

Expert Panel Report on Oyster BMP for Restoration & Harvest

Sustainable Fisheries GIT
2023 Winter Meeting
March 1, 2023

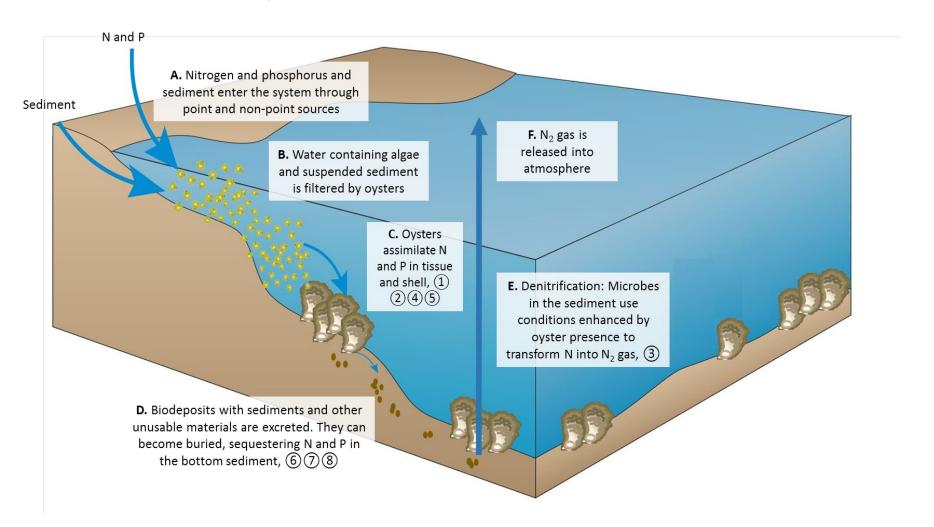
Olivia Caretti, Oyster Recovery Partnership

Oyster BMP Approval Timeline

Jan 30 – Report posted

Feb 7 – Webinar 1: Recommendations for Oyster Reef Enhanced Denitrification Protocols

Feb 14 – Webinar 2: Recommendations for Oyster Assimilation Protocols


March 1 – Present at Fisheries GIT Meeting

March 10 – Feedback due to oysterBMPresponse@oysterrecovery.org

April-May – Revision, Additional presentations, Approval

Oysters and Water Quality

Oysters can reduce nutrients and suspended sediment by filtering particles from water column

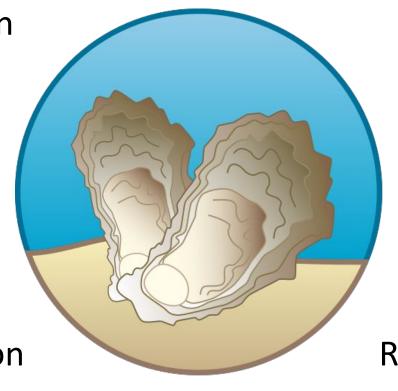
Oyster BMP Expert Panel Members

Jeff Cornwell (Chair), UMCES
Suzanne Bricker, NOAA National Centers for Coastal Ocean Science
Andy Lacatell, The Nature Conservancy
Mark Luckenbach, Virginia Institute of Marine Science
Frank Marenghi, Maryland DNR
Chris Moore, Chesapeake Bay Foundation
Matt Parker, Maryland Sea Grant
Ken Paynter, UMD Marine, Estuarine, Environmental Sciences
Julie Rose, NOAA Northeast Fisheries Science Center
Larry Sanford, UMCES
Bill Wolinski, Talbot County Department of Public Works

Advisors & Coordinators

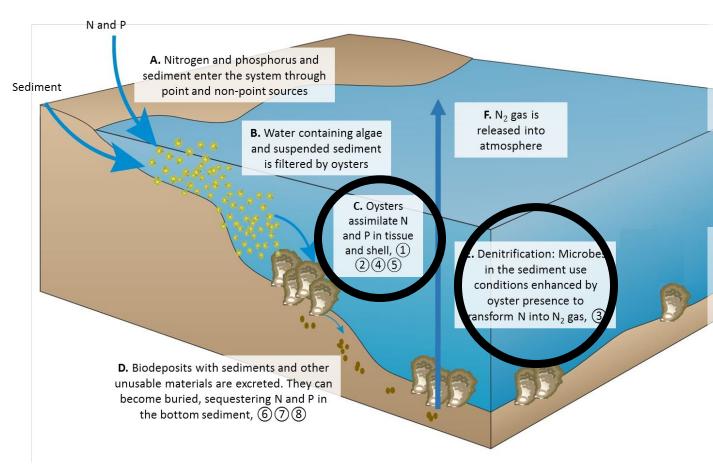
Lew Linker, US EPA Chesapeake Bay Program Office
Jeff Sweeney/ Matt Johnson, US EPA Chesapeake Bay Program Office
Jeremy Hanson, US EPA Chesapeake Bay Program Office
Lucinda Power, US EPA Chesapeake Bay Program Office
Olivia Caretti, Oyster Recovery Partnership
Julie Reichert-Nguyen, Oyster Recovery Partnership, NOAA Chesapeake Bay Office
Ward Slacum, Oyster Recovery Partnership

Special Thanks to: Lisa Kellogg (VIMS), Lynn Fegley (MDNR), Emily French (ORP), Elizabeth Franks (ORP), Paige Hobaugh (CBP), Emilie Franke (CBP), Kyle Runion (CBP), the many scientists who shared data to support this effort, support from Bay Program, modelers, and support staff



Elements of the Oyster BMP Toolset

Aquaculture-Assimilation Approved



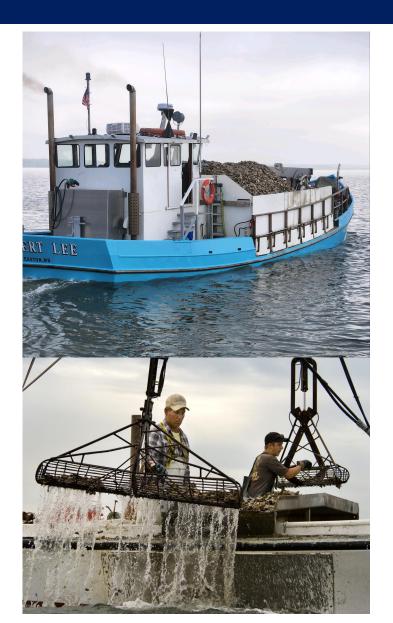
Harvest-Assimilation *Under Review*

Restoration-Denitrification *Under Review*

Restoration-Assimilation *Under Review*

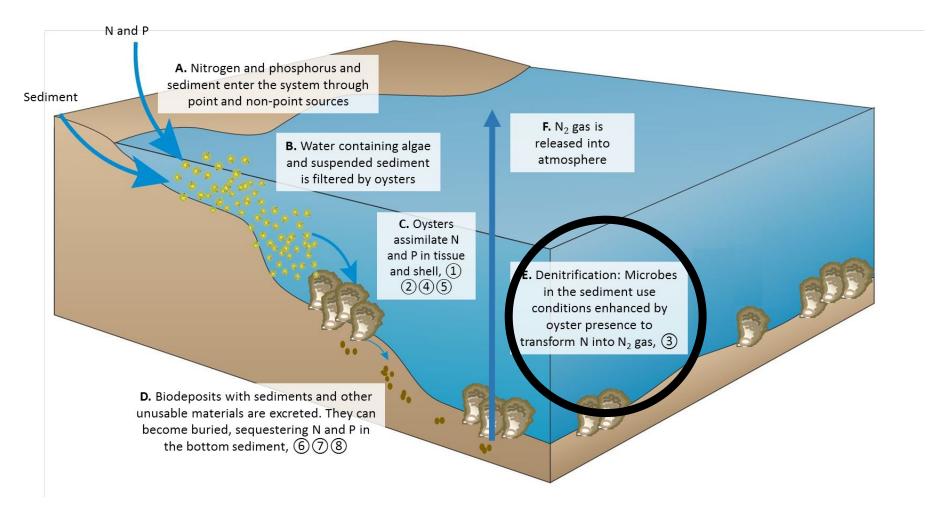
Recommended Practices & Protocols

Oyster Practices


J & K. Oyster reef restoration using (J) hatchery-produced oysters & (K) substrate addition

F. Licensed oyster harvest using hatchery-produced oysters

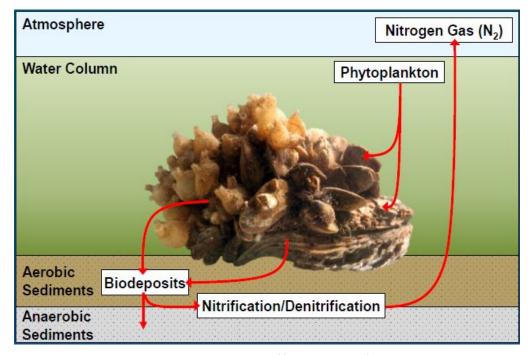
Oyster Protocols


- 1. Nitrogen Assimilation in Oyster Tissue
- 2. Nitrogen Assimilation in Oyster Shell
- 3. Enhanced Denitrification
- 4. Phosphorus Assimilation in Oyster Tissues
- 5. Phosphorus Assimilation in Oyster Shell

Oyster BMP Approach

- Oyster biomass required to estimate reduction
 - Restoration: Biomass increases on reef
 - Harvest: Biomass harvested
- Qualifying conditions ensure that reduction occurs at BMP site
- Default estimates use data representative of Bay
- Guidelines provided for when and how to develop site-specific estimates
 - Restoration: Large substrates

Restoration-Denitrification

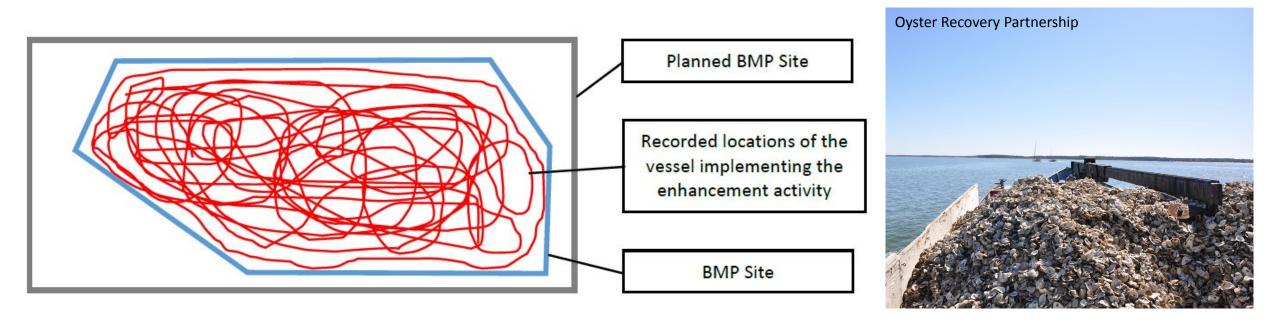


Oyster Practice(s): Oyster reef restoration using (J) hatchery-produced oysters & (K) substrate addition

The Panel's Approach

 Oyster tissue biomass is used to help estimate removal of N and N₂ under different conditions

- Denitrification is an ongoing process
- If the reef biomass does not decrease substantially, the credit will be **continuous**.
- Re-evaluate biomass every 3 years



Kellogg et al. 2013

Reduction Effectiveness: Stepwise Determination

- 1. Identify the BMP site and determine BMP site area
- 2. Document qualifying enhancement activity
- 3. Determine appropriate baseline approach
- 4. Assess baseline and post-restoration tissue biomass
- 5. Determine denitrification enhancement per unit area
- 6. Determine total nitrogen removal attributable to enhanced DNF using enhancement per unit area and BMP site area

1. Identify the BMP Site

BMP site – actual location of enhancement activities

2. Document Qualifying Enhancement Activities

Addition of hatchery-produced oysters and/or suitable substrate

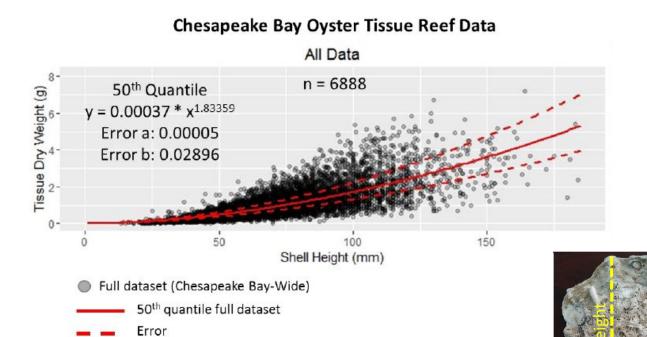
Small Substrates

Large Substrates

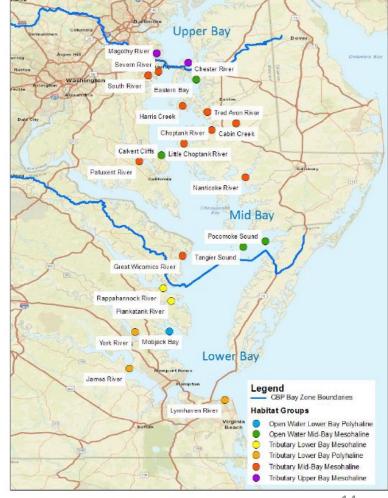
3. Determine Baseline Approach

Pre-restoration Biomass

- Biomass measured at BMP Site
- Within 2 years prior to restoration


Representative Site

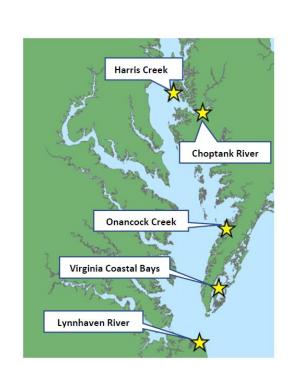
- Non-restored site representative of BMP site
- Within same basin
- Data collected concurrent with first post-restoration survey at BMP site

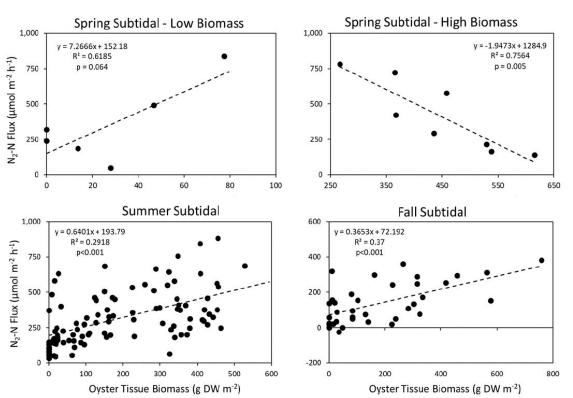

4. Baseline and Post-restoration Biomass

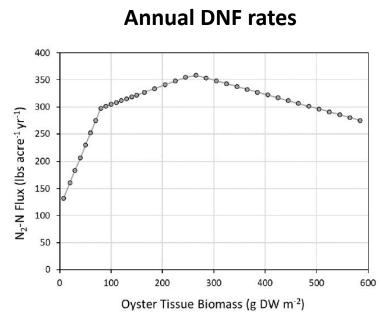
1. **Default regression** (small substrate only)

- 2. Direct measurement
- 3. Site-specific regression

5. Determine denitrification enhancement per unit area


Recommended Approaches:

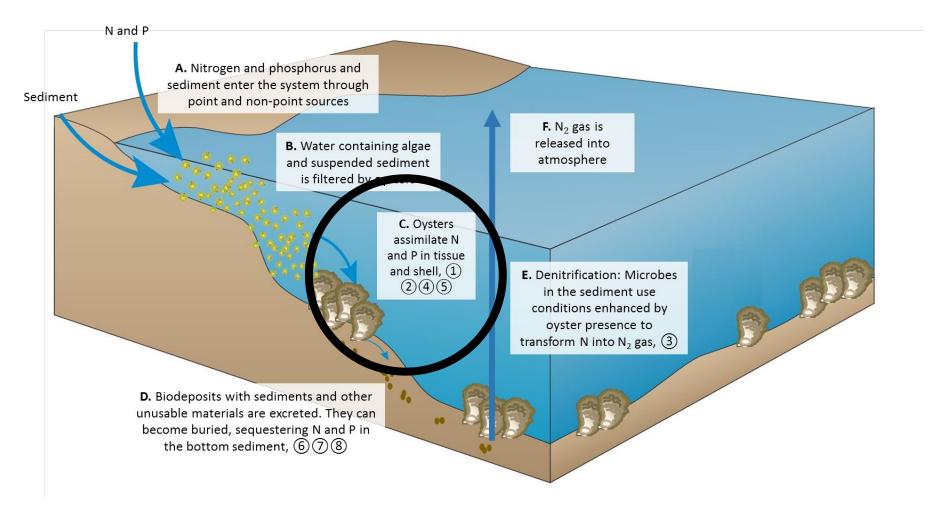

- 1. Default estimates regardless of location (Panel generated)
- 2. Site-specific estimates developed by BMP implementer, in coordination with the State and CBP, using the Panel's recommended method


- Directly measuring denitrification is challenging
- Denitrification rates directly related to oyster tissue biomass

5. Determine denitrification enhancement per unit area

Season-specific regressions were used to generate **annual denitrification** rates as a function of oyster tissue biomass

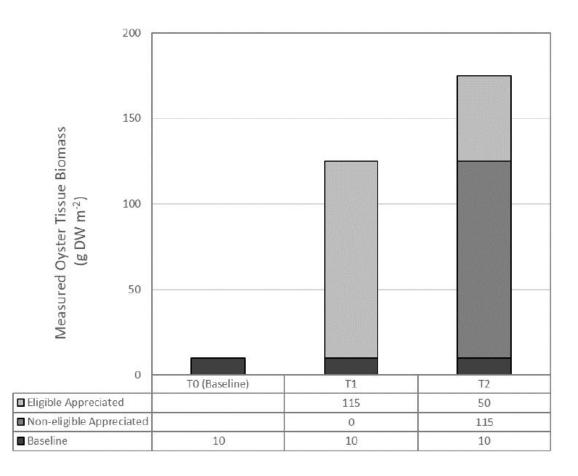
5. Determine denitrification enhancement per unit area


Annual denitrification rates used to construct lookup table

	2.3110			Post	-resto	ration	Oyster	Biom	ass Rai	nge (g	DW m	-2)		
R	ced Nitrogen emoval acre ⁻¹ yr ⁻¹)	15 - 24.9	25 - 34.9	35 - 44.9	45 - 54.9	55 - 64.9	65 - 74.9	75 - 84.9	85 - 94.9	95 - 104.9	105 - 114.9	115 - 124.9	125 - 134.9	135 - 144.9
	0 - 14.9	29	51	74	97	120	143	165	169	172	176	179	183	186
e	15 - 24.9		23	46	68	91	114	137	140	144	147	151	154	158
gur	25 - 34.9	5.5		23	46	68	91	114	118	121	124	128	131	135
s Re	35 - 44.9				23	46	68	91	95	98	102	105	109	112
าสร	45 - 54.9					23	46	68	72	75	79	82	86	89
yster Bion (g DW m²)	55 - 64.9						23	46	49	53	56	59	63	66
er B W	65 - 74.9							23	26	30	33	37	40	44
ste y D	75 - 84.9								3	7	10	14	17	21
60	85 - 94.9									3	7	10	14	17
line	95 - 104.9										3	7	10	14
Baseline Oyster Biomass Range (g DW m²)	105 - 114.9											3	7	10
B	115 - 124.9												3	7
	125 - 134.9													3

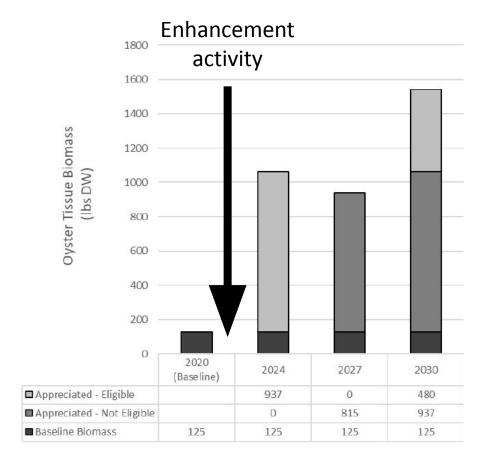
Enhanced N removal = Post-restoration biomass — Baseline biomass

Total N removed = Enhanced N * BMP site area


Restoration-Assimilation

Oyster Practice(s): Oyster reef restoration using (J) hatchery-produced oysters & (K) substrate addition

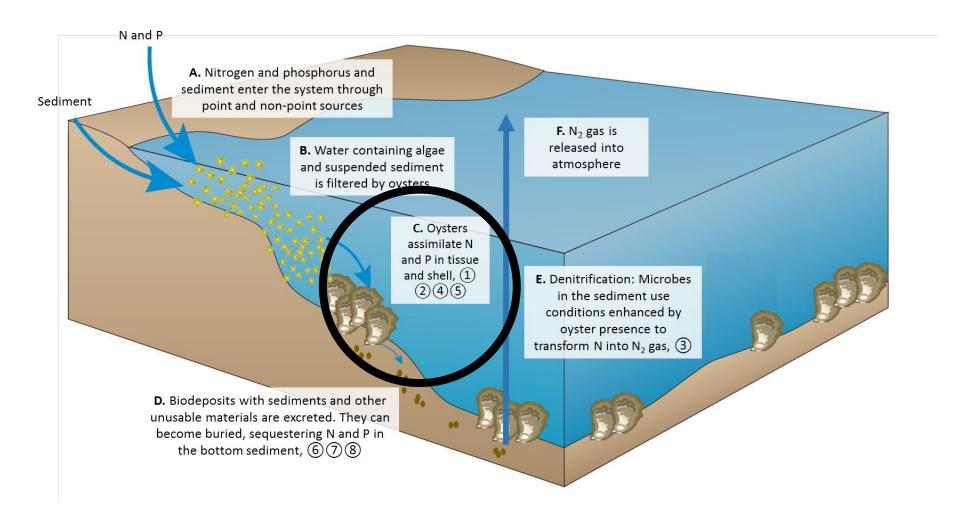
The Panel's Approach


- Oyster tissue & shell biomass are used to estimate removal of N & P
- Net removal at reef-scale occurs as long as oyster biomass is stable or increasing
- Only appreciated biomass is credited
- Credit can be received incrementally when biomass is assessed

Reduction Effectiveness: Determination Steps

- 1. Identify BMP site and determine BMP site area
- 2. Document qualifying enhancement activity
- 3. Determine appropriate baseline approach
- Assess baseline and post-restoration biomass, extrapolate to determine total biomass for the BMP site
- 5. Determine eligible appreciated biomass
- 6. Convert eligible appreciated biomass to total N & P removed

5. Determine Eligible Appreciated Biomass & 6. Estimate N & P Removed



Use percent N & P content to convert to N & P removed

Parameter	Percent N	Percent P
Tissue	8.2	0.9
Shell	0.2	0.04

- Post-restoration biomass > baseline biomass AND > previous maximum biomass
- Eligible appreciated biomass can be measured and credited over lifetime of BMP site

Harvest-Assimilation

Oyster Practice(s): Licensed oyster harvest using hatchery-produced oysters (F)

The Panel's Approach

- Oyster tissue biomass is used to estimate removal of N & P
- Aquaculture BMP approach
- Challenging to assess baseline biomass
- The Panel developed strict qualifying conditions to account for this

Qualifying Conditions

- Qualifying enhancement activity occurred (hatchery-produced oysters)
- BMP site must be open to licensed oyster harvest
- Planted oysters should be < 2in
- At time of harvest, oysters should be alive, of legal harvest size, harvested from BMP site
- Oysters must be harvested within harvest crediting timeframe

Reduction Effectiveness: Determination Steps

- 1. Identify BMP site and determine BMP site area
- 2. Document qualifying enhancement activity
- Determine maximum harvest allowance using default or site-specific spat survival rate
- 4. Determine harvest crediting timeframe
- 5. Determine N & P removed via harvest

3. Maximum Harvest Allowance

- Avoid crediting pre-existing oyster populations that are harvested along with hatchery-produced oysters
- Generated a cap on how many planted oysters could receive credit

Average **spat survival rate** from time of planting to harvest

- **Default = 3%**
- Site-specific survival rate can be measured

4. Harvest Crediting Timeframe

Enhancement

Year 0

Additional Enhancement

Harvest Crediting Timeframe
3 years

Credit Time Lag

Oysters @ Harvest Size Default = Year 2 Site-Specific = Measure Maximum Harvest Timeframe

Year 5

5. Determine N & P Removed from Harvest

- Oyster tissue biomass
- Default tissue content
 - N & P content depends on harvest size
 - Extrapolate based on # oysters harvested
- Site-specific tissue content

 If oysters not measured, use 3in size class

Table 6.4. Recommended default nitrogen and phosphorus content of diploid oyster tissue. Oyster size class based on shell height measurements.

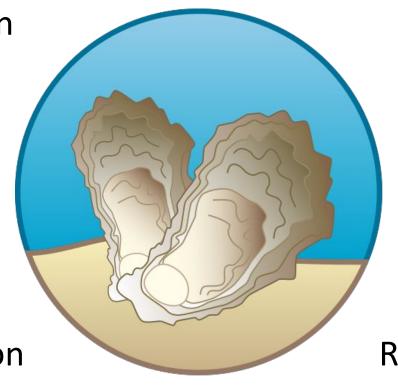

Oyster size	Midpoint	Midpoint	Tissue dry	Content in oy	ster tissue (g oyster-1)
class (in)	(in)	(mm)	weight (g oyster ⁻¹)	Nitrogen	Phosphorus
3.00-3.49	3	76	1.06	0.09	0.01
3.50-4.49	4	102	1.81	0.15	0.02
4.50-5.49	5	127	2.70	0.22	0.02
≥ 5.50	6	152	3.74	0.31	0.03

Table 6.5. Default nutrient reductions

(lbs./million oysters) 198	(lbs./million oysters)
	22
130	22
331	44
485	44
683	66

Elements of the Oyster BMP Toolset

Aquaculture-Assimilation Approved

Harvest-Assimilation *Under Review*

Restoration-Denitrification *Under Review*

Restoration-Assimilation *Under Review*

Oyster BMP Summary

- The Panel concluded there was sufficient science to support development of 3 new oyster BMPs
- Oyster biomass data are required to estimate reduction and verify that enhancement activity led to increase in oysters
- Panel developed tools and default estimates to estimate reduction
 - Guidance available for when and how to generate site-specific estimates
- Panel developed comprehensive verification guidelines and qualifying conditions to minimize over crediting
- Unintended consequences were minimal

Oyster BMP Summary

Future research

- Large substrates (e.g., engineered structures)
- Denitrification on intertidal reefs
- Spatial and seasonal variability in denitrification
- Spat survivorship estimates on harvested reefs
- N & P assimilation in harvested shell
- Denitrification associated with other practices (aquaculture/harvest)

Feedback is due March 10th

Contact Olivia Caretti with feedback & additional questions: oysterBMPresponse@oysterrecovery.org