Accepted Manuscript

A Generalized additive model approach to evaluating water quality: Chesapeake Bay case study

Rebecca R. Murphy, Elgin Perry, Jon Harcum, Jennifer Keisman

PII: \$1364-8152(18)30780-1

DOI: https://doi.org/10.1016/j.envsoft.2019.03.027

Reference: ENSO 4431

To appear in: Environmental Modelling and Software

Received Date: 6 August 2018
Revised Date: 15 March 2019
Accepted Date: 28 March 2019

Please cite this article as: Murphy, R.R., Perry, E., Harcum, J., Keisman, J., A Generalized additive model approach to evaluating water quality: Chesapeake Bay case study, *Environmental Modelling and Software* (2019), doi: https://doi.org/10.1016/j.envsoft.2019.03.027.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	A Generalized Additive Model approach to evaluating water quality: Chesapeake Bay Case Study
2	
3	Rebecca R. Murphy ^a , Elgin Perry ^b , Jon Harcum ^c , and Jennifer Keisman ^d
4	
5	^a Corresponding author; University of Maryland Center for Environmental Science, Chesapeake Bay
6	Program Office, 410 Severn Ave., Suite 112, Annapolis, MD 21403; rmurphy@chesapeakebay.net
7	^b Statistics Consultant; 377 Resolutions Rd., Colonial Beach, VA 22443; <u>eperry@chesapeake.net</u>
8	^c Tetra Tech, Inc., 3475 East Foothill Boulevard, Pasadena, California 91107; <u>jon.harcum@tetratech.com</u>
9	^d United States Geological Survey, 5522 Research Park Drive, Baltimore, MD 21228; <u>jkeisman@usgs.gov</u>
10	
11	Abstract
12	Nutrient-reduction efforts have been undertaken in recent decades to mitigate the impacts of
13	eutrophication in coastal and estuarine systems worldwide. To track progress in response to one of
14	these efforts we use Generalized Additive Models (GAMs) to evaluate a diverse suite of water quality
15	constituents over a 32-year period in the Chesapeake Bay, an estuary on the east coast of the United
16	States. Model development included selecting a GAM structure to describe nonlinear seasonally-varying
17	changes over time, incorporating hydrologic variability via either river flow or salinity, and using
18	interventions to model method or laboratory changes suspected to impact data. This approach,
19	transferable to other systems, allows for evaluation of water quality data in a statistically rigorous way,
20	while being suitable for application to many sites and variables. This enables consistent generation of
21	annual updates, while providing a tool for developing insights to a range of management- and research-
22	focused questions.
23	
24	Keywords: Generalized Additive Models; water quality; Chesapeake Bay; trend analysis
25	

1 Coftware		بيطنانها مانمييم
 Software 	and data	avallability

27

28

29

30

31

32

26

The methods described here are incorporated into an R package, 'baytrends' which is available on CRAN (https://CRAN.R-project.org/package=baytrends). All water quality data used are incorporated into the example data set provided with 'baytrends' and are also available from the Chesapeake Bay Program's data hub (Chesapeake Bay Program, 2017a). River flow data are available from the U.S. Geological Survey (https://waterdata.usgs.gov/nwis).

3334

2. Introduction

35 36

37

38

39

40

41 42

43

44

45

46

47

48

49

50

51

52 53

54

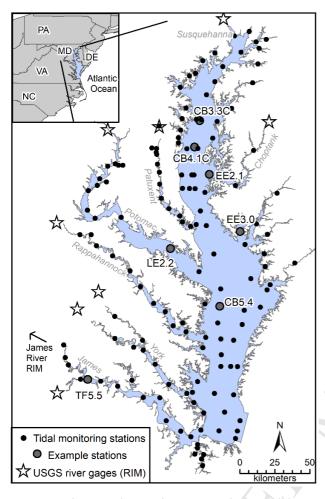
55

Major efforts have been underway in coastal and estuarine systems to reduce nutrient inputs in order to minimize eutrophication and improve water quality, aquatic habitats, and hence living resource populations. Examples include multiple Danish Action Plans for the Aquatic Environment which have led to more than 50% nutrient reductions into Danish coastal waters since 1990 (Riemann et al., 2016), dramatic reductions in nutrient loads to Tampa Bay, USA, after citizen demands and legislation in the 1970s to reduce waste water loads kick-started multiple nutrient reduction efforts (Greening et al., 2014), and several European nutrient reduction directives that have led to reduced nutrient loads into, among other places, coastal France lagoons (Le Fur et al., 2019). In addition, in the United States, efforts to improve water quality in the Chesapeake Bay, a large estuary in the mid-Atlantic, have been underway for more than three decades. In 2010, the U.S. EPA implemented a Total Maximum Daily Load (TMDL) for the entire Chesapeake Bay watershed to limit nutrients and sediment flowing into the tidal waters (USEPA, 2010). In systems such as these, where resources are being devoted to reducing nutrients from the watershed, it is critical to be able to explain the water quality response to many diverse stakeholders. At the same time, the interaction of physical, biogeochemical, and anthropogenic forces, further complicated by strong seasonal and interannual patterns, makes deciphering long-term trends in coastal and estuarine systems challenging (e.g., Cloern, 2001; Duarte et al., 2009). Some examples of these interactions include the correlation and relative impacts of freshwater flow and nutrient loads (e.g., Hagy et al., 2004; Paerl et al., 1998), the likely nonlinear impacts of climate change on biological processing and many other factors (Najjar et al., 2010), how sediment-nutrient dynamics can change with oxygen conditions (Testa and Kemp, 2012), and top down controls on phytoplankton populations (e.g., Jassby, 2008).

In the Chesapeake Bay, the states Maryland (MD) and Virginia (VA) have coordinated and conducted water quality monitoring at about 150 locations monthly or semi-monthly since 1984. Initially, a Seasonal Kendall-based approach (Hirsch et al., 1982) was used to evaluate these data for trends. This approach quantifies monotonic change over time and different trends by season and does not assume any specific distribution to the data. Many of the time series, however, follow non-monotonic patterns (e.g., Beck and Murphy, 2017; Harding et al., 2016) that the Seasonal Kendall test cannot identify. In addition, with a desire to see progress from the TMDL-driven actions, a method was needed that could separate the impacts of large interannual variations in freshwater flow from other drivers of variability such as nutrient load reductions. Finally, the flexibility to include other explanatory variables (e.g., climate, nutrients, biology) to help unravel the multiple forces at play could be important in future work.

Based on these current and future assessment needs, a Generalized Additive Model (GAM) approach was proposed. The mathematical formulation of a GAM is typically presented in a very general form (eq 1.)

73
$$g(E[Y]) = \mu + f_1(x_1) + f_2(x_2) + ... + f_m(x_m)$$
 eq 1


In this general format, a function g() is applied to the expected value of the dependent variable Y (frequently either the natural logarithm or identity). On the right-hand-side, μ is the modeled intercept followed by a sum of smooth functions of the independent variables $x_1, x_2, ..., x_m$. The mathematical form of each smooth function is typically left unspecified and, in application, an interpolating function such as a spline function is used to approximate the unspecified function (Hastie and Tibshirani, 2004). The number of research applications using GAMs to evaluate water quality change is growing (e.g., Haraguchi et al., 2015; Riemann et al., 2016), and some recent work in our case study location has included evaluation of long-term chlorophyll-a in the Chesapeake Bay mainstem and Patuxent River (Beck and Murphy, 2017; Harding et al., 2016), changing seasonal cycles of nitrogen and chlorophyll-a in the Bay mainstem (Testa et al., 2018), and factors affecting submerged aquatic vegetation in the southern Bay waters (Lefcheck et al., 2017). These applications demonstrate the usefulness of this technique for evaluating long-term change, but are all relatively local and targeted to one or two parameters. This study focuses on a GAM implementation that can be used to evaluate progress annually at a large suite of stations, at multiple depths, for very different water quality constituents, in

order to regularly update the public, policy-makers, and scientists engaged in tracking the water quality
of an estuary or coastal system.

We apply this approach to our case study system, while noting findings and features that would need further evaluation in other locations with similar water quality concerns and long-term data records. We include research on model development, incorporation of the impact of freshwater flow variations, an intervention approach to account for laboratory or method changes, and an example demonstrating application of the approach to generate summaries of change over different time periods while adjusting for the effects of season, flow, and methods changes. Although we have built these features into an R package, this manuscript focuses on documenting our approach and is not a user guidance for the 'baytrends' package. Users' guidance can be found within the 'baytrends' package download.

2. Study Area and Data

The Chesapeake Bay and its estuarine tributaries extend through parts of Maryland, Virginia, and Washington D.C. The tidally-influenced waters (Figure 1) have 147 tidal monitoring stations that were used for the examples provided here. The long-term monitoring and laboratory analysis program has existed since 1984 among teams in Virginia (VA Department of Environmental Quality, Old Dominion University, Division of Consolidated Laboratory Services), Maryland (MD Department of Natural Resources and Chesapeake Biological Laboratory), and the Chesapeake Bay Program (CBP). The same field and laboratory methods are followed by the two states within a given year (Chesapeake Bay Program, 2017b). Each of the stations is visited by boat twice a month for most of the year, and monthly during winter. After analysis and quality assurance, all data values are submitted to the Chesapeake Environmental Data Repository and are available online through its DataHub (Chesapeake Bay Program, 2017a).

Figure 1. Chesapeake Bay location with 147 tidal monitoring stations used in GAM analyses indicated with circles. Larger labeled circles are station locations used for examples, and stars indicate locations of USGS River Input Monitoring (RIM) stations.

The annual trend assessments using the GAM method described here focus on a subset of the water quality data collected at these stations, and data for all examples shown here are available with the R 'baytrends' package. Parameters and depths typically analyzed are:

Surface-mixed and bottom-mixed: total nitrogen (TN), dissolved inorganic nitrogen (DIN), total
 phosphorus (TP), dissolved inorganic phosphorus (orthophosphates, PO4), chlorophyll-a, total
 suspended solids (TSS), water temperature, and salinity.

Secchi depth, and bottom dissolved oxygen (DO).

129	The surface-mixed layer is computed by averaging the samples identified as surface (top 0.5 or 1 m) and
130	above-pycnocline. The bottom-mixed layer is the average of the just-above bottom sample and the
131	below-pycnocline sample. If no pycnocline was detected, only the surface and bottom measurements
132	are used. All nutrients, chlorophyll- a , and TSS concentrations are log-transformed before analysis. We
133	made the transformation decisions based on experience with these data and typical data distributions
134	observed for these parameters. It is reasonable to consider whether other transformations would be
135	more appropriate, and future work may include building an optimal power transformation into the
136	analysis (Box and Cox, 1964).
137	
138	Several changes have occurred over the more than 30-year monitoring program, including laboratories
139	used for analysis, how certain parameters are calculated, and method detection limits (i.e., MDLs).
140	Changes like these can impact long-term trend analysis. Some examples of the changes we have had to
141	consider are: a laboratory change in both MD and VA on different dates for different groups of stations;
142	the computation of TN from a sum of nitrate+nitrite and total Kjeldahl nitrogen to a sum of particulate
143	nitrogen plus total dissolved nitrogen; and TP changing from a direct measure to a sum of particulate
144	and dissolved phosphorus.
145	
146	3. Methods and Implementation
147	
148	We selected the 'mgcv' package in the R statistical software (Wood, 2018) to fit GAMs. This is in part
149	because of the usefulness of penalized thin plate regression splines (Wood, 2003) for our large-scale
150	analyses, as described below. In addition we make use of the 'mgcv' functionality to fit smooths with
151	more than one variable (Wood, 2006), and uncertainty estimates that are generated using a Bayesian
152	approach (Giampiero and Wood, 2012; Wood, 2013).
153	
154	3.1 Temporal models
155	
156	A critical first step in most environmental data analyses is to examine the patterns over time. To do this
157	with the Chesapeake Bay data, we tested a series of increasingly complex GAM model structures. All of
158	these models are built from the basic GAM structure in eq 1, but they are presented below in the syntax
159	used by 'mgcv' which allows us to be more specific about the construction of each approximating
160	function. We specified the models as follows for a response variable y at an individual station location:

161	
162	gam0: gam($y \sim \text{cyear} + \text{s(doy,bs='cc')}$, knots = list(doy = c(1,366)), select=TRUE)
163	
164	gam1: gam(y \sim cyear + s(cyear, k=gamK1) + s(doy,bs='cc'), knots = list(doy = c(1,366)),
165	select=TRUE)
166	
167	gam2: gam(y \sim cyear + s(cyear, k=gamK1) + s(doy,bs='cc') + ti(cyear,doy,bs=c('tp','cc')),
168	knots = list(doy = c(1,366)), select=TRUE)
169	
170	where: $gamK1=c(10,2/3)$ means that the maximum of 10 or $2/3*$ number of years is selected
171	
172	Note that random error and an intercept are included when these models are fit with 'mgcv.' The
173	variable <i>cyear</i> is zero-centered date in decimal form, <i>doy</i> is the day of year (accounting for leap years by
174	setting every year to have 366 days), $s()$ is a spline function on a variable with $bs='tp'$ specifying a
175	penalized thin plate regression spline and $bs='cc'$ specifying a cyclic penalized cubic regression spline. If
176	the spline is not specified, the default ' tp ' is used. The ti () format specifies a tensor product of two
177	smooths to account for the interacting effects of these two variables (Wood, 2006).
178	
179	The tp spline is a computationally efficient way to approximate a smoother called a thin plate spline
180	(Duchon, 1977), which avoids the need to manually place knots. An upper limit on the number of knots
181	is required (k) , or else a default of 10 is used. Testing was conducted on the k values and the use of
182	gamK1 for s(cyear) is described in Section 4.1 of the Results. The cc option is specified to represent the
183	seasonal cycle as a function of doy. This spline has the usual property of being continuous to the second
184	derivative at each knot location and, in addition, is constrained to take the same value and have
185	continuous derivatives at the boundaries of the domain to insure a smooth transition across years
186	(Wood, 2006). Unlike the thin plate regression spline, the number of knots is explicitly set for this spline.
187	We use the default of 10 with the knots evenly spread throughout the parameter space, except
188	requiring knots on Dec. 31 and Jan. 1 via the specification shown in the equations. In the above models,
189	setting select=TRUE allows for terms to be removed from the GAM during model fitting if they provided
190	no benefit (Wood, 2018). The select term is adjustable and depending on the analysis may be set to
191	FALSE.

From gam0 to gam2, incrementally more complex temporal structures are fit to each data set. The first
model allows for a linear trend that has a seasonal cycle. Adding s(cyear) into gam1 allows for a
nonlinear pattern over time. The tensor product in gam2, ti(cyear,doy), adds the ability for the seasonal
cycle to change over time, or, in other words, for there to be different long-term trends in different
seasons of the year. The results of these models can be compared graphically as well as with goodness
of fit statistics including adjusted R ² , AIC, and a root mean squared error in prediction (RMSE).
3.2 Flow or salinity models

199 200

3.2 Flow or salinity models

201 202

203

204

205

206

207

208

209

210

Accounting for the impact of inter-annual variations in freshwater flow on tidal water quality is key to distinguishing the variability associated with hydrology from changes associated with management actions to reduce nutrient pollution. This task is challenging because estuaries receive and retain the dissolved and particulate materials transported from rivers at varying time scales, meaning that there is not necessarily a single lag or averaging period that results in the best relationship between river flow and estuarine water quality. Moreover, as in many estuaries, there are multiple major rivers flowing into Chesapeake Bay as well as a long and complex shoreline with numerous ungaged smaller rivers and streams. The freshwater residence time from these inputs varies greatly, with modeling estimates of the "age" of the water exiting the Bay into the Ocean ranging from 140 to 310 days (Shen and Wang, 2007). Seasonal variability in the residence time is also a factor (Hagy et al., 2000).

211 212

213 214

215

216

217

218

219

220

221

222

223

224

Potential solutions to this problem include using salinity as a tracer of integrated freshwater influence (e.g., Beck and Hagy, 2015; Beck and Murphy, 2017), or providing flexibility in the river or rivers used to address hydrologic forcing. We developed our approach to allow for both of these options. River flow into the Chesapeake Bay is dominated by nine rivers (Figure 1), each of which is monitored as part of the USGS River Input Monitoring (RIM) program. For one option, we identified a set of possible river flow averaging periods for each salinity zone based on published hydrodynamic model evaluations (Shen and Haas, 2004; Shen and Lin, 2006; Shen and Wang, 2007). This allows for different averaging periods to be compared to the water quality data at each station using Spearman rank correlation coefficients to help select a good averaging period for a particular parameter-station-gage match. For the other option, we use in-situ salinity observations as a surrogate "flow" variable to account for variations in freshwater input. In saline regions of estuaries, salinity generally varies inversely with freshwater river flow. Using salinity instead of flow avoids the need to find a good spatial and temporal match between the RIM

225	stations and a water quality station, because salinity is measured at the same place and time as the
226	water quality samples.
227	
228	To accommodate these multiple options, we incorporated a flexible variable that could represent either
229	river flow or salinity (flw_sal) in the model structure. In gam2_flwsal, flw_sal can be either the salinity
230	measured at the same place, time, and depth as the water quality variable, or the upstream river flow
231	averaged over a period of n preceding days (where n is determined by picking the best period based on
232	correlation coefficients or by setting a priori based on the needs of the study).
233	
234	
235	$s(flw_sal,k=gamK2) + ti(flw_sal,doy,bs=c('tp','cc')) + ti(flw_sal,cyear,bs=c('tp','tp')) + ti(flw_sa$
236	$ti(flw_sal,doy,cyear,bs=c('tp','cc','tp')), knots = list(doy = c(1,366)), select=TRUE)$
237	
238	where:
239	gamK1=c(10,1/3) means that the maximum of 10 or $(1/3*number of years)$ is selected
240	gamK2=c(10,2/3) means that the maximum of 10 or (2/3*number of years) is selected
241	
242	We preprocess the flw_sal variable to remove the seasonal cycle using a simple GAM (i.e., $y \sim$
243	s(doy,bs='cc')). This process allows for the flw_sal term to account for any long-term impacts of river
244	flow, rather than just the average seasonal impacts of river flow that can be accounted for with s(doy).
245	This treatment of flw_sal and its relationship to the seasonal term in the model is something to consider
246	in other applications, depending upon the importance of modeling the seasonal impacts of hydrology
247	explicitly. If river flow is used, we transform the daily values with a log transformation before any other
248	steps. The four flw_sal smooth terms allow for: the hydrologic effect to vary with the magnitude of the
249	water quality variable (s(flw_sal)); the hydrologic effect to vary at different times of the year
250	(ti(flw_sal,doy)); the hydrologic effect to change over time (ti(flw_sal,cyear)); and the seasonal impact of
251	hydrology to change over time (ti(flw_sal,doy,cyear)). The type of smooth is specified as tp or cc, as
252	described in Section 3.1. As with the previous gam0, gam1, and gam2 models, the k-value—or upper
253	limit on the basis dimension—needs to be set. This is particularly important with the addition of flow or
254	salinity into the models because of observed concurvity (Buja et al., 1989), which can be described as
255	collinearity between the nonlinear spline functions (Peng et al., 2006) of cyear and flw_sal. Testing
256	results that led us to our choices of gamK1 and gamK2 are presented in Section 4.4.

257	
258	In summary, gam2_flwsal incorporates the impact of varying watershed hydrology into the modeling.
259	For investigation of the causes of long-term change, it is useful to evaluate results that remove the
260	impact of fluctuations in freshwater input. We conduct the "flow or salinity adjustment" by first fitting
261	the model (gam2_flwsal) to the data, then generating predictions to estimate the mean of the water
262	quality constituent over the normal range of flow. Because the relationship of the constituent to flw_sal
263	can be nonlinear, it is not sufficient to simply set flw_sal to the average for each day of the year. Instead,
264	we select five values of flw_sal representing the (5 th , 25 th , 50 th , 75 th , and 95 th) percentiles of the flow
265	distribution for each day, compute the estimate of the constituent for each value, and compute a
266	density-weighted average of these five estimates to get the "flow or salinity adjusted" estimate. These
267	five percentiles are based on the mean of flw_sal, which is actually zero because the seasonal cycle has
268	been removed from the flw_sal variable and the standard deviation for each doy. We found that the
269	standard deviation is not usually constant throughout the year (e.g., Supplemental materials Fig. SM1).
270	Therefore, we retain a data set that contains the average standard deviation of the seasonally-adjusted
271	flw_sal variable for each day of the year based on a smooth of observed standard deviations.
272	
273	3.3 Intervention approach
274	
275	In either the temporal (Section 3.1) or flow or salinity adjusted models (Section 3.2), there is a need to
276	consider the impact of changes in laboratory analysis or sampling procedure that could create a
277	discontinuity (i.e. a disconnected shift) in the time series. We propose an intervention analysis (e.g., Box
278	and Tiao, 1975) that involves adding a binary (0 or 1) term to gam2 to create gam3, or to gam2_flwsal to
279	create gam3_flwsal:
280	
281	gam3:_gam(y \sim intervention + cyear + s(cyear, k=gamK1) + s(doy,bs='cc') +
282	ti(cyear,doy,bs=c('tp','cc')), knots = list(doy = c(1,366)), select=TRUE)
283	
284	where: $gamK1=c(10,2/3)$ means that the maximum of 10 or (2/3*number of years) is selected,
285	and $intervention$ is a binary variable taking the value 0 prior to the discontinuity and 1 after.
286	
287	gam3_flwsal: gam(y \sim intervention + cyear + s(cyear, k=gamK1) + s(doy,bs='cc') +
288	ti(cyear,doy,bs=c('tp','cc')) + s(flw_sal,k=gamK2) + ti(flw_sal,doy,bs=c('tp','cc')) + ti(flw_sal,

289	$cyear, bs = c('tp', 'tp')) + ti(flw_sal, doy, cyear, bs = c('tp', 'cc', 'tp')), \ knots = list(doy = c(1,366)),$
290	select=TRUE)
291	
292	where: $gamK1=c(10,1/3)$ means that the maximum of 10 or $(1/3*num years)$ is selected,
293	gamK2=c(10,2/3) means that the maximum of 10 or (2/3*num years) is selected, and
294	$\it intervention$ is a binary variable taking the value 0 prior to the discontinuity and 1 after.
295	
296	More than one change can be evaluated by changing intervention into a factor variable (e.g, 0, 1, 2) as
297	well. The p-value and estimated step size of the intervention is output from the gam3 and gam3_flwsal
298	models to determine if the intervention has impacted the data values. This intervention model can also
299	be used to evaluate management actions that are implemented at a point in time such as dam removal,
300	implementation of advanced nutrient removal at a waste water treatment plant, or other changes in the
301	data.
302	
303	3.4 Percent change
304	
305	By fitting the five GAM structures above, we can evaluate the shape of a water quality data time series,
306	its relation to hydrology, and the impact of any possible interventions on trend estimates. Frequently we
307	need to simplify these results and identify whether there has been an increase or decrease over time,
308	and how confident we are in that finding. This type of information, however, is not an explicit output
309	from the GAMs that have been presented, so an additional computation is needed.
310	
311	To address this need, we compute a linear combination of the GAM coefficient vector that can be
312	conceptualized as a percent change between the model estimates at the beginning and end of a period
313	of interest. The period of interest could be the entire record or a subset of it. Once this time period is
314	selected, we must decide how many years at the beginning and end of the period should be used in the
315	computation. One simple option for percent change is to compute the percent difference between the
316	predicted values for the first and last observations in the time series. However, experience has shown
317	that the flexibility of GAMs allows model estimates to become unstable at the very edge of the
318	independent variable space. To remedy this issue, we average predicted values over a short interval of
319	time at each end of the time series. For the purpose of illustration here, we are presenting how we
320	compute the percent change from the first two years to the last two years of the record, but we

evaluate the choice of two years by testing different numbers of years at the beginning and end of the record in Section 4.4.

For a fitted GAM from 'mgcv', we can output the vector $\hat{\beta}$ which is the estimated parameter vector, and $\hat{\Sigma}_{\beta}$ which is the estimated variance-covariance matrix of the parameter vector. These are computed in 'mgcv' following equations 2 and 3 (Wood, 2006):

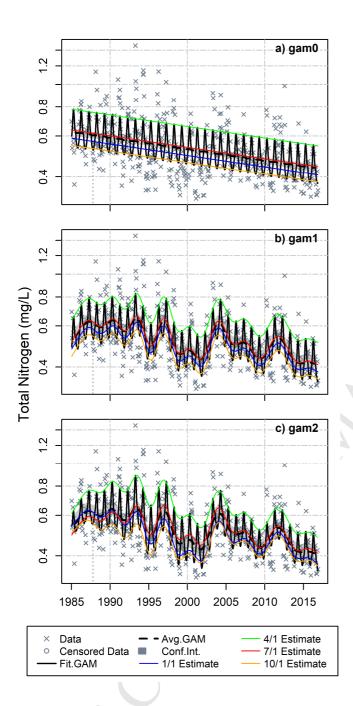
 $\hat{\boldsymbol{\beta}} = (Z^{\mathsf{T}}Z)^{-1}Z^{\mathsf{T}}Y \text{ (eq 2)}$

$$\hat{\Sigma}_{\beta} = S^2 (Z^{\mathrm{T}} Z)^{-1} \quad \text{(eq 3)}$$

$$Z = S(X) \quad (eq 4)$$

where X is the matrix of independent variables (e.g., cyear, doy, flow_sal), Z is the matrix of linear predictors in the spline bases for the GAM model computed by the smooth function from X, and Y is the dependent variable parameter vector. To compute a percent change over time and its standard error, we define a dependent variable matrix, X_p , that represents the 15th day of the month for each month throughout the two years at the beginning and end of the period of interest. So for a difference between 1985-1986 to 2015-2016, X_p for gam2 would be a two column matrix with the first column containing the decimal date for:

339 Jan 15, 1985; Feb 15, 1985;... Dec 15, 1986; Jan 15, 2015; Feb 15, 2015; ... Dec 15, 2016.


The second column would be the day of year corresponding to the 15th of each month repeated four times, once for each of the four years considered. X_p is linearly converted in 'mgcv' via the fitted GAM to the prediction vector (Z_p) . From Z_p , matrix Z_d is computed such that Z_d $\hat{\beta}$ is an estimate of the difference between the first two years and last two years of predictions:

$$Z_{d} = dAZ_{p} \qquad (eq 5)$$

where **d** is a simple row vector [-1 1]. **A** is a two row averaging matrix with the following structure where 1/24 is repeated 24 times followed by 24 zeros on the first row, with the opposite on the second row.

351	A = [1/24 1/24 1/24 0 0 0
352	0 0 0 1/24 1/24 1/24]
353	
354	
355	Pre-multiplying $\hat{m{\beta}}$ by $m{z}_d$ provides a point estimate of the difference of the last n years minus the first n
356	years as a simple linear transformation of the estimated parameter vector.
357	
358	Difference = $Z_d \hat{\beta}$ (eq 6)
359	
360	The standard error of this difference is from the following (as in Rao, 2001):
361	
362	$se_{diff} = \sqrt{Z_d \sum_{\beta} Z_d^{\mathrm{T}}} \qquad (eq 7)$
363	
364	4. Results and Discussion
365	
366	4.1 Temporal model selection and smoothing
367	
368	Fitting an example dataset with each of the first three GAM models (gam0, gam1, and gam2)
369	demonstrates the impact of each additional smooth term on model shape and fit to the data (Figure 2;
370	Table 1). In this example, there is a clear seasonal cycle, and an apparent decrease over time shown via
371	gam0 (Figure 2a). The R ² and residual diagnostics (Table 1; Figure SM2) suggest there could be room for
372	improvement with this model structure, and indeed adding the s(cyear) term with gam1 demonstrates
373	the nonlinear pattern over time and improves the adjusted R^2 (Figure 2b; Table 1). Inclusion of $s(cyear)$
374	in gam1 makes the p-value on the linear cyear term >0.10, essentially making it possible to drop that
375	term from the model (although we retain it for simplicity since it has no impact on the results). With
376	gam2, the addition of the tensor product that allows for a changing seasonal cycle is shown with the
377	shape of the black line as well as with four colored lines that represent mean predictions at four
378	different days of the year (Figure 2c). The gam2 model (Figure 2c) indicates that seasonal cycling of TN is
379	greater in the 1993-1998 period than in the 2008-2013 period, whereas gam1 (Figure 2b) estimates

constant seasonal cycling for the period of record. The most complicated model has the best model fit
using AIC, RMSE, and adjusted R ² (Table 1).
Autocorrelation of the residuals is something to consider with these results (Supplemental Materials,
Figure SM2). An option we have not implemented, but that we are considering, is a mixed model
approach that incorporates autocorrelation into the error structure. For the evaluation of the models
presented here, autocorrelated errors may mean underestimated p-values on the model terms. Because
our purpose is mostly descriptive, this uncertainty is acceptable for the evaluations described here.
Notably, significant autocorrelation is almost always removed with models incorporating hydrology
(Section 4.2). If data points were even closer together temporally, or if there was not another
explanatory variable such as hydrology to incorporate, users might want to carefully evaluate the use of
a mixed model. Residual diagnostics of all following example GAM graphics are presented in the
Supplemental Materials with labels corresponding to the figures in the main text.

Figure 2. Example output from (a) gam0, (b) gam1 and(c) gam2 for surface TN at a mid-bay station. In each plot, the x marks are the data, circles are a small number of censored data (i.e., reported at the detection limit), the solid black line is the full GAM fit (Fit. GAM), the dotted black line with gray bounds is the average prediction (Avg. GAM) with a 95% confidence bound (Conf. Int.), and four colored lines represent estimates for Jan 1 (blue), Apr. 1 (green), July 1 (red) and Oct. 1 (orange). Results are shown on a log-scale.

Table 1. Details on gam0, 1 and 2 example fits for CB5.4 surface TN (Figure 2)

Model and	Term	Linear parameter coefficients			GAM analysis of variance		
diagnostics		estimate	Std. error	p.value	df	F	p.value
gam0,	intercept	-0.647	0.0102	<0.0001			
AIC = -100.9;	cyear	-0.0114	0.00113	<0.0001	1.00	101	<0.0001
RMSE=0.213;	s(doy)				6.19	17.7	<0.0001
Adj $R^2 = 0.373$							
gam1,	intercept	-0.597	0.0577	<0.0001			
AIC = -178.2;	cyear	-0.0472	0.0668	0.48	1.00	0.498	0.48
RMSE=0.191;	s(cyear)				18.9	5.68	<0.0001
Adj $R^2 = 0.496$	s(doy)				6.83	22.3	<0.0001
gam2,	intercept	-0.614	0.572	<0.0001			
AIC = -195.2;	cyear	0.0260	0.0664	0.70	1.00	0.154	0.70
RMSE=0.186;	s(cyear)			7	19.0	5.88	<0.0001
Adj $R^2 = 0.522$	s(doy)				6.85	23.6	<0.0001
	ti(cyear,doy)				6.42	1.84	0.0004

For the purposes of evaluating water quality annually for many parameters, stations, and depths, model selection must be simplified and ideally defined in advance. Therefore, we conducted a comparison between the performances of these three temporal GAMs (gam0,1 and 2) for TN, TP, chlorophyll-a, DO, and Secchi disk depth, for most mainstem and tributary stations from 1999-2016. The comparison of model fit is based on AIC, and for 99% of these data sets, AIC values for gam2 are lower than or equal to those for gam1 and gam0 (Table 2). A negative difference means that the gam2 AIC is lower, therefore suggesting a "better" model. It is clear that the gam2 models frequently have much lower AICs than the other models, and when gam0 or gam1 performed better, the difference is very small. Based on these findings, gam2 was selected as the primary temporal-only model for Chesapeake Bay annual tidal trend assessments that are graphically presented to the public, and the model to build upon for incorporating hydrology (i.e., gam2_flwsal). Based on this experience, it is difficult to think of an estuarine water quality scenario where gam2 would not perform as well if not better than gam0 or 1. For instance, a linearly changing data set could be modeled accurately with gam2; there would simply be little variability attributed to the nonlinear terms. In periods of missing data, any of these models will tend to

Table 2. Statistics on AIC ranges (AIC_{gam2} – AIC_{gam0or1}) for 1999-2016 data at 137 stations.

the average with large uncertainty during the data gap.

			Quantiles of differences			
parameter	layer	min diff	25	50	75	max diff

Chlorophyll-a	В	-34.0	-11.9	-3.71	-0.88	0.02
Chlorophyll-a	S	-43.9	-8.24	-3.5	-0.84	0.01
DO	В	-22.3	-5.53	-2.09	-0.01	0
Secchi depth	NA	-27.5	-6.80	-2.4	-0.18	0.03
TN	В	-31.3	-9.97	-4.55	-1.07	0.01
TN	S	-79.5	-12.3	-5.71	-1.04	5.06
TP	В	-17.3	-4.63	-1.38	-0.16	0.92
TP	S	-23.1	-7.73	-2.78	-0.43	0.01

423424

425

426

427

428

429

430

431

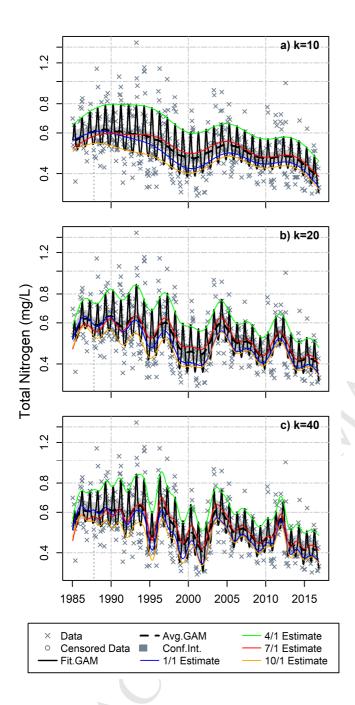
432

433

434

435

436


437

438439

440

441

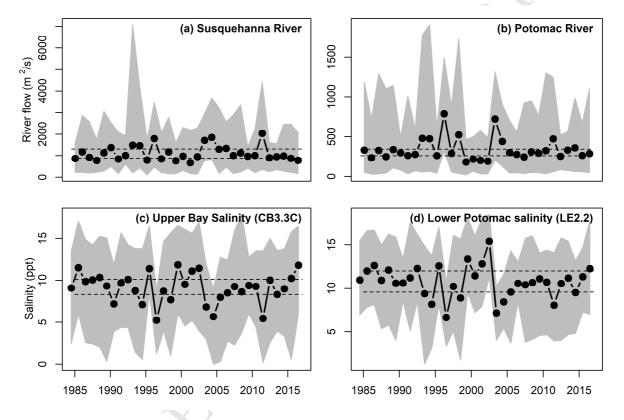
Another component to GAM fitting involves confirming that the upper level on the flexibility of the spline function is high enough for the thin plate spline-based smooths (Wood, 2006; also Section 3.1). The recommended procedure for selecting the k-value is a manual process to ensure that the fit is not reaching the upper limit (Wood, 2018). The k-value selection is very application-specific and should be re-evaluated with any new location. In this case study, with a large number of analyses to conduct every year, we needed to select a reasonable default k-value. After some testing, it was clear that many of the nonlinear patterns over time are due to multi-year wet and dry periods. To capture these cycles, we set the k-value to 2/3 times the number of years. This allows for a change in direction roughly every 3 years, if needed (e.g., Figure 3b). Less flexibility in the model (Figure 3a, Table SM1) is over-smoothed and poorly fits the data. More flexibility in the model (e.g., Figure 3c, Table SM1) sometimes improves model fit, and allows for a degree of "bumpiness" that essentially captures year-to-year variation. In this Chesapeake Bay study, because our purpose is to examine long-term changes that persist beyond a year, we found that this high amount of model flexibility adds unnecessary computation and interpretation time. In other applications, however, a higher amount of variability may be necessary, perhaps where climatic patterns that vary dramatically year-to-year are the driver of the change being evaluated. In addition, if any other explanatory variables are added to the model, this also requires a reevaluation of the k-values, as we found when incorporating hydrology effects into the models (next section).

442443

444

Figure 3. Example showing the effect of adjusting the k-value for the *s(cyear)* smooth with progressively increasing k-value from (a) to (c). All graphs are for surface TN at station CB5.4.

445446


447

448449

4.2 Incorporating flow or salinity

Like many estuaries, the range and variability in river flow from the major freshwater sources into Chesapeake Bay is quite large (Figure 4). Annual average river flow through the Susquehanna ranged

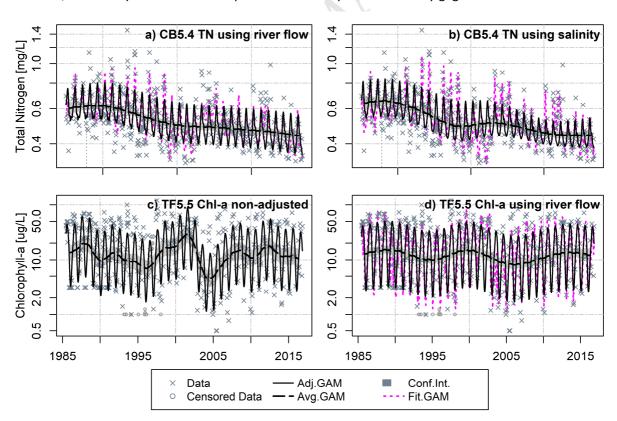

from 670 to 2,040 m³/s from 1985 to 2016, and for the Potomac River from 180 to 790 m³/s (Figures 4a, b). An inverse relationship exists between downstream salinity and freshwater river flow with higher flow years (e.g., 1996, 2003-2004, 2011) showing lower annual average salinity in both systems (Figures 4c, d). The impact on water quality of large multi-year variations in freshwater input can be seen in many of the temporal (gam2) graphics. See, for example, the multi-year dip in TN concentrations midbay during a drought period extending from 1999-2002 (Figure 3b). This corresponds to a 4-year period of below average river flows (Figure 4a, b) and high salinities (Figure 4 c,d).

Figure 4. Mean annual river flow from two largest freshwater sources to Chesapeake Bay (Susquehanna River (a) and Potomac River (b)) and mean annual salinity at a station in in mesohaline mainstem Chesapeake Bay (c) and mesohaline Potomac (d). Grey regions show range of monthly average flow or salinity observations. Dotted lines show 25th and 75th quantiles around the annual means.

We fit two gam2_flwsal models to the same example used above, CB5.4 surface TN, with the first using the preceding 90 days of Susquehanna River flow for flw_sal (Figure 5a) and the second using salinity for flw_sal (Figure 5b). Ninety days was selected as an optimal averaging window by computing the Spearman correlation between the data set and a range of flow options between 15 and 210 days. The

magenta dashed lines in these graphs show the full gam2_flwsal estimates, which incorporate seasonal patterns and variability in flow or salinity. The solid black lines show the flow-adjusted results, i.e. estimated conditions if flow or salinity had been average throughout the record. The heavy black dashed lines show the seasonally-adjusted and flow-adjusted long-term trend. The impact of the 1999-2002 drought on the long-term pattern is removed with both the flow and salinity adjustments. A summary of the GAM output (Table 3) shows that including either flow or salinity improves the model fit, and that salinity is slightly more explanatory than flow in this case. At this mid-bay location, salinity may be a better explanatory variable than river flow because salinity integrates the influence of multiple freshwater sources. Due to the nature of estuaries being a mixture of fresh and salt water, in tidal fresh areas of estuaries, there will not be enough salinity to use it as a predictor. In this case study for those fresh regions, nearby gaged river flow is the current choice. To illustrate this example, we analyzed a chlorophyll-a time series from the tidal fresh James River. We first fit it with a temporal gam2 (Figure 5c, Table 3) and then with gam2_flwsal using the preceding 10 days of river flow from the James River RIM station (Figure 5d, Table 3). In the future, we will explore using average salinity from downstream locations, which may also be a viable option in an estuary without nearby gaged river flow.

sing
r
ing
r

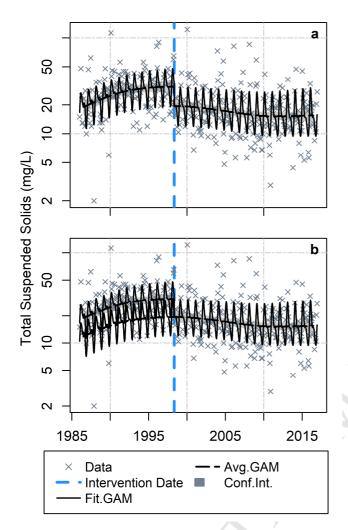
Table 3. Details on GAM shown in Figure 5.

Station	Model and	Term	-	arameter			analysis	of
	diagnostics		coefficients			variance		
			estima	Std.	p.value	df	F	p.value
			te	error				
CB5.4	gam2_flwsal	intercept	-0.635	0.0119	<0.0001			
	with flow,	cyear	0.0058	0.0101	0.57	1.0	0.33	0.57
	AIC = -324.9;	s(cyear)				4.26	3.25	0.006
	RMSE=0.161;	s(doy)				7.15	27.0	<0.0001
	Adj $R^2 = 0.641$	ti(cyear,doy)				4.05	1.10	0.001
		s(flw_sal)				1.84	72.0	<0.0001
		ti(flw_sal,doy)				5.12	6.40	<0.0001
		ti(flw_sal,cyear)				4.12	1.27	0.28
		ti(flw_sal,doy,cy				2.30	0.13	0.03
		ear)						
CB5.4	gam2_flwsal	intercept	-0.621	0.0121	<0.0001			
	with salinity,	cyear	-0.0141	0.0126	0.26	1.00	1.26	0.26
	AIC = -443.0;	s(cyear)				5.98	6.25	<0.0001
	RMSE=0.140;	s(doy)		~		7.06	36.0	<0.0001
	Adj $R^2 = 0.729$	ti(cyear,doy)			Y	5.64	2.79	<0.0001
		s(flw_sal)				2.40	81.8	<0.0001
		ti(flw_sal,doy)				5.14	5.54	<0.0001
		ti(flw_sal,cyear)	~	7		5.85	3.33	0.002
		ti(flw_sal,doy,cy		Y		1.88	0.111	0.02
		ear)						
TF5.5	gam2,	intercept	2.23	0.448	<0.0001			
	AIC = 1098; RMSE=0.865;	cyear	-0.216	0.264	0.413	1.00	0.673	0.41
		s(cyear)				16.8	4.43	<0.0001
	Adj $R^2 = 0.543$	s(doy)	y			5.09	50.9	<0.0001
		ti(cyear,doy)				0.79	0.086	0.25
TF5.5	gam2_flwsal	intercept	2.52	0.103	<0.0001			
	with flow,	cyear	-0.0394	0.0579	0.50	1.0	0.463	0.50
	AIC = 893;	s(cyear)				6.47	3.90	0.0003
	RMSE=0.677;	s(doy)				5.83	78.1	<0.0001
	Adj $R^2 = 0.720$	ti(cyear,doy)				a		
		s(flw_sal)				1.00	244	<0.001
		ti(flw_sal,doy)				7.10	1.75	0.002
		ti(flw_sal,cyear)				1.00	0.279	0.60
	V	ti(flw_sal,doy,cy				2.64	0.097	0.12
	Y	ear)						

^aSelected out of the model by *select=TRUE*

491492493

In initial testing with default k-values on the *cyear* and *flw_sal* smooths, the flow or salinity adjustment


did not always remove the impact of the year-to-year variability of freshwater input. After some

research, we learned that it was necessary to adjust the relative flexibility of these spline bases in order
to account for concurvity (Buja et al., 1989). Concurvity, in this case, means that the smooth term for
flw_sal can be approximated by the smooth term for cyear (Wood, 2018). This occurs when there are
long-term non-linear patterns in river flow. One useful approach (based on Peng et al., 2006) to correct
for this is to limit the flexibility of the smooth on <i>cyear</i> so that more of the variability can be modeled
with the smooth on flw_sal. After running a comprehensive suite of tests across Chesapeake Bay
stations, we found that setting the k-value on s(cyear) to one-third times the number of years of the
analysis and the k-value on s(flw_sal) to two-thirds times the number of years effectively limited the
flexibility of the <i>cyear</i> smooth function in most cases. This is shown in the equations in Section 3.2 for
gam2_flwsal and Section 3.5 for gam3_flwsal, and for an example Secchi data set with flow-adjustment
in the Supplemental Materials (Fig. SM5).

These k-values allow for double the amount of variability to be attributed to hydrology than to the s(cyear) term. Our selected k-values perform well for automated analysis in Chesapeake Bay, but in any focused individual case (in the Chesapeake Bay or elsewhere), improvements could likely be made to this approach with more testing, particularly on the effect of the k-values in the tensor product interactions. In other systems, we recommend site-specific testing of the k-values because the temporal scale of hydrologic effects could be very different, and our experience showed that possible concurvity cannot be ignored when additional terms are added to an explanatory GAM model.

4.3 Lab or method change interventions

We used the intervention approach described in Section 3.3 to evaluate suspected impacts of laboratory or method changes, which are common in long-term monitoring records. For example, a change in the laboratory analyzing Maryland tributary data resulted in a suspected change to the TSS values in 1998 (Karrh, 2017). We fit the TSS data from station EE3.0 in Fishing Bay with a gam3 model with an intervention on May 1, 1998 (Figure 6). Results strongly indicate a significant change on this date (p=0.001; Supplemental Materials Table SM3). From these results, the model predictions were adjusted by the estimated size of the change to show what the long-term pattern would have looked like if the laboratory had been the same throughout the record (Figure 6b). Interviews with laboratory personnel revealed that samples collected prior to the lab change were not rinsed as thoroughly as samples after the change. The prior samples retained some salt, which explains the step down.

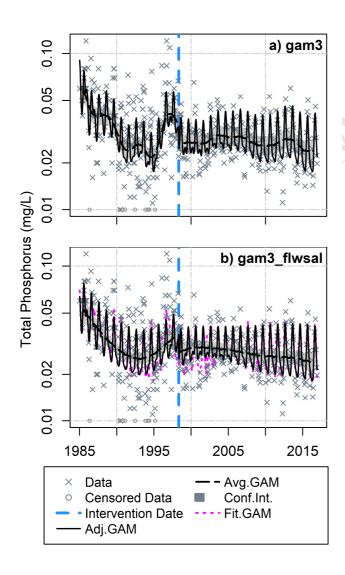
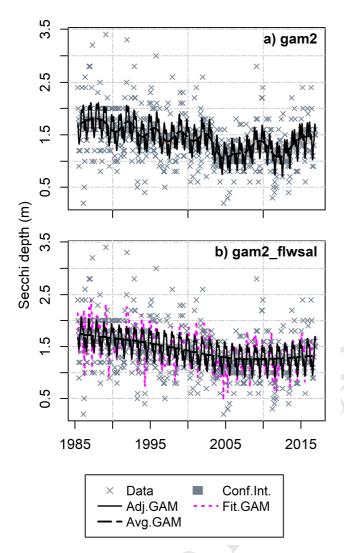


Figure 6. Modeling an intervention for surface TSS at EE3.0. The lab change is indicated with a blue dotted line and (a) modeled response with a change, (b) adjusted model results also shown.


Combining this intervention approach with the flow or salinity adjustment approach via gam3_flwsal helps to distinguish the effect of a method change versus a hydrologic change. For example, a laboratory and method change happened concurrently for total phosphorus evaluations on May 1, 1998 in the smaller MD tributaries (Karrh, 2017). By coincidence, this fell between a higher flow period in 1996 and a lower flow period starting in 1999, both of which appear to influence the TP dataset. When gam3—which includes the intervention but no river flow effect—is tested, the intervention is not significant (intervention p=0.28, AIC=357, Adjusted $R^2 = 0.44$, Fig7a). But when salinity is included as an explanatory variable with gam3_flwsal, the intervention is significant (intervention p=0.02, AIC=340, Adjusted $R^2 = 0.47$, Figure 7b), and the model fit improves (Supplemental Materials Table SM4). With gam3_flwsal, a

few changes occurred which could have caused this result: the inclusion of salinity could be accounting for some of the shape to the long-term pattern, and/or the lower k-value on the *s(cyear)* term in gam3_flwsal makes the cyear spline stiffer and less likely to capture the possible intervention as part of the *cyear* spline.

This model structure is successful for evaluating known interventions, but identifying possible interventions can be a time consuming process that requires knowledge of the data collection and processing history. Preliminary results from our case studies indicate that when more than one intervention is suspected in a short period of time, distinguishing their effects is challenging (results not shown). More testing will be needed to evaluate such situations.

552	Figure 7 . Intervention example at EE2.1 for surface TP without accounting for flow or salinity variation
553	(a), and with accounting for salinity (b).
554	
555	4.4 Percent change results Bay-wide
556	
557	After fitting a GAM model using one of the six approaches described above (gam0-gam3_flwsal), an
558	overall measure of change over time can be computed as described in Section 3.4. For example, Secchi
559	depth appears to be decreasing at a station in the mid-bay using both a gam2 (Figure 8a) and salinity-
560	adjusted gam2_flwsal (Figure 8b). The percent change computations on these models (Table 4) support
561	this visual conclusion with an average decrease of 0.26 meters from the gam2 (p-value 0.01) and 0.41 $$
562	meters in the salinity-adjusted model (p-value <0.0001). Presenting the findings from both GAMs gives
563	us confidence that a decrease occurred independent of the impact of hydrologic variability.

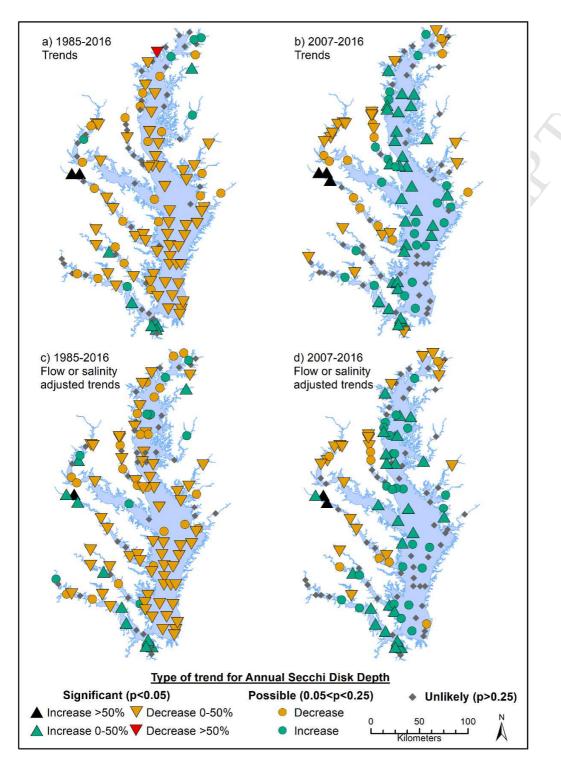
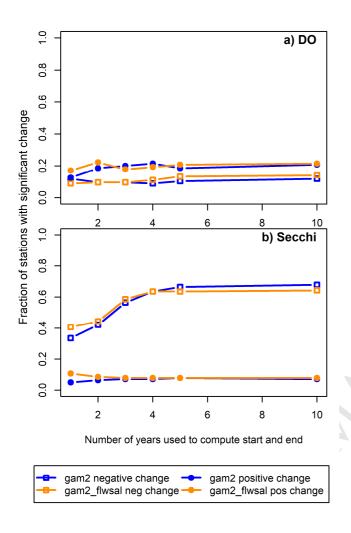


Figure 8. Example of model results where percent change over time is computed for both a (a) temporal model gam2, and (b) salinity-adjusted model gam2_flwsal. Example is for Secchi at CB4.1C.

Table 4. Model diagnostics and percent change computation results for CB4.1C Secchi (Figure 8).


Value	Temporal model (gam2)	Model with salinity (gam2_flwsal)
Model Diagnostics		
AIC	563.6	415.7
RMSE	0.399	0.349
Adj R ²	0.328	0.489
Estimates of change over full pe	eriod for regular (gam2) or salinit	y-adjusted (gam2_flwsal) results
Baseline mean	1.72	1.73
Current mean	1.46	1.32
Estimated difference	-0.259	-0.412
Std. Err. difference	0.102	0.071
95% Confidence interval for difference	(-0.459 , -0.0595)	(-0.551 , -0.273)
Difference p-value	0.011	<0.0001
Period of Record Percent	-15.1%	-23.8%
Change Estimate (%)		

These computations were repeated for every station for Secchi depth, and summarized with maps for both the long term (1985-2016, Figure 9a,c) and short-term (2007-2016, Figures 9b,d). In the maps of Chesapeake Bay tidal trends, we have decided to show the percent change results using a range of symbols. Specifically, we use an alpha of 0.05 as a cutoff for a "significant" trend, but we also relax that criterion to 0.25 to show a second level of "possible" trends. This is a higher alpha level than normally considered, but this approach allows us to present a richer suite of results that can help managers identify locations were changes might be starting to occur, and hence dig deeper immediately into those results rather than wait until a trend is "significant." This is similar to the approach used for presenting trends in nutrient and sediments loads into the Chesapeake Bay at the RIM stations (Figure 1) that are generated by the USGS (Hirsch et al., 2015). The Secchi maps show clear spatial and temporal patterns. At most stations, Secchi depth degraded over the longer record, with a change in direction in the last 10 years in the middle parts of Chesapeake Bay. A more thorough investigation of these Secchi patterns is part of a study on long-term water clarity in Chesapeake Bay (Keisman et al., 2018).

Figure 9. Annual bay-wide percent change results based on gam2 (a and b) and gam2_flwsal (c and 6) for Secchi Depth.

590	
591	As discussed in Section 3.4, the selection of two years for the start and end of the period of interest in
592	percent change computations is adjustable. We tested how the trend summaries might change if a
593	different number of years was used. Specifically, we computed percent change using either 1, 2, 3, 4, 5
594	or 10 years as the beginning and ending windows from GAM results for Secchi and bottom DO from
595	1985-2016 and surface TN and TP from 1999-2016. The results were evaluated by counting how many
596	stations had a significant percent change (i.e., p<0.05) for each option. This evaluation is summarized
597	graphically (Figure 10, Figure SM9) and shows that for DO there is almost no change in the number of
598	stations with a significant percent change across the options, but for Secchi there is a noticeable
599	increase in the number of stations with significant percent change when three years is considered
500	instead of two. TN and TP fall between these ranges (Supplemental Materials, Figure SM9). Similarity
501	between flow-adjusted and non-flow adjusted results indicates that differences between the options are
502	not due to hydrologic effects.
503	
504	The choice of how many years to use at the start and end of the percent change computation must be
505	made based on the purpose of the assessment. One option is to make a selection based on where the
506	graphs are plateauing (perhaps 3 or 4 years in this case). Another is to use fewer years in order to
507	identify a trend change soon after it occurred. We chose to use two years for our Chesapeake Bay
508	assessments to prioritize detection of major shifts soon after they occur. The resulting greater sensitivity
509	to changes in trend direction increases the potential for a reverse finding given a few years of additional
510	data. This choice should be based on the needs of the assessment for other studies or locations.
511	

Figure 10. Fraction of total stations with significant (p<0.05) negative (square) or positive (circle) trends when a different number of years is used to compute the beginning and ending periods (x-axis). Blue lines are gam2 results and orange lines are flow-adjusted results for (a) bottom summer DO, and (b) secchi depth.

5. Conclusions

The approach described here to apply GAMs to a diverse set of water quality parameters across a large spatial scale in an estuary can help describe both large scale (e.g., Figure 9) and local (e.g., Figure 2, Figure 5) water quality dynamics. The results from our Chesapeake Bay case study are serving as a starting point for further research evaluations (e.g., Keisman et al., 2018; Testa et al., 2018) as well as for

local-scale planning efforts required by the Chesapeake Bay watershed TMDL. Detailed GAM analyses
have added to the understanding of water quality conditions in multiple coastal and estuarine regions,
including, for example, turbidity off the Gold Coast, Queensland, Australia (Richards et al., 2013) and
chlorophyll- a and nutrients in Bohai Bay, China (Qiao et al., 2017). The uniqueness of this study,
however, stems from our need to implement an approach that retains statistical rigor while being
applied operationally every year to a large set of stations and parameters. We accomplished this by
conducting testing across a range of scenarios and allowing flexibility in our model specifications. Many
of our choices along the way for model complexity, k-values, concurvity adjustment with additional
variables, method change adjustments, and visualizing the results over large spatial scales can provide a
starting point for application in other systems with long-term water quality monitoring. However, to
ensure rigorous results, it would be necessary to work with both local scientists who can test and adjust
these choices by, for example, selecting appropriate hydrology adjustment (Section 3.2) and local data
providers who are aware of potential data issues (Section 3.3). Certainly, there are analysis questions
that are not best addressed with this GAM approach. We generally do not use these model structures
for data sets with fewer than eight years of data, because even if there were enough data for a valid
model fit, our experience shows that a period of less than 8 years is too short to decipher long-term
change from short-term fluctuations. In addition, we are not proposing these techniques for
extrapolation, or prediction, beyond the years for which data have been collected. A dynamic modeling
approach would be more applicable for generating predictions.

In this study, we focused on model selection, incorporating hydrology, accounting for method changes, and extracting long-term change conclusions from GAM results. Other topics under current investigation by our team include how to appropriately model censored data with an Expectation Maximization approach (Liu et al., 1997), how to systematically incorporate other explanatory variables such as watershed nutrient inputs into the models, and how to identify appropriate scales for spatially aggregating the water quality stations in the GAM approach. Additional refinements that could improve this approach include accounting for residual autocorrelation, alternative data transformations, a more thorough investigation of concurvity, and adjusting model smoothing with k-values.

6. Acknowledgements

We would like to acknowledge Renee Karrh (MDDNR), Mike Lane (ODU), and Monika Arora (ODU), for

657	valuable work and insights testing and implementing this approach to water quality data in MD and VA;
658	the VA and MD tidal monitoring programs and individuals who have worked to collect, measure and
659	quality assure the monitoring data over the last 33 years; Erik Leppo (Tetra Tech) for his work on the R
660	package development; and members of a STAC review committee (Hugh Ellis, JHU; Pan Du, VA Tech; Carl
661	Friedrichs, VIMS; and Vyacheslav Lyubchich, UMCES) who provided helpful comments on this approach.
662	This work was supported in part by the U.S. Environmental Protection Agency [grant EPA/CBP Technical
663	Support 2017 No. 07-5-230480]. This is contribution no. xxx of the University of Maryland Center for
664 665	Environmental Science.
666	7. References
667	
668 669 670	Beck, M.W., Hagy, J.D., 2015. Adaptation of a Weighted Regression Approach to Evaluate Water Quality Trends in an Estuary. Environmental Modeling & Assessment 20(6) 637-655. 10.1007/s10666-015-9452-8.
671 672 673 674	Beck, M.W., Murphy, R.R., 2017. Numerical and Qualitative Contrasts of Two Statistical Models for Water Quality Change in Tidal Waters. JAWRA Journal of the American Water Resources Association 53(1) 197-219. 10.1111/1752-1688.12489.
675 676 677 678	Box, G.E.P., Cox, D.R., 1964. An Analysis of Transformations. Journal of the Royal Statistical Society. Series B (Methodological) 26(2) 211-252.
679 680 681 682	Box, G.E.P., Tiao, G.C., 1975. Intervention Analysis with Applications to Economic and Environmental Problems. Journal of the American Statistical Association 70(349) 70-79. 10.1080/01621459.1975.10480264.
683 684 685	Buja, A., Hastie, T., Tibshirani, R., 1989. Linear Smoothers and Additive Models. The Annals of Statistics 17(2) 453-510. 10.1214/aos/1176347115.
686 687 688	Chesapeake Bay Program, 2017a. CBP Water Quality Database (1984-present). https://www.chesapeakebay.net/what/downloads/cbp_water_quality_database_1984_present.
689 690 691	Chesapeake Bay Program, 2017b. Methods and Quality Assurance for Chesapeake Bay Water Quality Monitoring Programs. CBP/TRS-319-17.
692 693 694	Cloern, J.E., 2001. Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series 210 223-253.
695 696	Duarte, C.M., Conley, D.J., Carstensen, J., Sánchez-Camacho, M., 2009. Return to Neverland: Shifting Baselines Affect Eutrophication Restoration Targets. Estuaries and Coasts 32(1) 29-36. 10.1007/s12237-008-9111-2

698	
699	Duchon, J., 1977. Splines minimizing rotation-invariant semi-norms in Sobolev spaces, Constructive
700	Theory of Functions of Several Variables. Springer, Berlin, Heidelberg, pp. 85-100.
701	
702	Giampiero, M., Wood, S., 2012. Coverage Properties of Confidence Intervals for Generalized Additive
703	Model Components. Scandinavian Journal of Statistics 39(1) 53-74. 10.1111/j.1467-9469.2011.00760.x.
704	
705	Greening, H., Janicki, A., Sherwood, E.T., Pribble, R., Johansson, J.O.R., 2014. Ecosystem responses to
706	long-term nutrient management in an urban estuary: Tampa Bay, Florida, USA. Estuarine, Coastal and
707	Shelf Science 151 A1-A16. https://doi.org/10.1016/j.ecss.2014.10.003.
708	
709	Hagy, J.D., Boynton, W.R., Keefe, C.W., Wood, K.V., 2004. Hypoxia in Chesapeake Bay, 1950–2001: Long-
710	term change in relation to nutrient loading and river flow. Estuaries 27(4) 634-658.
711	10.1007/BF02907650.
712	
713	Hagy, J.D., Boynton, W.R., Sanford, L.P., 2000. Estimation of net physical transport and hydraulic
714	residence times for a coastal plain estuary using box models. Estuaries 23(3) 328-340. 10.2307/1353325
715	
716	Haraguchi, L., Carstensen, J., Abreu, P.C., Odebrecht, C., 2015. Long-term changes of the phytoplankton
717	community and biomass in the subtropical shallow Patos Lagoon Estuary, Brazil. Estuarine, Coastal and
718	Shelf Science 162 76-87. 10.1016/j.ecss.2015.03.007.
719	II I' I W O II O D EC ACII W D ANII I AA E D I II W 2016
720	Harding, L.W., Gallegos, C.L., Perry, E.S., Miller, W.D., Adolf, J.E., Mallonee, M.E., Paerl, H.W., 2016.
721	Long-Term Trends of Nutrients and Phytoplankton in Chesapeake Bay. Estuaries and Coasts 39(3) 664-
722 723	681. 10.1007/s12237-015-0023-7.
723 724	Hastie, T., Tibshirani, R., 2004. Generalized Additive Models, Encyclopedia of Statistical Sciences. John
725	Wiley & Sons, Inc.
726	whey & sons, me.
727	Hirsch, R.M., Archfield, S.A., De Cicco, L.A., 2015. A bootstrap method for estimating uncertainty of
728	water quality trends. Environmental Modelling & Software 73 148-166.
729	https://doi.org/10.1016/j.envsoft.2015.07.017.
730	
731	Hirsch, R.M., Slack, J.R., Smith, R.A., 1982. Techniques of trend analysis for monthly water quality data.
732	Water Resources Research 18(1) 107-121. 10.1029/WR018i001p00107.
733	
734	Jassby, A., 2008. Phytoplankton in the Upper San Francisco Estuary: Recent Biomass Trends, Their
735	Causes, and Their Trophic Significance. San Francisco Estuary and Watershed Science
736	6(1)https://escholarship.org/uc/item/71h077r1.
737	
738	Karrh, R., 2017. Personal Communication.
739	
740	Keisman, J., Friedrichs, C., Buchanan, C., Cornwell, J., Lane, M., Porter, E., Testa, J., Trice, M., Zhang, Q.,
741	Zimmerman, R., Batiuk, R., Blomquist, J., Lyubchich, S., Moore, K., Murphy, R., Noe, G., Orth, R.J.,
742	Sanford, L., 2018. Understanding and explaining over 30 years of water-clarity trends in Chesapeake Bay
743	Previous work and new insights. Edgewater, MD. STAC Publication Number 18-XXX.
744	

- 745 Le Fur, I., De Wit, R., Plus, M., Oheix, J., Derolez, V., Simier, M., Malet, N., Ouisse, V., 2019. Re-746 oligotrophication trajectories of macrophyte assemblages in Mediterranean coastal lagoons based on 747 17-year time-series. Marine Ecology Progress Series 608 13-32. 748 Lefcheck, J.S., Wilcox, D.J., Murphy, R.R., Marion, S.R., Orth, R.J., 2017. Multiple stressors threaten the 749 750 imperiled coastal foundation species eelgrass (Zostera marina) in Chesapeake Bay, USA. Global Change 751 Biology 23(9) 3474-3483. 10.1111/gcb.13623. 752 753 Liu, S., Lu, J.-C., Kolpin, D.W., Meeker, W.Q., 1997. Analysis of Environmental Data with Censored 754 Observations. Environmental Science & Technology 31(12) 3358-3362. 10.1021/es960695x.
- Najjar, R.G., Pyke, C.R., Adams, M.B., Breitburg, D., Hershner, C., Kemp, M., Howarth, R., Mulholland,
 M.R., Paolisso, M., Secor, D., Sellner, K., Wardrop, D., Wood, R., 2010. Potential climate-change impacts
 on the Chesapeake Bay. Estuarine, Coastal and Shelf Science 86(1) 1-20. 10.1016/j.ecss.2009.09.026.
- Paerl, H.W., Pinckney, J.L., Fear, J.M., Peierls, B.L., 1998. Ecosystem responses to internal and watershed organic matter loading: consequences for hypoxia in the eutrophying Neuse River Estuary, North Carolina, USA. Marine Ecology Progress Series 166 17-25.
- Peng, R.D., Dominici, F., Louis, T.A., 2006. Model choice in time series studies of air pollution and mortality. Journal of the Royal Statistical Society: Series A (Statistics in Society) 169(2) 179-203.
- Qiao, Y., Feng, J., Cui, S., Zhu, L., 2017. Long-term changes in nutrients, chlorophyll a and their relationships in a semi-enclosed eutrophic ecosystem, Bohai Bay, China. Marine Pollution Bulletin 117(1) 222-228. https://doi.org/10.1016/j.marpolbul.2017.02.002.
- Rao, C.R., 2001. Linear Statistical Inference and its Applications, 2nd ed. Wiley.

759

763

766

770

772

776

781

785

788

- Richards, R., Hughes, L., Gee, D., Tomlinson, R., 2013. Using generalized additive models for water quality assessments: A case study example from Australia. Journal of Coastal Research 111-116. 10.2112/SI65-020.1.
- Riemann, B., Carstensen, J., Dahl, K., Fossing, H., Hansen, J.W., Jakobsen, H.H., Josefson, A.B., Krause-Jensen, D., Markager, S., Stæhr, P.A., Timmermann, K., Windolf, J., Andersen, J.H., 2016. Recovery of Danish Coastal Ecosystems After Reductions in Nutrient Loading: A Holistic Ecosystem Approach. Estuaries and Coasts 39(1) 82-97. 10.1007/s12237-015-9980-0.
- Shen, J., Haas, L., 2004. Calculating age and residence time in the tidal York River using three dimensional model experiments. Estuarine, Coastal and Shelf Science 61(3) 449-461.
 10.1016/j.ecss.2004.06.010.
- Shen, J., Lin, J., 2006. Modeling study of the influences of tide and stratification on age of water in the tidal James River. Estuarine, Coastal and Shelf Science 68(1) 101-112. 10.1016/j.ecss.2006.01.014.
- Shen, J., Wang, H.V., 2007. Determining the age of water and long-term transport timescale of the Chesapeake Bay. Estuarine, Coastal and Shelf Science 74(4) 585-598. 10.1016/j.ecss.2007.05.017.

792	Testa, J.M., Kemp, W.M., 2012. Hypoxia-induced shifts in nitrogen and phosphorus cycling in
793	Chesapeake Bay. Limnology and Oceanography 57(3) 835-850. 10.4319/lo.2012.57.3.0835.
794	
795	Testa, J.M., Murphy, R.R., Brady, D.C., Kemp, W.M., 2018. Nutrient- and Climate-Induced Shifts in the
796	Phenology of Linked Biogeochemical Cycles in a Temperate Estuary. Frontiers in Marine Science
797	510.3389/fmars.2018.00114.
798	
799	USEPA, 2010. Chesapeake Bay Total Maximum Daily Load for Nitrogen, Phosphorus and Sediment.
800	Annapolis. Annapolis, MD. https://www.epa.gov/chesapeake-bay-tmdl/chesapeake-bay-tmdl-
801	document.
802	
803	Wood, S., 2003. Thin plate regression splines. Journal of the Royal Statistical Society: Series B (Statistical
804	Methodology) 65(1) 95-114. 10.1111/1467-9868.00374.
805	
806	Wood, S., 2006. Generalized Additive Models: An Introduction with R, 1 ed. Chapman and Hall/CRC,
807	Boca Raton, FL.
808	
809	Wood, S., 2013. On p-values for smooth components of an extended generalized additive model.
810	Biometrika 100(1) 221-228. 10.1093/biomet/ass048.
811	
812	Wood, S., 2018. mgcv (https://CRAN.R-project.org/package=mgcv), 1.8-23 ed.
813	

A Generalized Additive Model approach to evaluating water quality: Chesapeake Bay Case Study

Rebecca R. Murphy^a, Elgin Perry^b, Jon Harcum^c, and Jennifer Keisman^d

Highlights:

- A GAM approach was developed for annual estuarine water quality analysis.
- Fresh water flow impacts are incorporated and adjusted for in the model structure.
- Method changes are accounted for using an intervention parameter.
- Insights generated from this case study are informing management efforts for Chesapeake Bay.