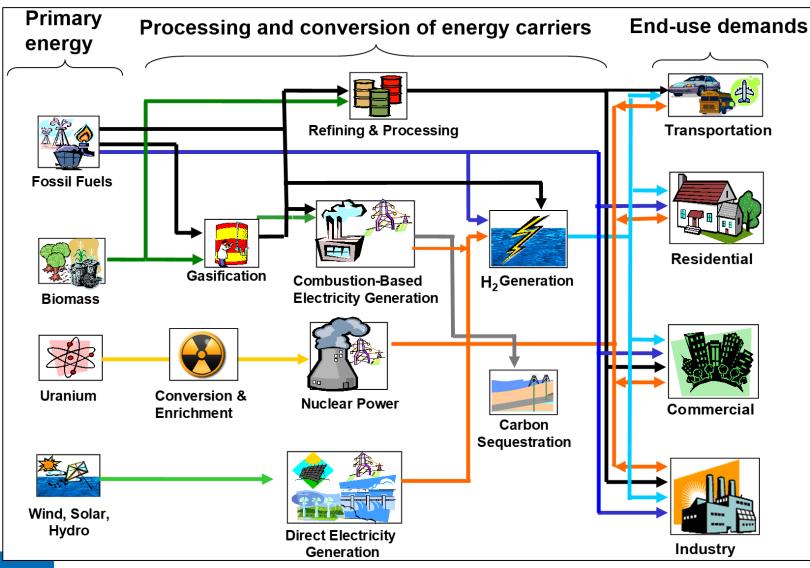
Key Inputs:

Meteorological Parameters (temperature, pressure, wind speed, precipitation, solar radiation/cloudiness, etc.)

Emissions

nitrogen oxides, sulfur dioxide, volatile organic compounds, primary particulate matter (e.g., soot)

Outputs:


Atmospheric concentrations and deposition of air pollutants

https://epa.gov/cmaq

The role of energy

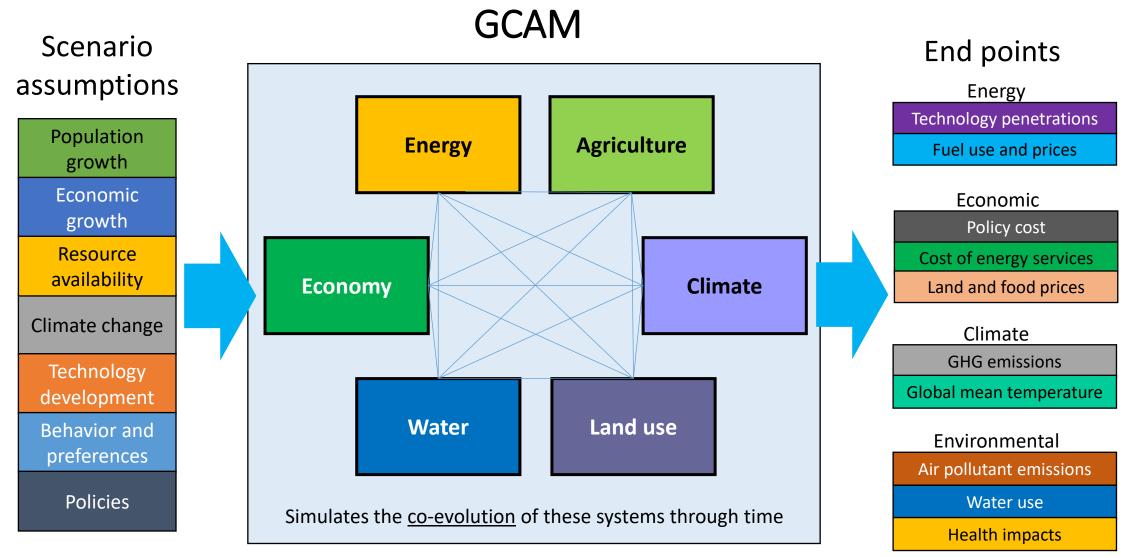
The Energy System

Contributions to anthropogenic emissions:

GHGs:

- CO2 96%
- CH4 40%
- All GHGs 82%

Air pollutants:


- NOx 91%
- SO2 75%
- CO 74%
- **VOCs 45%**
- PM2.5 22% (direct)

In 2015, 41% US energy system freshwater withdrawals were for thermoelectric power plant cooling, nearly as much as for agriculture.

https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks https://www.usgs.gov/mission-areas/water-resources/science/thermoelectric-power-water-use

Global Change Analysis Model

GCAM documentation: http://jgcri.github.io/gcam-doc/

Global Change Analysis Model

Scenario assumptions

Population growth

Economic growth

Resource availability

Climate change

Technology development

Behavior and preferences

Policies

GCAM

Lead developer: Pacific Northwest National Lab

Time Horizon: 2010–2100, 5-yr increments

Spatial Resolution:

GCAM (core): 32 global regions

GCAM-USA: 31 global regions, 50 states + DC

GCAM-China: 31 global regions, 23 provinces

GCAM-Canada, GCAM-Korea, GCAM-India ...

GHGs: CO₂, CH₄, N₂O, HFCs

Air pollutants: NOx, SO₂, PM_{2.5}, VOCs, CO, NH₃

Runtime: 1 to 5 hours for EPA's GCAM-USA v5.4

Requirements: Desktop PC, Mac, Linux, or Cloud

Availability: Public domain, open source, free

End points

Energy

Technology penetrations

Fuel use and prices

Economic

Policy cost

Cost of energy services

Land and food prices

Climate

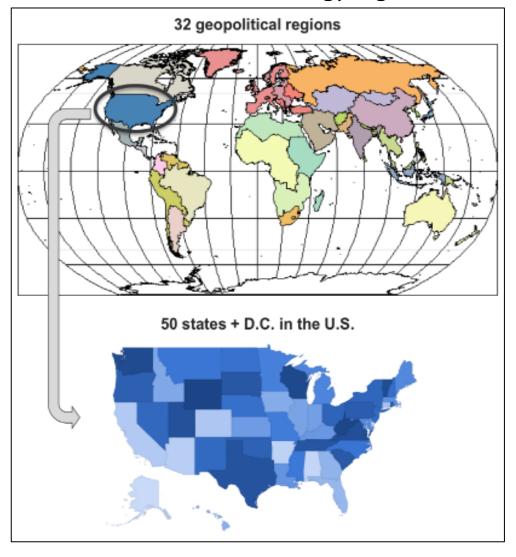
GHG emissions

Global mean temperature

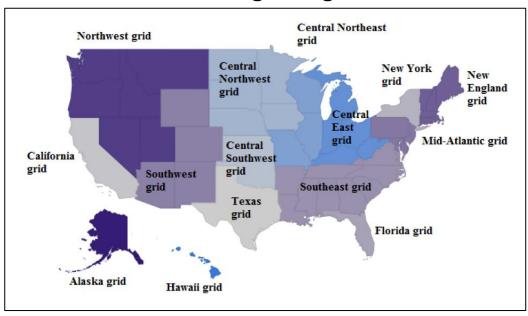
Environmental

Air pollutant emissions

Water use


Health impacts

GCAM documentation: http://jgcri.github.io/gcam-doc/

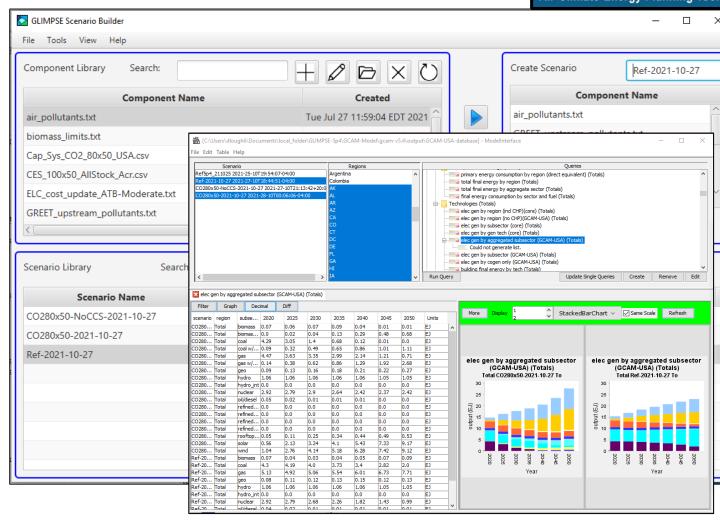


GCAM-USA spatial resolution

Socio-economic and energy regions

Electric grid regions

Land regions and water supply basins


EPA GLIMPSE Project

GLIMPSE: <u>G</u>CAM <u>L</u>ong-term <u>I</u>nteractive <u>M</u>ulti-<u>P</u>ollutant <u>S</u>cenario <u>E</u>valuator

Decision support system

- GLIMPSE graphical user interface for GCAM
- Supports exploratory analyses
 - Constructing scenarios
 - Managing GCAM execution
 - Visualizing results
- Facilitates policy evaluation
 - Technology market share targets
 - Technology and fuel subsidies or taxes
 - Pollutant taxes and caps
 - Technology availability
- Operational modes
 - Test specific policy or scenario
 - Outline goals; GCAM identifies strategy

Scenario "levers" supported by GLIMPSE

Policy levers

Emissions:

- tax
- reduction target or cap

Technologies:

- subsidy
- market share targets:
 - + Renewable Portfolio Standards
 - + EV market share targets
 - + High efficiency technologies
 - + Biofuels
- specific output targets
 - + e.g. offshore wind

Fuel prices:

- coal, natural gas, oil, and biomass

Technology attributes:

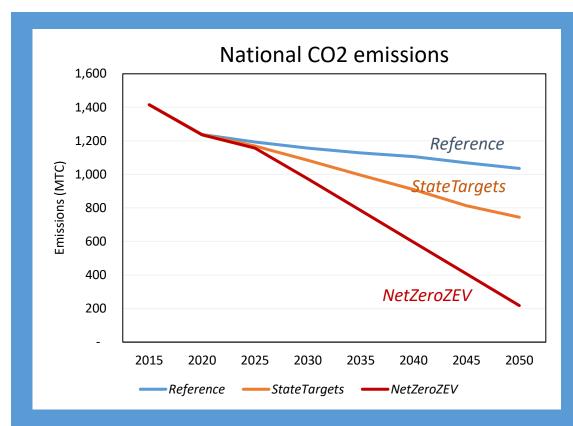
- availability
- cost
- efficiency
- lifetime

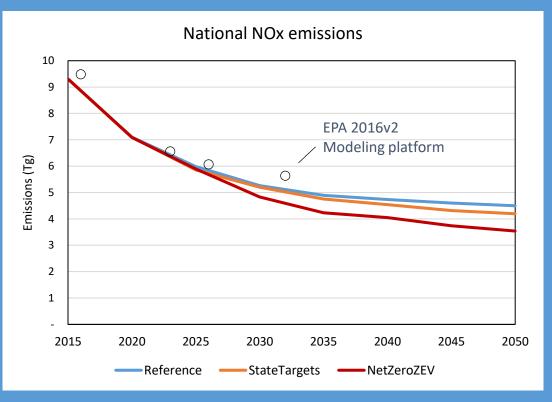
Behavior and choice:

 technology preference or bias (via shareweights)

Application

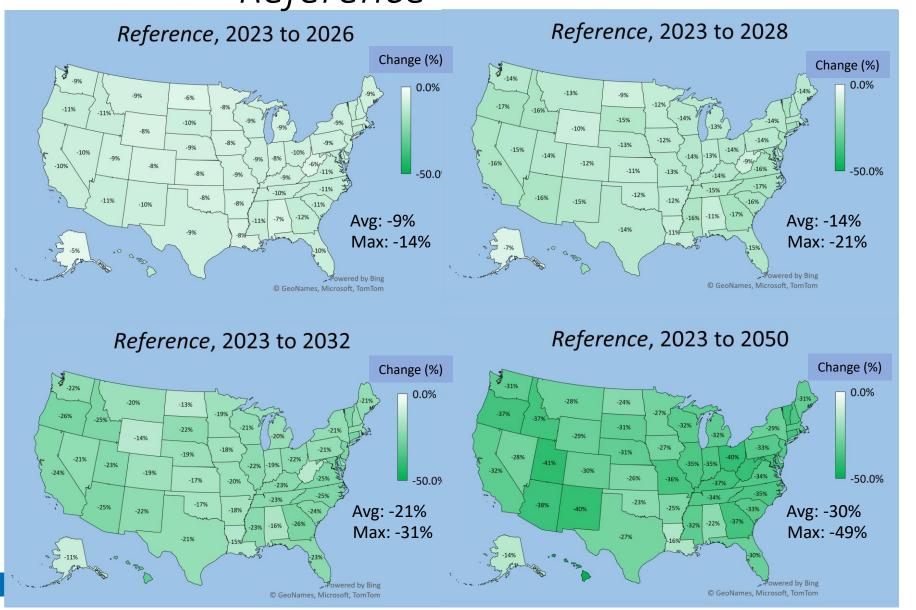
Exploring the air pollutant emission co-benefits deep decarbonization pathways strategies




Scenario Design

- *Reference*: A baseline scenario that includes:
 - limited GHG mitigation and no additional air pollutant control requirements
- StateTargets: A mitigation scenario that includes:
 - State GHG reduction goals, implemented as regional CO2 targets
 - New CA light-duty electrification targets adopted by Section 177 states
 - Medium- and Heavy-Duty Electrification MOU adopted by signatory states
- NetZeroZEV: A mitigation scenario that includes:
 - A national, economy-wide declining CO2 cap reaches Net-Zero by 2050
 - Transportation electrification targets in *StateTargets* adopted nationally

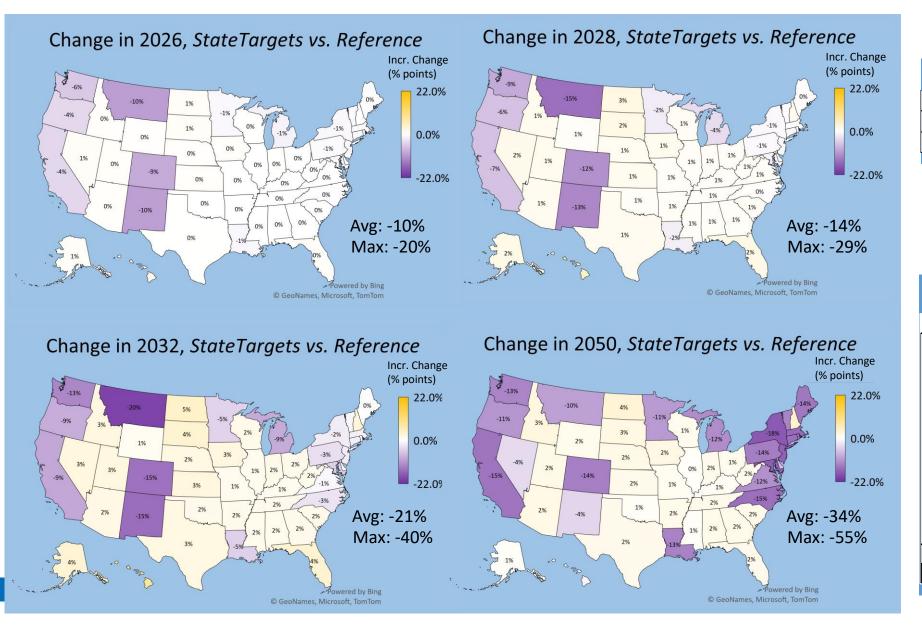
National CO2 and NOx projections from GCAM



	2023	2026	2028	2032	2050
StateTargets	-1.2%	-2.9%	-4.5%	-8.4%	-28%
NetZeroZEV	-1.9%	-5.6%	-11%	-22%	-79%

	2023	2026	2028	2032	2050
StateTargets	-1.2%	-2.0%	-1.8%	-2.2%	-7.0%
NetZeroZEV	-0.9%	-2.7%	-5.3%	-10%	-21%

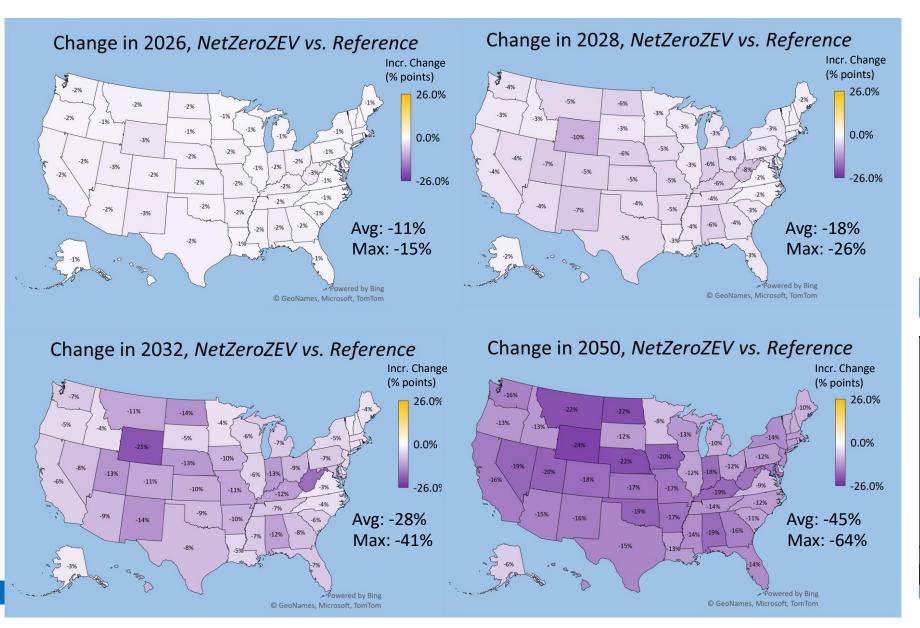
Spatial distribution of NOx reductions in *Reference*



National NOx vs. 2023					
Scenario	2026	2028	3032	2050	
Reference	-9%	-14%	-21%	-30%	

Stat	e-level I	VOx vs	. 2023	3
	2026	2028	2032	2050
NY	-9%	-14%	-21%	-29%
NJ	-11%	-17%	-25%	-34%
PA	-9%	-14%	-21%	-33%
СТ	-12%	-17%	-26%	-36%
ОН	-10%	-14%	-22%	-40%
WV	-6%	-9%	-14%	-39%
VA	-11%	-16%	-25%	-34%
MD	-12%	-18%	-27%	-38%
MI	-9%	-13%	-20%	-32%
KY	-9%	-14%	-23%	-37%
IN	-8%	-13%	-19%	-35%
Other	-1%	-2%	-3%	-5%
All states	-6.0%	-9.0%	-14%	-20%

Additional NOx reductions from StateTargets



National NOx vs. 2023				
Scenario	2026	2028	3032	2050
Reference	-9%	-14%	-21%	-30%
StateTargets	-10%	-14%	-21%	-34%

Stat	e-level l	VOx vs	. 2023	
	2026	2028	2032	2050
NY	-10%	-15%	-23%	-47%
NJ	-12%	-17%	-27%	-50%
PA	-10%	-14%	-24%	-47%
СТ	-13%	-18%	-27%	-51%
ОН	-10%	-14%	-21%	-38%
WV	-6%	-8%	-12%	-38%
VA	-11%	-16%	-25%	-45%
MD	-13%	-19%	-32%	-55%
MI	-10%	-17%	-29%	-44%
KY	-9%	-14%	-21%	-36%
IN	-8%	-12%	-18%	-33%
Other	-1%	-2%	-3%	-5%
Total	-6.4%	-9.3%	-15%	-28%

Additional NOx reductions from NetZeroZEV

National NOx vs. 2023					
Scenario	2026	2028	3032	2050	
Reference	-9%	-14%	-21%	-30%	
StateTargets	-10%	-14%	-21%	-34%	
NetZeroZEV	-11%	-18%	-28%	-44%	

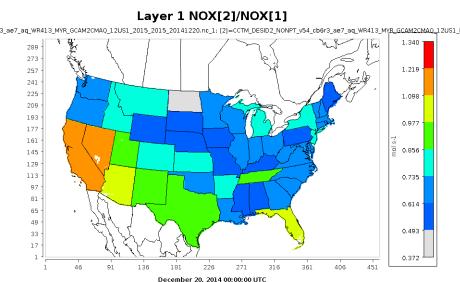
State-level NOx vs. 2023						
	2026	2028	2032	2050		
NY	-11%	-17%	-26%	-44%		
NJ	-13%	-19%	-30%	-48%		
PA	-11%	-17%	-27%	-45%		
СТ	-13%	-20%	-29%	-49%		
ОН	-12%	-19%	-31%	-52%		
WV	-9%	-17%	-32%	-57%		
VA	-12%	-18%	-28%	-43%		
MD	-14%	-22%	-34%	-54%		
MI	-10%	-17%	-27%	-42%		
KY	-12%	-20%	-35%	-56%		
IN	-11%	-19%	-32%	-53%		
Other	-2%	-3%	-4%	-7%		
Total	-6.9%	-11%	-17%	-28%		

Linking GCAM to CMAQ

 Energy system models such as GCAM and chemical transport models such as CMAQ operate on very different spatial and temporal scales

GCAM...

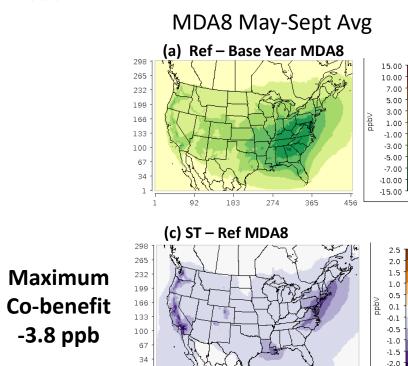
- spatial: global coverage, often with 32 "regions", where each region might be a single large country (US, China) or a collection of countries (Eastern Africa, Northern South America). We are using GCAM-USA, which uses the same 31 other global regions as GCAM, but the US is broken down into 50 states + DC.
- temporal: 5-year time steps to around 2050

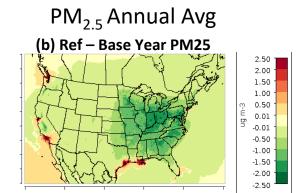

CMAQ...

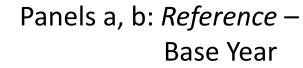
- spatial: typically continental US, 12km x 12 km grids, sometimes finer (4 km x 4 km) for a region like the Chesapeake Bay, or finer for an urban area
- temporal: time steps of a few minutes, outputs typically hourly, simulations usually 1
 year or less in duration

Procedure

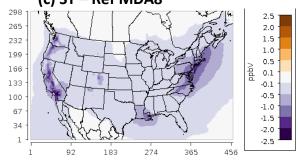
- Employ new emissions module in CMAQ (Murphy et al., Geosci Model Dev 2021)
- Apply regional (state level) and sectoral scaling factors for NOx, SO2, primary PM25, VOCs, and NH3
 - applied to sources modeled by GCAM, i.e., those related to energy system.
 While GCAM has an ag sector, we are not linking changes in cropland simulated by GCAM to changes in fertilizer application

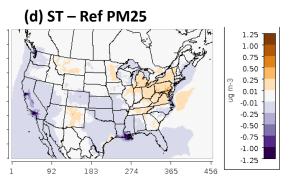

Ratio of NOx NONPT (area) emissions, Ref2050 to 2015.


Scaling factors follow state boundaries, as specified via instructions given to CMAQ based on GCAM simulations


We are applying scaling factors like this for 11 emissions sectors

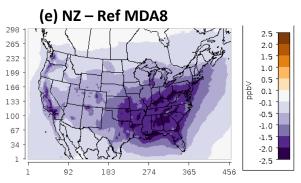
CMAQ MDA8* and PM_{2.5} Concentration Changes from 2015

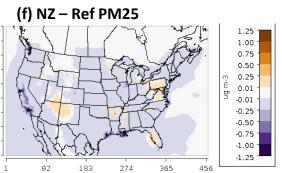




Panels c, d: StateTargets – Reference

Panels e, f: NetZeroZEV -Reference

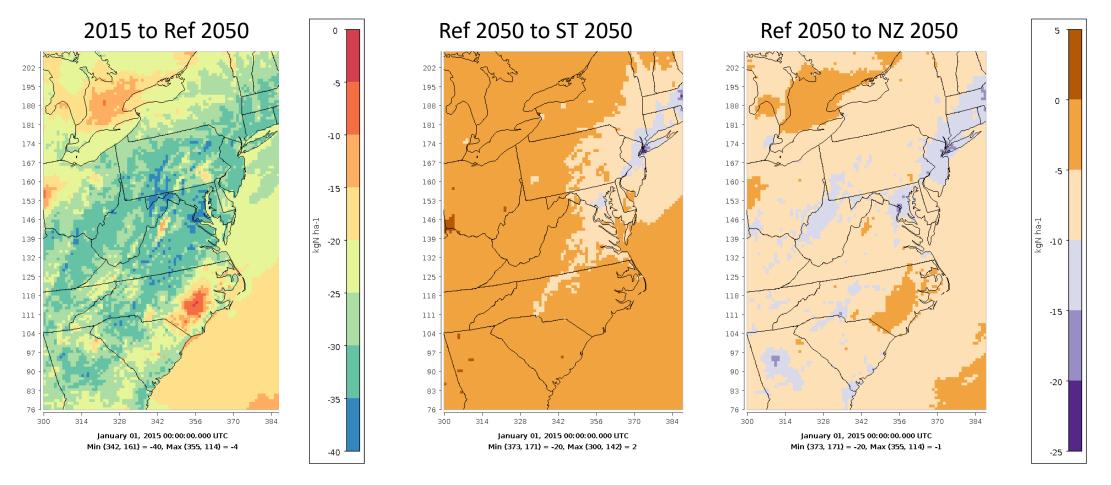




Maximum Co-benefit

 $-14.1 \, \mu g/m^3$

Maximum Co-benefit -4.1 ppb



Maximum Co-benefit -9.0 μg/m³ *MDA8: Maximum Daily 8-Hour Average Ozone

Relative Changes in total N Deposition

Note: these are all relative differences, in percent. Ignore the kg N ha-1 label on the legend!

A few further details...

- All simulations used 2015 meteorology
- Future simulations used GCAM projections for 2050.
 - Plan to focus on 2035 for next set of simulations conducted specifically for Chesapeake Bay program
- These simulations used CMAQ's M3DRY deposition option
 - Plan to use STAGE for next set of runs; among other differences, separately calculates deposition to different landuse categories within a grid cell

Discussion

GCAM-to-CMAQ Emission Sector Mapping

Eleven GCAM source categories are mapped to CMAQ emission streams and scaled:

- 1. Point non-biomass electricity generating utilities (ptegu)
- 2. Point non-EGU industrial sources including biomass electricity generation (ptnonipm)
- Oil and gas sources, including refinery and pipeline emissions with national-average scaling (oilgas)
- 4. Area sources including residential and commercial building energy use, and regional biomass production for energy and biodiesel feedstocks (nonpt)
- 5. Residential wood combustion (rwc)
- 6. Onroad diesel vehicles (onroad)
- 7. Onroad gasoline vehicles (onroad)
- 8. Passenger and freight rail (rail)
- 9. Airports (air)
- 10. Commercial marine vessels, classes 1 and 2, for domestic shipping (marine)
- 11. Commercial marine vessels, class 3, for international shipping (marine)

GCAM also tracks emissions in biomass from biomass and biofuel use, and in other from Direct Air Capture and other sources not listed above

GCAM Source Categories

ptnonipm ptegu oilgas nonpt

onroad

rwc

air rail

marine

other

biomass