AMT Office Hours

5/9/2025

Today's Outline:

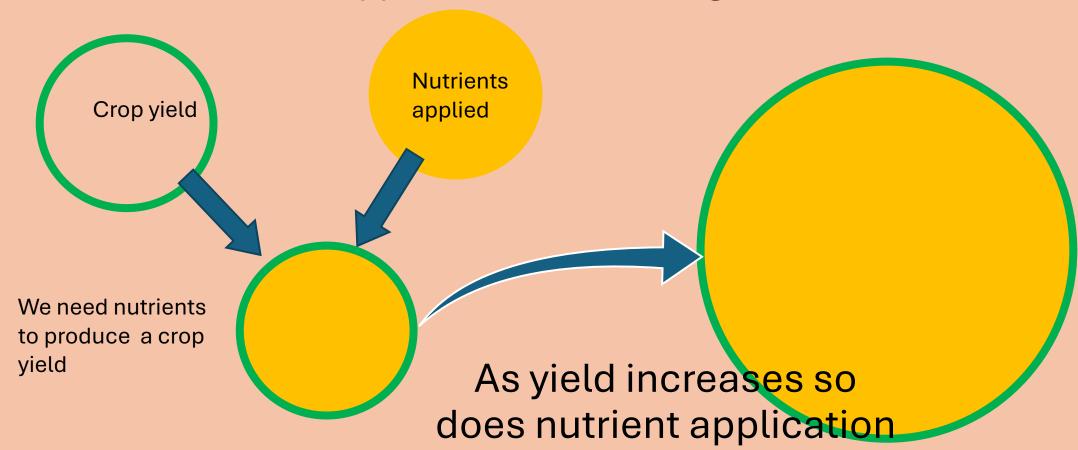
- Time check
- Crop Yields
- Ag Land Use mapping
- Inorganic fertilizer
- Animal Systems Excess

Time check

5 more meetings (including today)

End date of <u>September 12th</u>

~ Five topics currently under review


- Crop Yield Trend
- Inorganic Fertilizer
- Ag Land Use Mapping
- Broiler manure update
- Ag BMP processing excess

We need to be sure that we are on a good path forward

Crop Yields

Why crop yields matter

Yields and nutrient applications are tied together

Models can be used to estimate the yield that attracts nutrient application, isolate the effects of management by accounting for weather

A quick note on yields

Phase 6

Uptake AND application use the same yield

Phase 7

- Uptake uses average yield
- Application uses expected yield

Rationale

- A farmer will apply nutrients based on their, sometimes optimistic, yield expectation.
- Nutrient uptake will occur not based on expectation but on an average yield condition.

Reiterating how Phase 6 and 7 yields look

Phase 6

Phase 7

Yield per acre

Yield per acre Application Yield per acre Uptake

Application

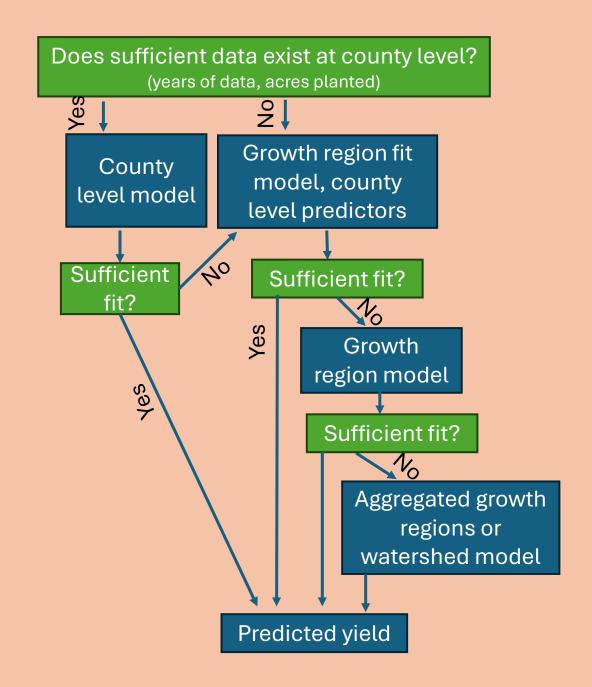
Uptake

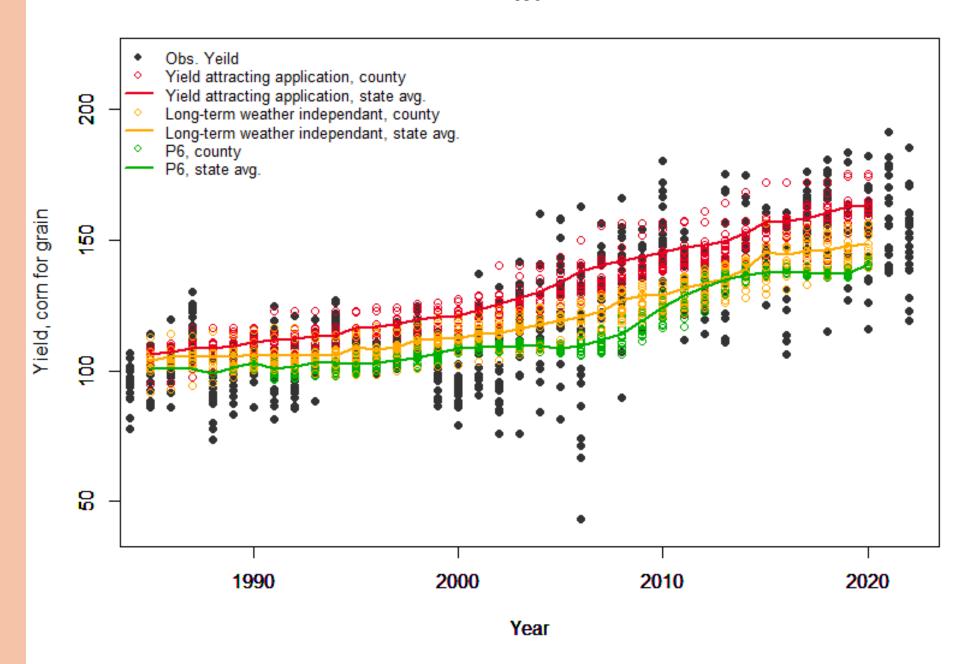
Expected application

Uptake

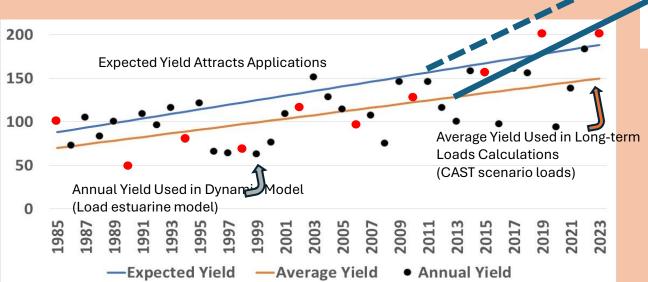
One more iteration

Phase 6

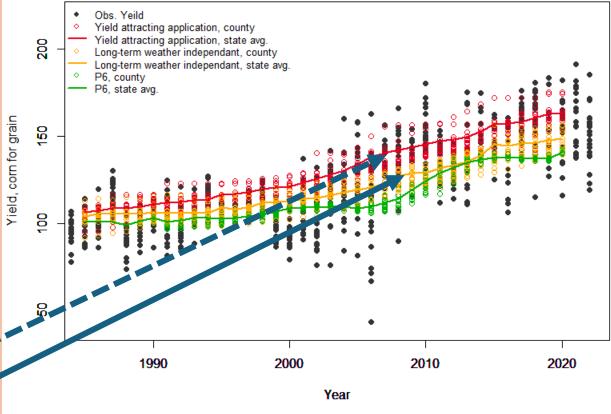

- One Yield
 - Application
 - Uptake


Phase 7

- Two Yields
 - Expected application
 - Uptake


Modeling crop yields, proposed P7 approach

 A county level model is preferred, but there are a total of four models generated to predict yields based on available data and fit.


Let's relate these data

*EXAMPLE DATA

ONLY

NY

A quick refresh of how CAST works:

CAST Structure

Average Load △Inputs * Sensitivity **BMPs Acres Land to Water River Delivery**

Load by land-river segment and land use

Average Load +

Alnputs * Sensitivity

*

*
Acres

BMPs

Land to Water

River Delivery

Average nitrogen load to stream for double cropped ag land watershed wide is 40 pounds per acre

FERTILIZER

Average Load

△Inputs * Sensitivity

BMPs

Acres

Land to Water

River Delivery

Your area applies 115 pounds of fertilizer while the watershed-wide average is 140.

Each additional pound of fertilizer results in 0.2 lbs of runoff

(115-140) * 0.2 = -5 lbs/acre

Average Load

+

△Inputs * Sensitivity

*

BMPs

*

Acres

*

Land to Water

*

River Delivery

UPTAKE

Your area uptakes 110 pounds of fertilizer while the watershed-wide average is 120.

Each additional pound of uptake results in -0.17 lbs of runoff

(110-120) *- 0.17 = 1.7 lbs/acre

Average Load

+

△Inputs * Sensitivity

*

BMPs

*

Acres

*

Land to Water

*

River Delivery

SUM each of the inputs* sensitivities for each input category (e.g. fertilizer, uptake, etc.) with the watershed average load

(-5)+(1.7)+(40)=36.7 lbs

Fertilizer

Uptake

Average Load

Average Load

△Inputs * Sensitivity

BMPs

Acres

Land to Water

River Delivery

BMPs are applied which give, in aggregate, a 20% reduction

36.7 * (1-.20) = 29.36 lbs/acre

Average Load

△Inputs * Sensitivity

*

BMPs

*

Acres

*

Land to Water

*

River Delivery

There are 100 acres of double cropped land in this segment

29.36 lbs/acre * 100 acres = 2936 lbs

Average Load

△Inputs * Sensitivity

BMPs

Acres

Land to Water

River Delivery

The land here is 50% leaker than average due to high groundwater recharge in the piedmont carbonate

The river system reduces loads by 30%

2936 lbs * 1.5 * (1-.30) = 3082.8 lbs Delivered to the Bay from this land use and segment

Questions?

Inorganic fertilizer

- Compared several raw datasets
- Used a tool CalCAST
 - Statistical representation of CAST for quick comparisons
- Input fertilizer N data show regional differences
- No clear "winner"
- Still work to be done

Multiple fertilizer data sets exist:

CAST 23

- Annual 1985-present
- AAPFCO and state data
- Nitrogen and Phosphorus

TREND

- Annual 1930-2017
- Composite of multiple datasets
 - Several USGS, Cao et al 2018, USDA ERS
- Nitrogen

Animal systems BMP excess

- Concerns with:
 - Animal Waste Management Systems
 - Animal Mortality Disposal by Composting
 - Riparian Fence Reduction of Direct Deposition

Thank you for attending office hours!

We will begin our main meeting at 09:00.