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Abstract: Moving toward ecosystem-based fisheries management requires integration of biotic and abiotic factors into our
understanding of population dynamics. Using blue crab (Callinectes sapidus) in the Chesapeake Bay as a model system, we
applied Gaussian Graphical Models (GGMs) to understand the influence of climatic, water quality, and biotic variables on
estimates of key indices of blue crab recruitment for 1990-2017. Variables included the North Atlantic Oscillation (NAO),
Susquehanna River discharge, wind forcing, hypoxic volume, submerged aquatic vegetation, and the catch per unit effort
of striped bass (Morone saxatilis). Direct effects of age-1+ crabs and summer salinity on recruitment were significant. Phase of
the NAO in summer and spring, summer and winter discharge, and hypoxic volume indirectly affected the recruitment. A
simulation study showed that GGM model selection achieved nominal coverage and outperformed structural equation mod-
eling (SEM) and Multivariate Adaptive Regression Splines (MARS). GGMs have the potential to improve ecosystem-based
management of blue crabs in Chesapeake Bay. Specifically, the approach can be used to examine ecosystem impacts on
blue crab productivity and to improve forecasts of blue crab recruitment.

Résumé : Le passage a une gestion écosystémique des péches nécessite I'intégration de facteurs biotiques et abiotiques a la
compréhension de la dynamique des populations. En utilisant le crabe bleu (Callinectes sapidus) de la baie de Chesapeake
comme systeme modele, nous avons appliqué des modeles graphiques gaussiens (MGGs) pour comprendre 'influence de
variables climatiques, biotiques et relatives a la qualité de I’eau sur les estimations d’indices clés du recrutement de crabes
bleus pour la période de 1990 a 2017. Ces variables comprennent I’oscillation nord-atlantique (ONA), le débit du fleuve Sus-
quehanna, le forcage éolien, le volume hypoxique, la végétation aquatique immergée et les prises par unité d’effort de bars
d’Amérique (Morone saxatilis). Les effets directs des crabes de plus d’un an et de la salinité estivale sur le recrutement sont
significatifs. La phase de ’ONA en été et au printemps, le débit estival et hivernal et le volume hypoxique ont des effets indi-
rects sur le recrutement. Une étude de simulation montre que la sélection de modéles MGG atteint la couverture nominale
et donne de meilleurs résultats que les modeles d’équations structurales (MES) et la régression multivariée par splines adap-
tatives (MARS). Les MGG pourraient améliorer la gestion écosystémique des crabes bleus dans la baie de Chesapeake.
L’approche peut notamment étre utilisée pour examiner les impacts écosystémiques sur la productivité des crabes bleus et
pour améliorer les projections de recrutement de crabes bleus. [Traduit par la Rédaction]

interaction pathways within the fishery ecosystem is one way to
help direct limited resources when initiating ecosystem-based
fisheries management.

The blue crab (Callinectes sapidus) is an important component of
estuarine ecosystems throughout its range along the Atlantic sea-
board of North and South America. Blue crab supports important
fisheries in many parts of its range, particularly in the Chesa-
peake Bay (Kennedy et al. 2007). In the Chesapeake Bay (herein-
after referred to as the Bay), blue crab is managed by single
species limit and target reference points for biomass and exploi-

Introduction

The importance of conducting fisheries management within
an ecosystem-based context is becoming increasingly clear (Link
2010). Often ecosystem-based approaches are motivated by a
desire to account for the impacts of a fishery on nontarget species
(Crowder et al. 2008) or by concerns over providing sufficient for-
age biomass to support ecosystem services (Buchheister et al.
2017; Pikitch et al. 2012). Environmental impacts on fisheries pro-
duction, whether through helping to explain variability in stock-
recruitment relationships (Carscadden et al. 2000) or as a result

of regime shifts (Chavez et al. 2003) or, more recently, in response
to climate change (Nye et al. 2010) are other common motivations
for ecosystem-based approaches. Tools for incorporating the eco-
system in analyses to understand population dynamics drivers
range in complexity from the addition of environmental corre-
lates to single species models (Maunder and Watters 2003) to
whole ecosystem models containing dozens of functional groups
(Buchheister et al. 2017). Assessing the importance of different

tation rate (Miller et al. 2011). However, there is growing interest in
the development of ecosystem-based fisheries management for
the Bay as a whole (Chesapeake Fishery Ecosystem Plan Technical
Advisory Panel 2006) and for blue crab in particular (Maryland Sea
Grant 2010). The abiotic and biotic factors that have driven devel-
opment of ecosystem-based fisheries management in other sys-
tems and species are evident for blue crab. Environmental factors
have been shown to impact recruitment (Applegate 1983; Lipcius
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and Van Engel 1990; Tang 1985). Previous research has suggested
roles for environmental factors in regulating crab populations
(Bauer and Miller 2010a, 2010b; Hurt et al. 1979). Recent research
has examined the potential impacts of climate change on the dy-
namics of blue crab populations (Glandon et al. 2018, 2019). Troph-
odynamic relationships involving blue crab in the Bay have been
well described (Maryland Sea Grant 2010). A full ecosystem model
that includes adult and juvenile blue crab as separate nodes in the
food web has also been developed (Ma et al. 2010). However, an
ecosystem approach to managing blue crab in the Bay has yet to
be adopted.

Empirical approaches exist to identify the important abiotic
and biotic factors forcing the dynamics of fishery ecosystems.
Methratta and Link (2006) examined univariate and multivariate
descriptors of ecosystem structure to identify a set of simple indi-
cators. Although these approaches may be useful as system refer-
ences, an approach that links the dynamics of individual species
to abiotic and biotic drivers would still have utility for under-
standing causation and for projections. Simple multiple reg-
ression approaches are inappropriate because of the common
presence of multicollinearity and strong autocorrelation in data
from fishery ecosystems. Multivariate Adaptive Regression Splines
(MARS), a class of flexible regression models that approximate
high-dimensional data under nonlinearity, is an approach that
can address these concerns (Friedman 1991). MARS has the advant-
age of computational efficiency given the gradient-based schemes
and have been applied in estimating graphical models (Ayyildiz
et al. 2017). Structural equation modeling (SEM) is another poten-
tial approach. SEM seeks to model empirical data to reveal the
underlying relationships among the data categories, thereby
testing alternative hypotheses of causation (Fan et al. 2016; Grace
et al. 2010, 2012). The underlying relationship is quantified
through latent variables. SEM approaches have the advantages
that they offer flexibility in the form of the relationship among
data classes and allow alternative hypotheses to be tested. SEM
have been estimated through simple correlations, maximum like-
lihood, and Bayesian methods (Grace et al. 2010). For example, Fu
et al. (2012) used partial least squares regression within an SEM
framework to assess the importance of fisheries, trophodynamic,
and environmental drivers of productivity in 13 northern boreal
marine ecosystems. These authors concluded that temperature-
related variables were correlated to total system biomass across
ecosystems and that trophodynamic factors were most related to
indices of ecosystem complexity. These analyses demonstrate the
advances in understanding that result from being able to test
multiple alternative hypotheses within a single analytical frame-
work. Yet the performance of these methods remains largely
unevaluated.

Empirical network analysis is an alternative approach that can
examine the effect of multiple simultaneous drivers on popula-
tion dynamics. There are at least two common approaches to
the application of empirical network analysis to understanding
abiotic and biotic impacts on a species: probabilistic belief net-
work analysis or Bayesian networks and Gaussian Graphical
Models (GGMs). A Bayesian network is an objective methodology
in which prior hypotheses regarding the nature, pattern, and
strength of interactions (paths) between nodes within a network
are used to estimate the posterior probabilities of each path or
sequence of paths (Scutari and Denis 2014; Varis 1995). However,
unless the network is relatively small (fewer than 30 nodes),
exact inferences in Bayesian networks are difficult to achieve due
to computational constraints (Cooper 1990).

GGMs can potentially overcome the computational constraints
of Bayesian networks approaches and represent a third alterna-
tive to MARS and SEM. GGMs represent a class of models of undir-
ected graphs in which two nodes are connected if and only if
the corresponding variables are conditionally independent given
other nodes in the graph (Koller and Friedman 2009; Rue and
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Held 2005). GGMs consider data to be distributed according to a
latent multivariate Gaussian distribution with the underlying
network structure encoded in the inverse covariance or precision
matrix. The functional form among dependent and independent
variables is linear under the multivariate Gaussian assumption
(Voorman et al. 2014), but flexibility can be achieved by transfor-
mations of the data. Liu et al. (2009) showed that conditional in-
dependence is maintained under monotonic and differentiable
transformation and proposed specifically a copula transforma-
tion to enable GGM-based analyses of data with non-normal mar-
ginal distributions. The sparsity and latent normality enable
GGMs of larger networks (n > ~100s; e.g., Jia et al. 2017; Ni et al.
2015). GGMs have received much interest and development in
the statistical and machine learning literature (Banerjee et al.
2008; Friedman et al. 2008, 2010; Meinshausen and Bithlmann
2006; Rue and Held 2005; Wang 2012, 2015; Yuan and Lin 2007).
To our knowledge, GGMs have not been used in fisheries
applications.

Here we apply GGMs to understand the relative importance of
climate, water quality, and biotic variables on the abundance and
variance of abundance estimates of blue crab in the Bay. We have
categorized the variables as climate, water quality, or biotic to
reflect previously published hypotheses on what controls blue
crab abundance. The role of abiotic and biotic factors or variables
in affecting the dynamics of blue crab can be represented as a
network of interactions (Fig. 1). The pathways through the net-
work and the relative importance of each pathway represent a
suite of hypotheses regarding how factors combine to influence
blue crab dynamics directly and indirectly. The likelihood of the
different influence pathways can be evaluated by their relative
probabilities.

We conducted a simulation study to compare the performance
of MARS, traditional Bayesian SEMs, and GGMs by generating
sample data from known networks. We then fit all models to
assess their structural learning sensitivity. Based on the perform-
ance of GGMs in the simulation, we use this framework to com-
pare three hypotheses regarding how environmental factors
affect blue crab recruitment. Our goal was to identify and rank
influence pathways in determining blue crab abundance as a
guide to developing an ecosystem approach to fisheries manage-
ment for the species.

Materials and methods

Our simulation study and application of GGMs was based on
factors that affect recruitment (age-0) of blue crab in the Bay. We
selected a suite of candidate independent variables representing
four categories of factors that may affect blue crab recruitment:
climate, water quality, external biotic, and internal population
dynamic. Appropriate multiple time lags were evaluated for all
factors and are described below (Table 1). We used data from
41 environmental variables to rank the strength of over 700 influ-
ence pathways on juvenile blue crab recruitment. The pathways
were organized into three hypotheses. We estimated GGMs from
the long-term data and conducted posterior simulations of blue
crab recruitment given different scenarios for the environmental
variables. Here we describe the data sources, the modeling pro-
cess, and the simulation study.

Blue crab variables

The abundance of blue crab in the Bay has been estimated
annually by the Winter Dredge Survey (WDS), a fishery-independent,
stratified random survey conducted at ~1200 stations each year
during winter months when blue crabs are inactive in the sedi-
ment (Sharov et al. 2003). Data were available for the winter 1989-
1990 (termed the 1990 winter) to winter 2017. Size thresholds are
used to separate age-0 recruit crabs from age-1+ adult crabs (Sharov
et al. 2003). Three approaches have been used to develop abundance
estimates: design-based (Sharov et al. 2003), model-assisted (Chen et
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Fig. 1. Schematic of pathways linking large-scale climatic processes and blue crab recruitment presented as different hypothesized
mediated effects of climate, water quality, and biotic factors, represented as (a) Hypothesis 1, (b) Hypothesis 2, and (c) Hypothesis 3: the
union of hypotheses 1 and 2. A fully connected graph (not shown) was also used to model lack of prior knowledge about ecosystem

impacts. NAO, North Atlantic Oscillation; DO, dissolved oxygen; SAV, submerged aquatic vegetation.
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Table 1. The timing and spatial coverage of the different indices used in the exploration of ecosystem effects on blue crab.
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al. 2004; Liang et al. 2017), and geostatistical (Jensen and Miller
2005). We used estimates of abundance from the model-assisted
approach (Fig. 2), which allows for a more comprehensive treat-
ment of sampling uncertainty (Liang et al. 2017).
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Fig. 2. Time series plot of design-based and Bayesian-calibrated estimates and standard errors (based on sampling and based on total
variance including crab distribution) of Chesapeake Bay-wide catch per unit effort (CPUE) in millions.
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We used several estimates of blue crab abundance from the
WDS (Table 1). The abundance of female age-1+ crabs measured
over the winter is referred to as the reproductive age-1+ abun-
dance, as these females will release offspring in May-September
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of the same year (McConaugha et al. 1983). The offspring spend a
period of time in the coastal ocean before re-entering the Bay in
August-November (van Montfrans et al. 1995). These “recruits”
continue to grow and become widely distributed throughout the
bay. The abundance of these age-0 recruits is estimated in the WDS
conducted in the subsequent year (Table 1). In analyses below we
also examine relationships with age-1+ abundance in the contem-
porary year in which recruitment was based (Table 1). Additionally,
we conducted analyses on the variation associated with estimates
of recruitment (see online Supplemental materials 1').

Climatic variables

We used the North Atlantic Oscillation (NAO), a broad-scale
synoptic index, to represent oceanic influences on early life
stages of blue crab. The NAO has been shown to have skill in
explaining recruitment patterns in a number of fish species in
the Mid-Atlantic Bight (Wood and Austin 2009) and to influence
spatial patterns of recruitment in blue crab (Colton et al. 2014). In
both papers, and in our analyses here, NAO data represent the pe-
riod in which early life stages are in the coastal ocean (i.e., the
year before age-0 crabs are surveyed in the WDS; Table 1). For our
analyses, NAO data were accessed from the US National Oceanic
and Atmospheric Administration’s National Center for Environ-
mental Prediction (https://www.cpc.ncep.noaa.gov/products/precip/
CWIlink/pna/nao.shtml). Data were summarized as 12 monthly mean
values for 1990-2018 so that time lags between NAO and blue crab
dynamics could be evaluated.

Previous research has shown the importance of wind forcing in
ensuring the return of final stage larval crab to the Bay in early
autumn (Johnson 1995). To represent the complex potential influ-
ence of wind speed on blue crab recruitment, we accessed data
from the US National Oceanic and Atmospheric Administration’s
National Climate Data Center for the airport at Norfolk, Virginia
(www.ncdc.noaa.gov/cdo-web/search?datasetid=GHCND). We used
the mean northwest wind speed in autumn and the cumulative
count of the number of autumn days with wind gusts greater
than the third quantile long-term wind speed (12 m-s ") for the year
prior to which the recruits were surveyed in the WDS (Table 1).

After entry, early instar crabs become widely distributed through-
out the lower half of the Bay (Orth and van Montfrans 1987). River
discharge is important in establishing and controlling salinity
gradients in the bay and likely affects crab distributions. Over 50%
of the freshwater entering the bay is derived from Susquehanna
River flow. Susquehanna River flow has been shown to affect cope-
pod dynamics (Kimmel and Roman 2004; Kimmel et al. 2006),
oyster recruitment (Kimmel and Newell 2007), and recruitment
in several fishes (Wood and Austin 2009), and these data were
used in our analyses to represent flow generally. Data were accessed
from a United States Geological Survey flow gauge at a dam near
Conowingo, Maryland, on the Susquehanna River (https:/fwaterdata.
usgs.gov/usa/nwis/uv?01578310). Data were accessed as 12 monthly
means of daily flow for the period before age-0 crabs are surveyed
in the WDS (Table 1).

Water quality variables

Water temperature and salinity influence the abundance, dis-
tribution, and productivity of a range of species in the Bay (e.g.,
Bauer and Miller 2010a, 2010b). Water quality monitoring has
been conducted biweekly during summer and monthly other-
wise for many years at long-term monitoring stations in the main
stem of the bay. To account for temperature and salinity effects,
we used bay-wide summer mean surface temperature and salinity
and the mean surface temperature and salinity during autumn
months for the lower bay (datahub.chesapeakebay.net) for the
year before age-0 crabs were surveyed in the WDS (Table 1).
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Hypoxia is a characteristic feature of the Bay during summer
months. Hypoxia is known to alter the distribution and mortality
rates of blue crabs (Eggleston et al. 2005), and hypoxic waters
have also been shown to alter the distribution of blue crab at sub-
lethal levels (Eby and Crowder 2002). We accessed summer mean
bottom dissolved oxygen concentrations and estimates of the
summer time extent and volume of hypoxia from the United
States Environmental Protection Agency’s Chesapeake Bay Pro-
gram’s Data Hub (datahub.chesapeakebay.net) using a three-
dimensional interpolator (Bahner 2006) to index potential
settlement habitat for recruits that are surveyed in the WDS in
the subsequent winter.

Biotic variables

Submerged aquatic vegetation (SAV) is believed to be impor-
tant for juvenile blue crab, as it provides structure, thereby
reducing predation on these vulnerable stages (Etherington et al.
2003; Hovel and Lipcius 2002; Johnston and Lipcius 2012; Orth
and van Montfrans 1987). The extent of SAV in the Bay has been
surveyed every summer by multispectral aerial photography that
is ground-truthed by field observations (Orth et al. 2017). Summer
SAV coverages for 1981-2018 were accessed for our analyses from
http:/fweb.vims.edu/research/units/programs/sav/access/tables/index.
php. Summer SAV coverages were selected to index potential
settlement habitat for recruits that are surveyed in the WDS in the
subsequent winter (Table 1).

There are several potential predators of blue crab, including
blue crab themselves, as they are highly cannibalistic. We selected
striped bass (Morone saxatilis) as a candidate predator because blue
crab can be a large portion of striped bass diets in the Bay (Overton
et al. 2009; Walter et al. 2003) and because data available for this
predator in the Bay are more reliable than that of many other pred-
ators of blue crab. We used a catch per unit effort (CPUE) index for
1981-2019 derived from the US National Marine Fisheries Service’s
Marine Recreational Fisheries Information Program as an index of
striped bass abundance (www.st.nmfs.noaa.gov/stl/recreational/
MRIP_Estimate_Data/). The trend in this index was comparable to
fishery-independent estimates for 2002-2016 from the fishery-
independent Chesapeake Bay Multispecies Monitoring and Assessment
Program (Bonzek et al. 2019). An annual mean value was used to
reflect predation pressure on newly settled blue crab that would be
sampled in the subsequent WDS (Table 1).

Evaluation of hypotheses

We constructed three hypotheses for ecosystem impacts on
blue crab in the form of three graphs. We refer to these subse-
quently as H1, H2, and H3. H3 is defined as the union of H1 and
H2. Although these hypotheses represented a small subset of all
plausible hypotheses that could be established, they are rela-
tively parsimonious and have been suggested or supported by
previous studies. Additional hypotheses that use the abundance
of reproductive female and adult crab and other plausible tempo-
ral lags among variables were evaluated and are presented in the
online Supplemental materials 1'. In each graph, nodes repre-
sented ecosystem factors, and links connecting nodes indicated
dependencies (or lack thereof) among the variables. The networks
were organized in a spatial manner to represent bottom-up forcing
on blue crab recruitment. Specifically, large-scale climatic factors
were conditionally independent in the network and directly influ-
ence a set of regional-scale water quality variables such as tem-
perature and salinity. These water quality factors then influenced
regional-scale biological variables (e.g., predation), which were
directly connected with blue crab recruitment.

We specified GGMs with direct and indirect impact pathways
and fit the GGMs to observed data on environmental factors and
blue crab recruitment indices. We allowed for uncertainty in

'Supplementary data are available with the article at https://doi.org/10.1139/cjfas-2019-0439.

<. Published by NRC Research Press


https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml
https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml
http://www.ncdc.noaa.gov/cdo-web/search?datasetid=GHCND
https://waterdata.usgs.gov/usa/nwis/uv?01578310
https://waterdata.usgs.gov/usa/nwis/uv?01578310
http://datahub.chesapeakebay.net
http://datahub.chesapeakebay.net
http://web.vims.edu/research/units/programs/sav/access/tables/index.php
http://web.vims.edu/research/units/programs/sav/access/tables/index.php
http://www.st.nmfs.noaa.gov/st1/recreational/MRIP_Estimate_Data/
http://www.st.nmfs.noaa.gov/st1/recreational/MRIP_Estimate_Data/
https://doi.org/10.1139/cjfas-2019-0439

Can. J. Fish. Aquat. Sci. Downloaded from cdnsciencepub.com by NOAANMFSBF on 01/28/22
For personal use only.

Liang et al.

network structure by estimating the probability of each hypothe-
sized link in the graph. Conditioning on the network structure,
we computed posterior partial rank correlation coefficients to
quantify the strength of each link in the network graphs. Specifi-
cally, coefficients were computed for each link by correlating
two variables connected by a link while accounting for the effects
of other variables that were linked to the variables. For example,
the partial rank correlation coefficient between adult blue crab
abundance and the recruitment index in the first hypothesis (Fig. 1)
was computed by correlating two variables after removing the
effects of wind, temperature, salinity, habitat, and predation for
both adult and juvenile blue crab indices. To help identify the stat-
istically significant and strong associations between pairs of varia-
bles, we conducted model averaging and computed the partial
correlation coefficients according to the posterior probabilities of
each link in the network and computed the 90% posterior interval
for each coefficient. Links with 90% posterior interval excluding
zero were considered statistically significant.

Network estimation using GGMs

We evaluated the support for alternative networks using GGMs
in which the copula-transformed latent variables were assumed
to be multivariate Gaussian. For the network structure, we con-
sidered a noninformative prior. We assumed a G-Wishart prior
for the precision matrix of the latent Gaussian variables (Roverato
2002). We applied a Markov chain Monte Carlo (MCMC) method
to simulate both the latent Gaussian variables and the structure
of the network. Specifically, the MCMC algorithm iteratively
explored each of the hundreds of proposed links in a network
space to obtain an estimate of the network. Given the network
estimate, we estimated the corresponding parameters of the
local distributions associated with each variable after the copula
transformation. Model fitting was performed using R (R Core Team
2019) and the graphical analysis package BDgraph (Mohammadi
et al. 2017). Owing to the high dimensionality of the graph space,
ten parallel MCMC chains were run for 7 million iterations with
the initial 3 million discarded in each chain as burn-in. Each
chain was thinned by 5000 to reduce the autocorrelation in
MCMC chains. Convergence diagnostics were conducted using
trace plots of individual network parameters and network size,
as well as the Brooks, Gelman, and Robin tests (Brooks and
Gelman 1998). The 8000 post-burn-in iterations were used for
posterior inference. The R code used to fit the GGMs is available
in the online Supplemental materials’.

Multiple networks, each of which represented alternative hypo-
thesized ecosystem impacts on age-0 blue crab, were fit to the
recruitment indices and ecosystem variables. For comparison
purposes, a model with a fully connected graph space was also fit
to the data, representing a noninformative graphical learning
scenario lacking prior hypotheses. Model fits were compared
using the deviance information criteria (DIC; Spiegelhalter et al.
2002) across alternative hypotheses to identify the most parsimo-
nious models. We computed the DIC focused on the recruitment
indices, instead of the whole multivariate distribution including
environmental variables. Owing to the intractable extended like-
lihood (Hoff 2007), we approximated the DIC using the copula-
transformed values of the recruitment indices. We also esti-
mated the significance of the differences among DIC based on a
leave-one-out information criterion (Plummer 2008; Vehtari et al.
2017). The converged optimal models were visualized as diagrams,
and only links with statistically significant rank coefficients were
shown by lines.

Posterior predictive analyses

Using the fitted GGMs, we quantified the joint effects of envi-
ronmental variables on recruitment (i.e., the total effect of all
pathways connecting the environmental variable and recruitment
index). We first discretized predictor environmental variables into
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two categories: above or below the median (Malick et al. 2015). We
then estimated the conditional posterior probabilities for a range
of blue crab recruitment values from the recruitment indices
given above or below average environmental conditions. We then
compared the cumulative probability distributions for the blue
crab recruitment index between these two conditions. We com-
puted the difference in the cumulative probabilities (Ap, posterior
estimate and 90% credible interval) for networks of age-0 abun-
dance. Each difference is the cumulative probability that recruit-
ment is below a given level when the environmental variable is
above average minus that when the environmental variable is
below average. Because of limited sample sizes (n = 29), we did not
consider conditioning on multiple environmental variables.

We estimated the conditional cumulative probability distribu-
tion by conducting posterior predictive simulations. For example,
to estimate the conditional cumulative probability of recruit-
ment given that wind was above average in the fitted network,
we retained from each posterior sample all years when wind was
above average. The empirical cumulative distribution function
(ECDF) of recruitment was then computed. The uncertainty band
in ECDF was quantified by Monte Carlo integration across the
MCMC samples. We computed posterior median and 90% credible
intervals bands for the ECDFs. Such posterior analyses provide a
probabilistic framework to rank each environmental factor by
accounting for all pathways connecting the environmental vari-
able and recruitment and considering the uncertainty about the
hypothesized networks.

Simulation study

We performed a simulation study to evaluate the properties of
GGM in estimating the network structure. We compared the per-
formance of GGMs with nongraphical approaches of SEM or
MARS. We focused on the dissolved oxygen pathways to reduce
the computational burden of repeatedly enumerating the graphi-
cal space from the original network with all 41 nodes. Ten nodes
were included in the simulation study: juvenile and contempo-
rary adult abundance indices, the predator index, three indices
of dissolved oxygen (mean summer bottom water concentration,
hypoxic volume in July and August), and NAO in March, July,
and November. The pathways represent 75% of the significant
terms directly associated with blue crab abundances in the full
network.

As a basis for the simulation, a total of 1080 samples of latent
Gaussian variables were simulated from the posterior distribu-
tions of the fitted GGM model. Links with 90% posterior intervals
excluding zero were considered the simulation truth for the pur-
pose of identifying “significant” links. We applied three methods
to each simulated data set: (i) GGM with the original G-Wishart
prior on the graphs, (ii) SEM, and (iiij) MARS. Candidate models for
SEM were built from all nine possible combinations of the dis-
solved oxygen pathways from the three oxygen and three NAO
variables and for all (2* = 32) possible subsets of four links
between juvenile abundance, adult abundance, predator abun-
dance, dissolved oxygen (mean summer concentration, hypoxic
volume in July, August), and NAO (March, July, and November).
Model selection for SEM was conducted using Bayesian informa-
tion criterion (BIC). First, an SEM with the minimum BIC was
selected. Second, multiple SEMs within Occam’s window (Ag;c = 3)
were selected. This window represented an approximate Bayes
factor of exp(3/2) ~ 4.5 (Madigan and Raftery 1994). Coefficients
were estimated using Bayesian model averaging (Bollen et al.
2014). Third, an SEM with the true network based on the fitted
GGM was estimated to compare the inference between rank
partial correlation coefficients. SEM coefficients with z statistics
beyond 1.64 in magnitude were considered statistically signifi-
cant. Lastly, a MARS approach was applied to estimate the links
using R package earth (Milborrow 2019). Sensitivity (chance of
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Table 2. Classification rates of Gaussian Graphical

Model (GGM).

Sensitivity Specificity
GGM 0.85 0.94
SEM-GGM 0.46 1.00
SEM-BIC 0.25 0.92
SEM-BMA 017 0.93
MARS 0.06 0.98

Note: Sensitivity is ratio of true positive and all simu-
lated links and varies from 0 to 1; specificity is the ratio of
true negative and all simulated non-links and also varies
from O to 1. True link was simulated base on the 90%
posterior confidence interval of partial rank correlation
coefficients of the fitted GGM model. SEM-GGM: structu-
ral equation modeling with best paths identified by GGM;
SEM-BIC: SEM with best model identified by Bayesian
information criterion; SEM-BMA: SEM inference based on
Bayesian model averaging using Bayesian information
criterion; MARS: Multivariate Adaptive Regression Splines.

detecting a true relationship) and specificity (chance of not
detecting a false relationship) were computed for each method.

Results

We compared the performance of GGM, SEM, and MARS in a
simulation study. The sensitivity of GGMs, at 85%, was substan-
tially higher than the other modeling approaches examined
(Table 2). When provided with the correctly specified network
structure, SEM achieved lower sensitivity at 46%. When the net-
work structure was estimated using BIC, SEM resulted in an even
lower sensitivity (<25%). MARS also had low sensitivity (6%). Even
when the network structure was known, SEM was not as efficient
in estimating the significance of the coefficients. All approaches
obtained high specificity (>90%).

We examined the performance of GGMs using a noninformative
fully connected graph, containing 820 links (Table 3; HO). Only
three links were statistically significant. No significant links were
identified between ecosystem factor variables. The fits for the fully
connected graph were worse than that for any of the hypotheses
(Table 3). GGMs were fit to three graphs representing three alterna-
tive hypotheses (Fig. 1) with up to 390 links, modeling over 700
potential pathways of ecosystem impacts on blue crab recruit-
ment. All models converged to networks with approximately 120-
195 links (Table 3). Of the links in the converged networks, ~40
links were statistically significant. The fitted model representing the
first hypothesis (Fig. 1a was associated with the best fit, the least com-
plexity, and the lowest DIC; Table 3). The DIC for this model was sig-
nificantly lower than other hypotheses based on leave-one-out
information criterion (Plummer 2008; Vehtari et al. 2017).

Pathway and link strength

Figure 3 shows the conditional associations between the latent
ecosystem processes generating the observed data for the most
parsimonious model (H1; Table 3). Conditional rank association
is represented by an edge between two nodes if the 90% credible
interval for the corresponding regression parameter does not
contain zero. Seven significant pathways were identified in the
recruitment-level network (Table 2; five shown in Fig. 3). The path-
way with the highest average link strength included the June and
July NAO, DO-hypoxic volume, and contemporary age-1+ crab
(mean absolute coefficient = 0.19). The pathway with the second
highest relative strength included spring discharge and summer sa-
linity (mean absolute coefficient = 0.17). No significant direct path-
way was identified between climatic factors and recruitment.
Lagged summer salinity and DO-hypoxia had indirect effects on
recruitment. The summer salinity pathway suggested that lower
salinity was associated with lower recruitment. The summer DO-
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Table 3. Deviance information criteria (DIC) focused on age-0 abun-
dance index of Chesapeake Bay-wide catch per unit effort using Winter
Dredge Survey data.

Hypotheses
Deviance HO H1 H2 H3 (=H1+H2)
Dbar 22.4 20.1 23.3 22.6
pD 141 2.4 7.6 79
DIC 36.5 22.5 30.9 30.5
Atoo 390 — 8.3 10.1
SEA 8.6 — 3.0 3.0
N links possible 820 355 273 390
Nlinks in converged model =~ — 180 130 195
N significant links 3 38 35 39
N significant pathway 0 7 1 4

Note: Dbar and pD denote Gaussian Graphical Model fit and complexity,
respectively. Bold font defines the most parsimonious model according to DIC.
Aioo and SE, denote the difference in the leave-one-out information criterion
(and its standard error) between each model and the model with the lowest
DIC. Three rows indicated the number of links possible envisioned in the
hypothesis, the number of links in the converged model, and the number of
those links whose parameters were significantly different from 0. The final row
indicates the number of unique influence pathways involving at least one
variable that influences age-0 crab recruitment.

hypoxia pathway indicated that higher summer hypoxic volume
was associated with lower adult crab abundance and consequently
lower recruitment. Contemporary age-1+ crab abundance was the
only variable estimated to have a direct and positive effect on
recruitment.

Fits to other plausible hypotheses are provided in the online
Supplemental materials 1. No alternative models had fits with
lower DIC than H1 presented here. The relationship to reproduc-
tive age-1+ crab abundance was evaluated. No significant links
between reproductive age-1+ crab and age-0 crab was found, but a
joint effect for reproductive age-1+ crab was found (Fig. S4, Sup-
plemental materials 1).

Environmental impact ranking

Figure 4 shows the cumulative distribution functions (CDF) of
recruitment conditional on each ecosystem variable being above
average or not. The joint effect of each variable is represented by
the separation between the two CDFs. The variable with the
strongest joint effect on the probability of recruitment level was
the contemporary age-1+ crab abundance, which had a Ap = —0.20
(90% credible interval = —0.27, —0.13), indicating that recruitment
is larger when contemporary age-1+ abundance is above average.
The climatic variables discharge and wind had the next strongest
influences on recruitment level (Ap = —0.10). Among the three
large-scale climatic variables, wind had the strongest association
(Fig. 4). The cumulative probabilities between above average and
below average wind were negative during years with large
recruitment (CPUE > ~75 million); thus, stronger recruitments
were observed with above average wind. For NAO and discharge,
the cumulative probabilities were nearly identical based on the
90% credible interval bands overlapping zero. For three water
quality variables, no significant differences were found. Among
the three biological variables, recruitment was consistently
larger when spawning stock size was above average (Fig. 4), while
SAV abundance had a negative joint effect on recruitment during
years when CPUE exceeded ~70 million. The cumulative proba-
bilities were nearly identical between above average and below
average predation.

Discussion

We applied GGMs to explore the impacts of abiotic and biotic
variables on blue crab recruitment. Climate variability, water
quality, and predator-prey dynamics were significant elements
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Fig. 3. Graph of the Gaussian Graphical Model analysis using estimated Chesapeake Bay-wide catch per unit effort as recruitment level.
Ovals represent variables, and links indicate dependencies among variables within the network. Numbers next to each link are the
posterior partial rank correlation coefficients, and brackets | | denotes negative numbers.

Discharge

Summer
NAO

[

Summer
Surface
temp

Contemporary
age 1+ crab

Surface
Salinity

Predator

crab level

Summej;

pring Winte

Hypoxic
DO yol

Fig. 4. Cumulative probability distributions of blue crab recruitment from the most parsimonious network, conditional on each variable
in the network. The curves indicate the difference between cumulative probability for recruitment given that the environmental variable
is greater than average and when the environmental variable is less than average. Shading denotes 90% credible intervals. The Ap gives
the difference in cumulative probability (posterior estimate and 90% credible interval) of the differences.

b) Discharge

A(p) (:0.18,0)

2 {#)NAO

A(p) (-0.05,0.1)

c¢) Wind

d) Surf. Temp.

A(p) (-0.05,0.08)

e) Surf Salinity

A(p) (0.03,0.2)

A(p) (-0.2,-0.03)

—| ) DO/Hypoxic Vol.
_#A(p) (-0.01,0.13)

g) Age 1+ Crab

Ap) (-0.27,0.13)

Cumulative Probability

00 02 04

0.4

h)_Predatlon i) SAV

(p) (o 02,0.15)

“'A(p)\(‘ou01,0.14)

I I I I I I I I
50 100 150 20 50 100 150 200 50

] I I I
100 150 200 50 100 150 200

Recruitment (CPUE)

in the most parsimonious models for blue crab recruitment. The
abundance of contemporary age-1+ blue crab had significant
direct impacts on the recruitment index. Significant ecosystem
factors included phase of the NAO in summer and spring, the
Susquehanna River discharge in summer and winter, and the
hypoxic volume. Given that the Bay blue crab recruit in the autumn
of a year and likely reach market size before the next autumn, our
findings of significant ecosystem effects on recruitment also suggest

that exploration of ecosystem-based approaches to managing har-
vests may be warranted.

We employed GGMs to explore the ecosystem context of blue
crab recruitment. GGMs have been used already in some biologi-
cal fields, notably genetics (Yin and Li 2011) and proteomics
(Wang et al. 2016). But to our knowledge, this is the first applica-
tion of GGMs in a fisheries context. Several features of GGMs
make them potentially valuable tools in assessing ecosystem
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effects in fisheries management. First, GGMs are capable of ana-
lyzing networks sufficiently large to represent entire ecosystems
and the wide suite of potential environmental forcing variables.
This is not the case with other multivariate techniques, such as
multivariate analysis of variance (ANOVA), in which the number
of variables that can be considered is often constrained by the
data available. Second, GGMs can be cast in a structured learning
context, in which efficient algorithms compare multiple alterna-
tive network configurations quickly to identify the most parsi-
monious networks (Friedman et al. 2008; Fu and Zhou 2013; Han
and Zhong 2016; Ni et al. 2017; Yin and Li 2011). Finally, using
monotonic transformations, GGMs can analyze non-Gaussian
networks such that the assumption of multivariate normality is
less restrictive in GGMs than is the case in other analytical
frameworks.

The simulation study suggests that GGM achieved nominal
probabilities (i.e., p > 0.9) of correctly identifying links and non-
links in the simulated network. In contrast, the sensitivity of
other approaches, as implemented herein, did not achieve this
nominal level, even provided with the true network structure.
The BIC-based SEM procedure did not fully explore the graphical
space of all networks. Given the small sample size and large
model uncertainty, the BIC-based SEM was not efficient in recov-
ering the network structure. Spurious links were included in the
Bayesian model averaging process, reducing the significance of
the true links and sensitivity of the learning algorithm. Small
sample size also limits the capability of MARS to estimate links
from a simulated network (Ayyildiz et al. 2017). This study high-
lights the advantage of a graphical learning algorithm over non-
graphical approaches in exploring graphical space with limited
samples.

Our GGM results revealed important pathways of direct and
indirect effects on blue crab recruitment. There were significant
rank correlations between contemporary age-1+ crab abundance
and recruitment. These findings are consistent with the results of
earlier analyses that indicate the presence of a significant stock-
recruitment relationship for blue crab in the Bay (Applegate 1983;
Fogarty and Lipcius 2007; Lipcius and Van Engel 1990). However, we
did not find a significant link between age-1+ abundance in the pre-
vious year and recruitment (Supplemental materials 1'). This might
suggest the stock-recruitment relationship is weaker than if it had
a similar effect in both analyses (lagged and unlagged age-1+). Sev-
eral factors may account for these conflicting results. First, none of
the indices we used are direct estimates of either the adult repro-
ductive population or a direct estimate of recruits. Some crabs
characterized as not being reproductive in the annual WDS may
mature and spawn during the next summer some 6-8 months
later (Miller et al. 2011). Thus, the estimate of age-1+ crabs in the
contemporary year in which recruitment was estimated may be a
more reliable index of the reproductive population. Lipcius and
Van Engel (1990) noted the challenge of correctly indexing stock
and recruitment for the Bay blue crab previously. An alternative
explanation of the positive correlations between contemporary
age-1+ female abundance and age-0 recruits is correlated catchabil-
ities in the survey. Regardless, our results indicate the importance of
maintaining the current focus on sustaining blue crab spawning
stock biomass as a central management objective. This conclusion
provides support for the continued application of female abundance
and exploitation rate reference points that have been used to man-
age the fishery since 2008 and were updated in 2011 (Miller et al.
2011).

Based on our findings, the extent to which ecosystem factors
affect recruitment in blue crab is more equivocal. In the Bay,
Applegate (1983) and Tang (1985) indicated important roles for
ecosystem effects on recruitment. Colton et al. (2014) indicated a
role for a synoptic index of the Gulf Stream on blue crab recruit-
ment. Other authors noted that these complex stock-recruit-
ment relationships explained a low fraction of the variation in
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the data (Lipcius and Van Engel 1990). Environmental effects on
blue crab recruitment have been reported in other regions. Guil-
lory (2000) reported significant effects of salinity and water dis-
charge on blue crab recruitment in Louisiana. Although not
measuring recruitment directly, Sanchez-Rubio et al. (2011)
reported the importance of broad-scale climatic variables in deter-
mining blue crab abundance in the Gulf of Mexico. Our results
further the case for a major role for environmental factors in
affecting the blue crab recruitment, even though they were
weaker than the direct effect of contemporary stock biomass. Cli-
matic factors, water quality variables, and biotic factors were
significant determinants of blue crab recruitment. For example,
large-scale climatic patterns were shown to influence blue crab
recruitment. The mode of action of these climatic variables on
blue crab recruitment remains poorly understood. Some effects
may be direct, by altering wind and tidal patterns at the mouth
of the Bay, which affect larval ingress (Johnson 1995; Roman and
Boicourt 1999). The effects of these low-frequency climate varia-
tions may also be less direct, as has been suggested for bivalves
(Kimmel and Newell 2007), copepods (Kimmel and Roman 2004),
and fish (Wood and Austin 2009). Because of the short life-span of
blue crab, impacts of the NAO on recruitment this year has the
potential to affect commercial harvest the next year. Thus, we
recommend that the utility of using the phase of NAO to under-
stand stock performance be explored further.

Water quality variables, particularly dissolved oxygen levels,
were shown to influence the blue crab recruitment. Hypoxia has
been shown to affect the distribution of blue crab at a scale of
tens of kilometres in a North Carolina estuary (Eby and Crowder
2002). Eggleston and colleagues have shown that hypoxia can
affect the movement, feeding, and mortality of blue crab (Bell
et al. 2003a, 2003b; Eggleston et al. 2005). In a modeling study,
Aumann et al. (2006) illustrated how these behavioral changes
may integrate to affect crab mortality. However, our finding of a
population-level response is novel. Annual measurements and
forecasts of the level of hypoxia are available for the Bay (Testa
et al. 2017). We suggest that an evaluation of the extent to which
hypoxia forecasts can inform forecasts of commercial blue crab
harvest in the Bay 1 or 2 years later is warranted.

We proposed an empirical framework to rank potential ecosys-
tem influences and identified dissolved oxygen as having signifi-
cant impact on blue crab recruitment through contemporary
and reproductive adult abundance. The importance of develop-
ing an ecosystem-based context for understanding and managing
blue crab was highlighted by the continuing uncertainty over the
fate of the 2011 year class, which, despite appearing to be strong
during the winter of 2011-2012, failed to survive to sustain a fish-
ery in 2012. Our results were used to investigate the connections
between ecosystem factors and past blue crab recruitment events
that raised important management and stakeholder questions.
We are planning to evaluate ecosystem impacts on blue crab pro-
ductivity by integrating the stock-recruitment curve estimated
in the stock assessment with the GGM model results. Finally, we
can apply the GGM framework to probabilistically forecast the
recruitment index. Given the findings herein, we can build a
recruitment forecasting system based upon an existing hypoxia
forecasting system in the Bay to support ecosystem-based man-
agement of blue crab (Testa et al. 2017).

We suggest that consideration of particular ecosystem compo-
nents may be useful for adjusting commercial harvest limits in
particular years because of the close relationship between the
abundance of juvenile blue crab and the subsequent harvest in
the following year. The application of GGMs to evaluate the effi-
cacy of an ecosystem approach to management of blue crab is
general and can be applied readily to other species such as
striped bass and Atlantic menhaden should adequate survey data
become available. Earlier efforts at developing an ecosystem
approach to fisheries in the region recommended a concerted
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and integrated effort to undertake such analyses but lacked the
appropriate statistical tools (Chesapeake Fishery Ecosystem Plan
Technical Advisory Panel 2006). Here, we have shown that GGMs
represent a feasible approach to addressing such challenges.
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