

Oyster Best Management Practice Expert Panel Recommendations

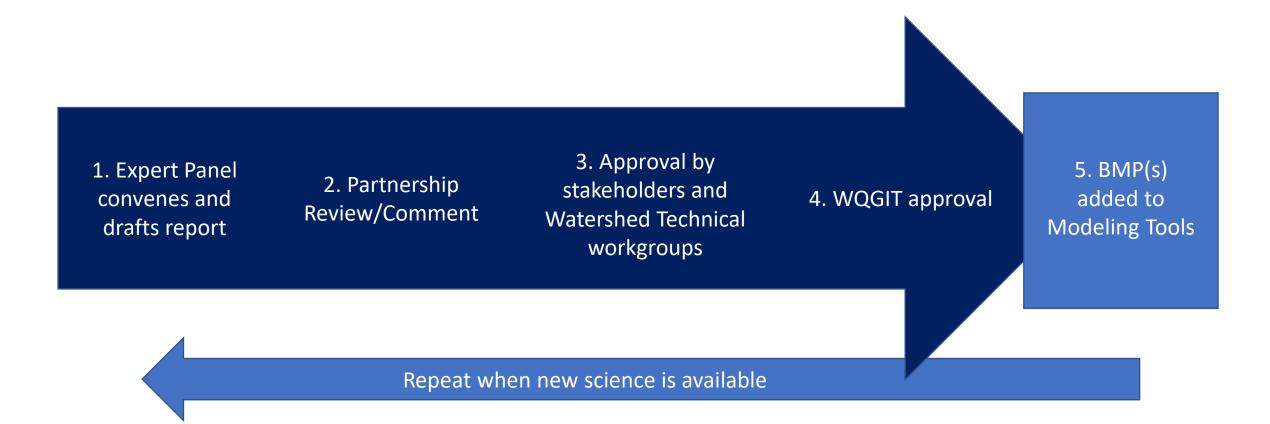
Webinar 1: Oyster Reef Enhanced Denitrification Protocols

February 7, 2023

This webinar will be recorded.

Webinar Housekeeping

- Participants are muted automatically
- Closed captioning is enabled
- We are recording this session
- The recorded webinar link will be posted to the CBP event calendar (along with slides and all other materials)
- Please enter your questions for the speakers into the Q&A
 - Please provide a slide number if your question refers to a specific slide.


Webinar Agenda

- Introduction and Overview of BMP Panel Process
- Oyster BMP Panel Charge, Membership
- Summary of Oyster Practices
- Summary of Panel Recommendations Enhanced Denitrification
- General Q&A

Note that:

- There are several Appendices for this report with additional detail
- Technical Appendix still under development

The "BMP Protocol" Process

Oyster BMP Approval Timeline

Jan 30 – Report posted

Feb 7 – Webinar 1: Recommendations for Oyster Reef Enhanced Denitrification Protocols

Feb 14 – Webinar 2: Recommendations for Oyster Assimilation Protocols

March 1 – Present at Fisheries GIT Meeting

March 10 – Feedback due to oysterBMPresponse@oysterrecovery.org

April-May – Revision, Additional presentations, Approval

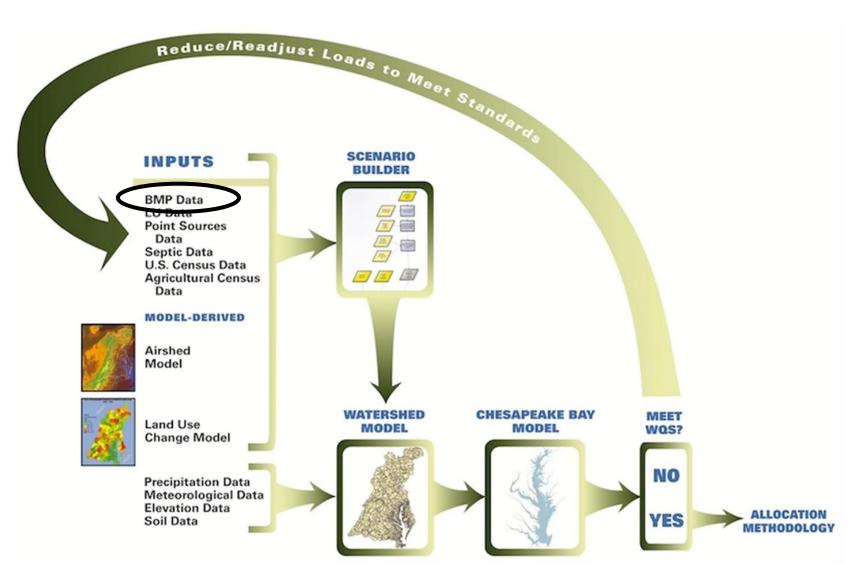
Oyster Best Management Practice Expert Panel Recommendations

Webinar 1: Oyster Reef Enhanced Denitrification Protocols February 7, 2023

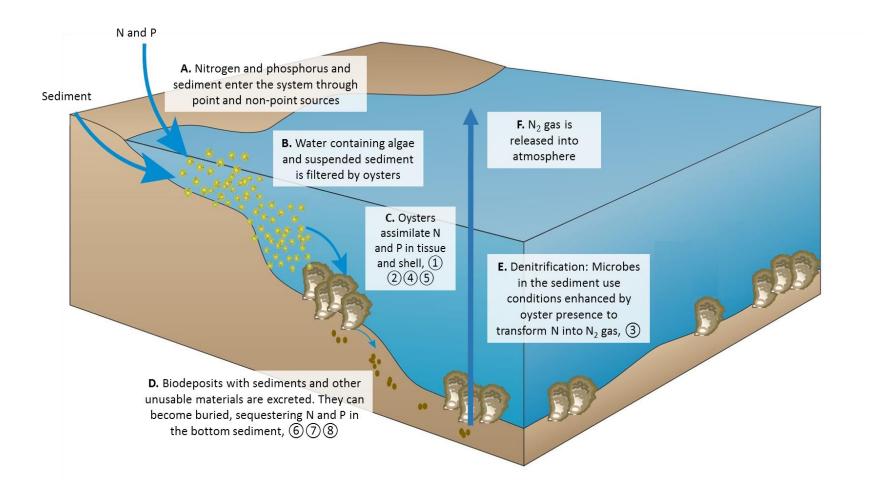
Jeff Cornwell
Panel Chair

Olivia Caretti
Panel Coordinator

Best Management Practices (BMPs)


- Methods that are most effective and practical for preventing or reducing nutrient and sediment to achieve water quality goals
- 46+ categories of BMPs
- > 200 individual BMPs

Quick Reference Guide for Best Management Practices


Nonpoint Source BMPs to Reduce Nitrogen, Phosphorus and Sediment Loads to the Chesapeake Bay and its Local Waters

CBP Model Framework for the Chesapeake Bay TMDL

Oysters and Water Quality

Through filtration, oysters contribute to biogeochemical cycling in estuaries

Oyster BMP Expert Panel Members

Bill Wolinski, Talbot County Department of Public Works

Jeff Cornwell (Chair), UMCES
Suzanne Bricker, NOAA National Centers for Coastal Ocean Science
Andy Lacatell, The Nature Conservancy
Mark Luckenbach, Virginia Institute of Marine Science
Frank Marenghi, Maryland DNR
Chris Moore, Chesapeake Bay Foundation
Matt Parker, Maryland Sea Grant
Ken Paynter, UMD Marine, Estuarine, Environmental Sciences
Julie Rose, NOAA Northeast Fisheries Science Center

Advisors & Coordinators

Larry Sanford, UMCES

Lew Linker, US EPA Chesapeake Bay Program Office
Jeff Sweeney/ Matt Johnson, US EPA Chesapeake Bay Program Office
Jeremy Hanson, US EPA Chesapeake Bay Program Office
Lucinda Power, US EPA Chesapeake Bay Program Office
Olivia Caretti, Oyster Recovery Partnership
Julie Reichert-Nguyen, Oyster Recovery Partnership, NOAA Chesapeake Bay Office
Ward Slacum, Oyster Recovery Partnership

Special Thanks to: Lisa Kellogg (VIMS), Lynn Fegley (MDNR), Emily French (ORP), Elizabeth Franks (ORP), Paige Hobaugh (CBP), Emilie Franke (CBP), Kyle Runion (CBP), the many scientists who shared data to support this effort, support from Bay Program, modelers, and support staff

Oyster BMP Panel Charge

Charge 1. Identify and define oyster practices for BMP consideration. (1st report)

Charge 2. Develop decision framework for incremental approval of oyster BMPs (1^{st} report)

Charge 3. Develop recommendations on N, P, and SS reduction through oyster practices based on existing science

Charge 2: Decision Framework

Decision framework for incremental approval of oyster BMPs

Step 1. Determine oyster practices and protocols for evaluation.

Does an enhancement activity increase oyster production?

Step 2. Determine the reduction effectiveness estimate based on current scientific understanding.

Number/rate of reduction

Equation and method to calculate the estimate

Do sufficient data exist?

Step 3. Provide verification guidelines.

Does a practical method exist, or created, to track reduction?

Step 4. Identify any unintended consequences and determine if they can be addressed.

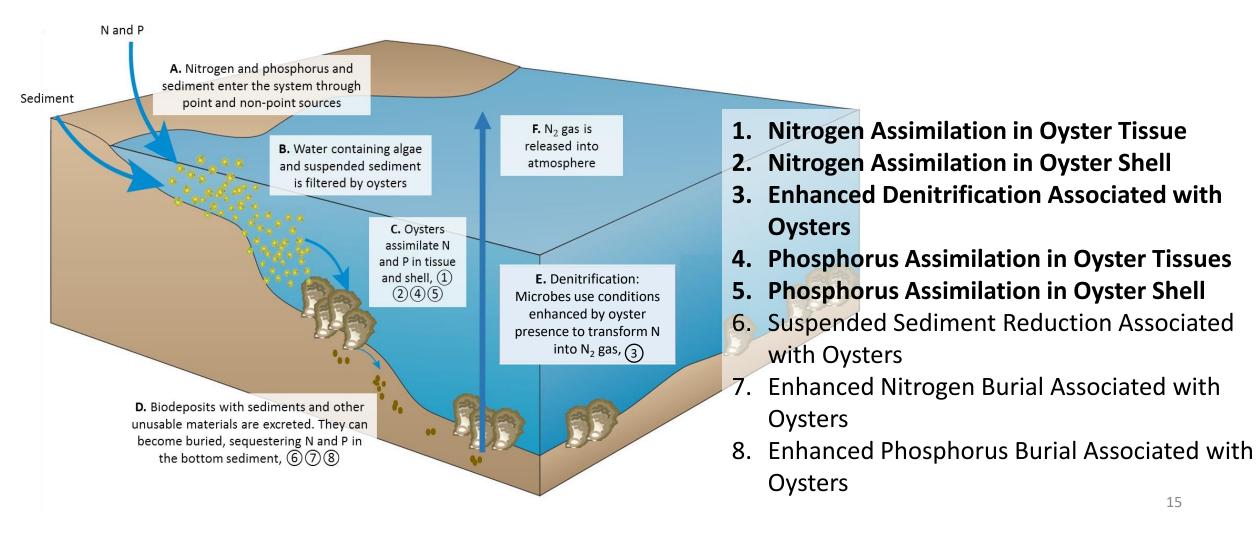
Are there positive or negative impacts on the environment?

Charge 1: Oyster Practices

The Panel identified and defined 12 Oyster Practices

First Report (2016)

This Report


Oyster Fate	Oysters removed (harvested					rom Bay			Oysters remain in Bay				
Fisheries	Oyster cultivation									Conservation			
Management	Private oyster aquaculture (POA)						Licensed oyster	harvest (LOH)		Oyster reef restoration (ORR)			
Approach													
Description	Oyster harvest from State-issued water column and bottom leases						rvest from State	e-managed fishi	No harvest allowed				
Access to			Lease-holder				License-	holder		State reso	urce managem	ent agency	
Oysters													
Oyster Type	Hatchery-produced oysters Wild oysters				HPO	١	Wild oysters		HPO Wild oysters				
	(HF	PO)											
Activity	HPO grown	HPO grown	Moving wild	Addition of	None	Addition	Moving wild	Addition of	None	Designate	Designate	Designate	
	off the	on the	oysters from	substrate to		of HPO	oysters from	substrate		no-harvest	no-harvest	no-harvest	
	bottom	bottom	one location	enhance			one location	to enhance		area	area	area with no	
	using gear	using no	to another	recruitment			to another	recruitment		followed by	followed by	additional	
		gear		of wild				of wild		addition of	addition of	activity	
				oyster				oyster		HPO	substrate		
				larvae				larvae					
Oyster Practice	A.	B.	C.	D.	E.	F.	G.	H.	I.	J.	K.	L.	
	Off-bottom	On-bottom	On-bottom	On-bottom	POA with	LOH	LOH using	LOH using	LOH	ORR using	ORR using	ORR using	
	POA using	POA using	POA using	POA using	no activity	using	transplanted	substrate	with no	НРО	substrate	no-harvest	
	HPO	HPO	transplanted	substrate		HPO	wild oysters	addition	activity		addition	area	
			wild oysters	addition								designation	
												only	
Recommended	Yes	Yes	No	Yes	No	Yes	No	Later	No	Yes	Yes	Later	
for BMP?													

Oyster Practice Definitions – This Report

Category	Oyster Practice	Description
Practice F	Licensed oyster harvest using hatchery-produced oysters	Planting oysters produced from hatchery techniques directly on the bottom to enhance the stock in State-designated fishing areas for eventual removal from the water by individuals holding the proper licenses.
Practice J	Oyster reef restoration using hatchery-produced oysters	Planting oysters produced from hatchery techniques directly on the bottom or on suitable substrate to enhance oyster biomass where removal is not permitted.
Practice K	Oyster reef restoration using substrate addition	Planting oyster shells and/or alternate substrate directly on the bottom to attract recruitment of naturally occurring oyster larvae to enhance oyster biomass in areas where removal is not permitted.

Charge 3: Recommendations for reductions

Oyster-Associated Reduction Effectiveness Protocols

Key Legal Decision for Oyster Restoration BMPs

Can in-situ, permanent removal of sediment, nitrogen, and phosphorus pollutants from the estuarine water column via oyster filtration be recognized and credited as pollutant removal under the Clean Water Act?

Appendix C. EPA Legal Opinion

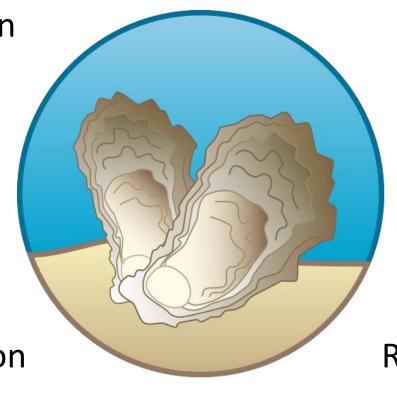
Recognizing Pollutant Reductions via In-situ Oyster Filtration Under the Clean Water Act

EPA Region III approved implementation of an "in-water" BMP associated with oyster N & P removal. This is the first BMP within the estuary.

The Panel's work would not have moved forward without this designation

Charge 3: Decision Outcomes to Date

	Private Oyster Aquaculture						Licensed Oy	ster Harvest	Oyster Reef Restoration			
Oyster Practice Category x Crediting Protocol	A. Off-bottom private aquaculture using hatchery- produced oysters	B. On-bottom private aquaculture using hatchery- produced oysters	C. On-bottom private aquaculture using transplanted wild oysters	D. On-bottom private aquaculture using substrate addition	E. Private oyster aquaculture with no activity	F. Licensed harvest using hatchery- produced oysters	G. Licensed harvest using transplanted wild oysters	H. Licensed harvest using substrate addition	I. Licensed harvest with no activity	J. Reef restoration using hatchery- produced oysters	K. Reef restoration using substrate addition	L. Reef restoration using no harvest area designation only
Nitrogen assimilation in tissue	1 st Approved	1 st Approved	1st Not Endorsed	1st Approved	1st Not Endorsed	2 nd Complete	2 nd Not Endorsed	Later	2 nd Not Endorsed	2 nd Complete	2 nd Complete	2 nd Policy Issue
2. Nitrogen assimilation in shell	2 nd Research Gap	2 nd Research Gap	2 nd Not Endorsed	2 nd Research Gap	2 nd Not Endorsed	2 nd Research Gap	2 nd Not Endorsed	Later	2 nd Not Endorsed	2 nd Complete	2 nd Complete	2 nd Policy Issue
3. Enhanced denitrification	2 nd Research Gap	2 nd Research Gap	2 nd Not Endorsed	2 nd Research Gap	2 nd Not Endorsed	2 nd Research Gap	2 nd Not Endorsed	Later	2 nd Not Endorsed	2 nd Complete	2 nd Complete	2 nd Policy Issue
4. Phosphorus assimilation in tissue	1st Approved	1 st Approved	1 st Not Endorsed	1st Approved	1 st Not Endorsed	2 nd Complete	2 nd Not Endorsed	Later	2 nd Not Endorsed	2 nd Complete	2 nd Complete	2 nd Policy Issue
5. Phosphorus assimilation in shell	2 nd Research Gap	2 nd Research Gap	2 nd Not Endorsed	2 nd Research Gap	2 nd Not Endorsed	2 nd Research Gap	2 nd Not Endorsed	Later	2 nd Not Endorsed	2 nd Complete	2 nd Complete	2 nd Policy Issue
6. Suspended sediment reduction	Later	Later	Later	Later	Later	Later	Later	Later	Later	Later	Later	Later
7. Enhanced nitrogen burial	Later	Later	Later	Later	Later	Later	Later	Later	Later	Later	Later	Later
8. Enhanced phosphorus burial	Later	Later	Later	Later	Later	Later	Later	Later	Later	Later	Later	Later



Reviewed 45

Recommendations for 12

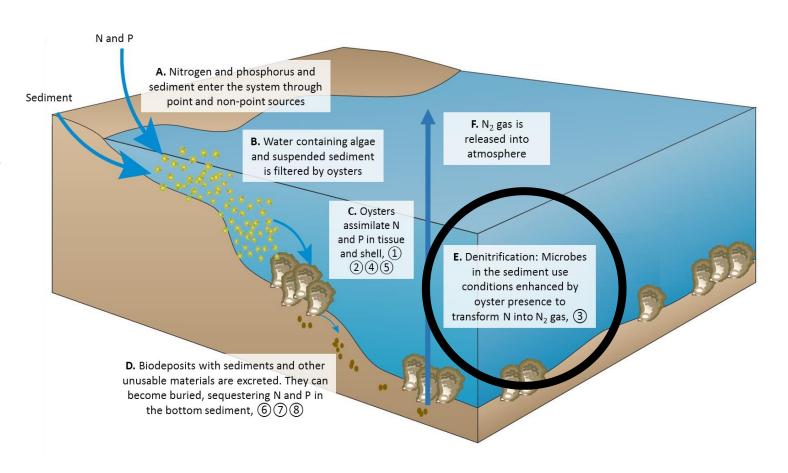
Elements of the Oyster BMP Toolset

Aquaculture-Assimilation Approved

Harvest-Assimilation *Under Review*

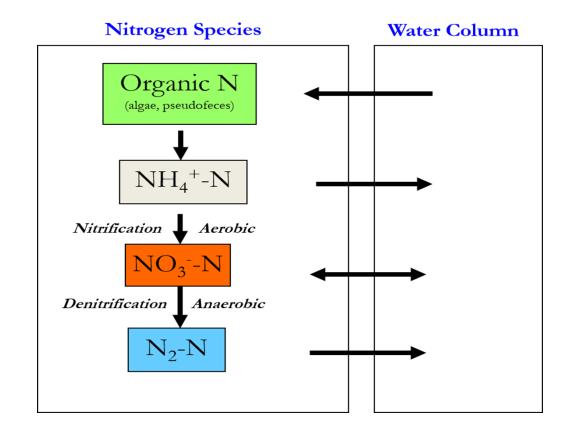
Restoration-Denitrification *Under Review*

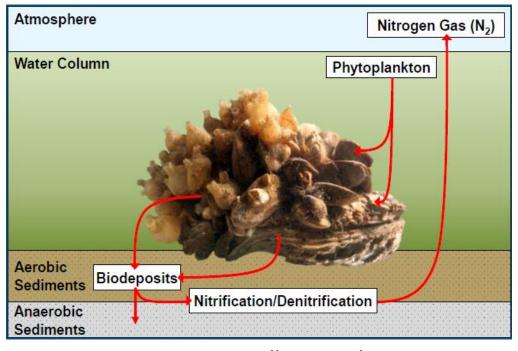
Restoration-Assimilation *Under Review*


Today: Restoration-Denitrification Recommendations

Oyster Practices:

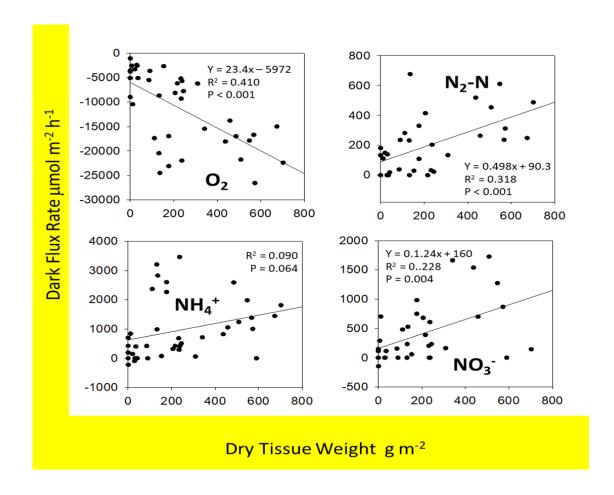
- J. Oyster reef restoration using hatchery-produced oysters
- K. Oyster reef restoration using substrate addition


Oyster Protocols:


• **3.** Enhanced denitrification associated with oysters

Denitrification

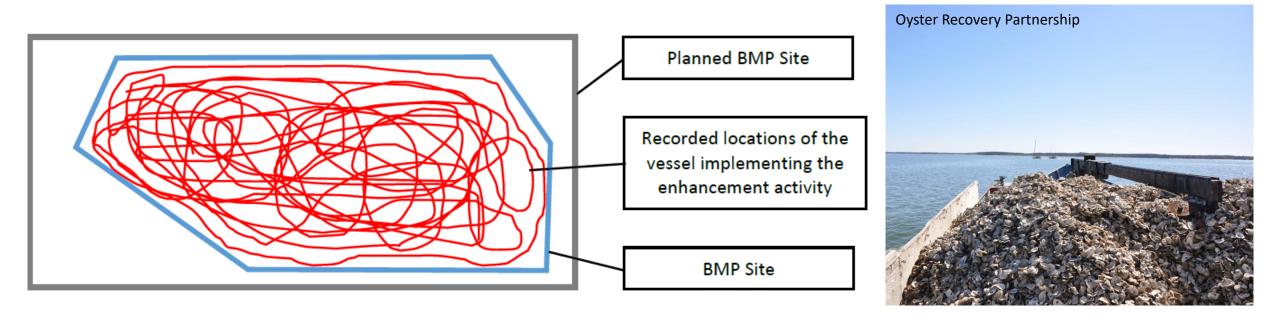
- The ultimate fate of reactive nitrogen entering the Chesapeake Bay is exported to the ocean in dissolved form, as particles, or in motile organisms, burial in sediment, or production of N₂ gas through the process of denitrification.
- Oysters result in (much) higher rates of N₂ production relative to sediments



The Panel's Approach

 Oyster tissue biomass is used to help estimate removal of N and N₂ under different conditions

- Denitrification is an ongoing process
- If the reef biomass does not decrease substantially, the credit will be continuous.
- Re-evaluate biomass every 3 years


Qualifying Conditions

- Qualifying enhancement activity occurred
- BMP site protected from harvest
- Baseline biomass determined using appropriate approach and adhere to baseline conditions
- Biomass estimates must be based on field surveys, be scientifically/statistically robust
- For default estimates, reef must be subtidal and restored using small substrates only
- Only live oyster tissue biomass eligible for credit
- Post-restoration tissue biomass > baseline

Reduction Effectiveness: Stepwise Determination

- 1. Identify the BMP site and determine BMP site area
- 2. Document qualifying enhancement activity
- 3. Determine appropriate baseline approach
- 4. Assess baseline and post-restoration tissue biomass
- 5. Determine denitrification enhancement per unit area
- 6. Determine total nitrogen removal attributable to enhanced DNF using enhancement per unit area and BMP site area

1. Identify the BMP Site

BMP site – actual location of enhancement activities

2. Document Qualifying Enhancement Activities

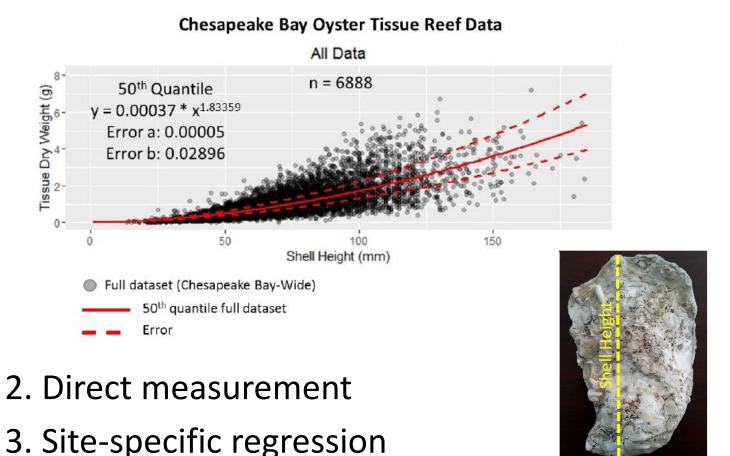
Addition of hatchery-produced oysters and/or suitable substrate

Small Substrates

Large Substrates

3. Determine Baseline Approach

Pre-restoration Biomass


- Biomass measured at BMP Site
- Within 2 years prior to restoration

Representative Site

- Non-restored site representative of BMP site
- Within same basin
- Data collected concurrent with first post-restoration survey at BMP site

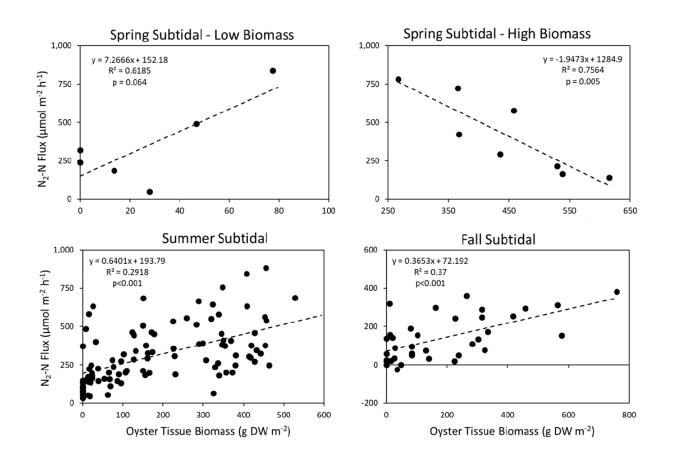
4. Baseline and Post-restoration Biomass

1. **Default regression** (small substrate only)

Data Locations Used for Tissue Regression Equation Upper Bay Nanticoke River Mid Bay Lower Bay James River CBP Bay Zone Boundaries

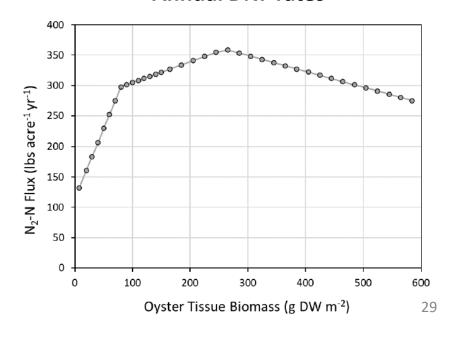
Tributary Lower Bay Polyhaline Tributary Mid-Bay Mesohaline Tributary Upper Bay Mesohaline

5. Determine denitrification enhancement per unit area


Recommended Approaches:

- 1. Default estimates regardless of location (Panel generated)
- 2. Site-specific estimates developed by BMP implementer, in coordination with the State and CBP, using the Panel's recommended method

- Directly measuring denitrification is challenging
- Denitrification rates directly related to oyster tissue biomass


Generating Default Estimates

Season-specific regressions were used to generate annual denitrification rates as a function of oyster tissue biomass

Annual DNF rates

Generating Default Estimates

Annual denitrification rates used to construct lookup table

Enhanced Nitrogen Removal (Ibs acre ⁻¹ yr ⁻¹)		Post-restoration Oyster Biomass Range (g DW m ⁻²)												
		15 - 24.9	25 - 34.9	35 - 44.9	45 - 54.9	55 - 64.9	65 - 74.9	75 - 84.9	85 - 94.9	95 - 104.9	105 - 114.9	115 - 124.9	125 - 134.9	135 - 144.9
	0 - 14.9	29	51	74	97	120	143	165	169	172	176	179	183	186
و	15 - 24.9		23	46	68	91	114	137	140	144	147	151	154	158
guz	25 - 34.9			23	46	68	91	114	118	121	124	128	131	135
s R(35 - 44.9				23	46	68	91	95	98	102	105	109	112
าสร	45 - 54.9					23	46	68	72	75	79	82	86	89
ion n ⁻²	55 - 64.9						23	46	49	53	56	59	63	66
yster Bion (g DW m ⁻²)	65 - 74.9							23	26	30	33	37	40	44
yste g D	75 - 84.9								3	7	10	14	17	21
0 0	85 - 94.9									3	7	10	14	17
line	95 - 104.9										3	7	10	14
Baseline Oyster Biomass Range (g DW m ⁻²)	105 - 114.9											3	7	10
В	115 - 124.9												3	7
	125 - 134.9													3

Enhanced N removal = Post-restoration biomass — Baseline biomass

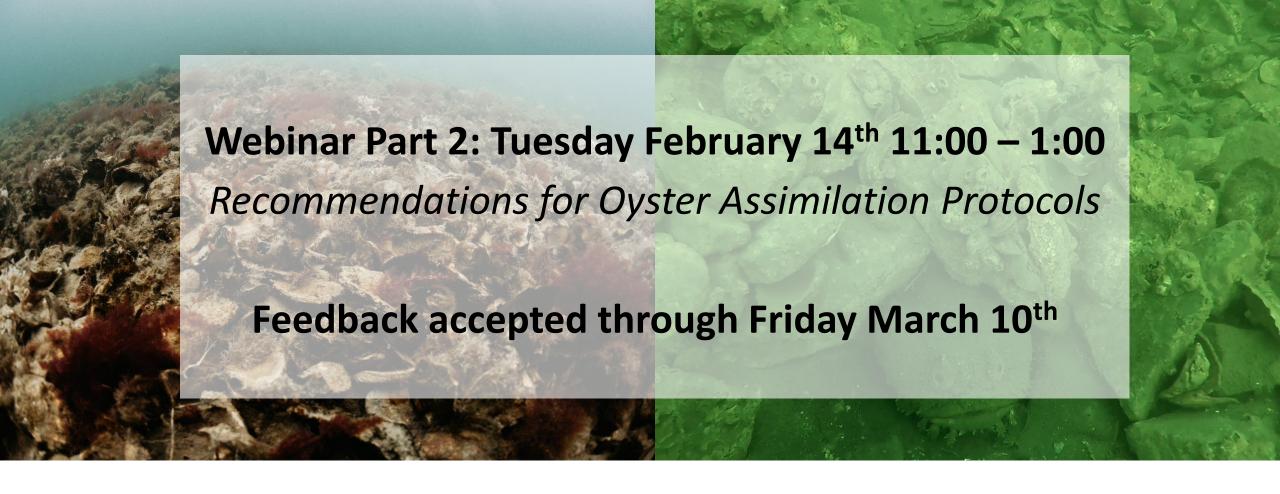
Total N removed = Enhanced N * BMP site area

Reporting Guidelines

Specific information associated with each Reduction Effectiveness Determination step

- 1. BMP site and BMP site area
- 2. Restoration information
- 3. Biomass (baseline and post-restoration) and methods
- 4. DNF approach
- 5. Total Enhancement

Table 8.7


Step#	Information Type	Example
1	BMP site location	Geospatial information (GIS shapefile)
	Area of the BMP site	1 acre
2	Date(s) of activity (mm/dd/yy)	09/21/21
	Type(s) of substrate	Diploid spat-on-shell
	Substrate category	Small
	Amount of substrate	1,000 Maryland bushels of spat-on-shell
	Number of hatchery-produced oysters planted	9,500,000
	Size of oysters at time of planting (mm)	10
	Baseline approach	Pre-restoration
3	Baseline biomass	
	Sampling points	See appended map and GIS file
	Sampling date(s)	07/15/20
	Sampling method	Patent tong
	Spatial scale of sample with units	1 m ²
	Number of samples collected	5
	Method used to assess biomass	Default regression
	Method used to calculate mean biomass	Average of all samples
	Mean biomass: Tissue	14 g DW m ⁻²
	Post-restoration biomass	
	Sampling date(s)	08/01/24
	Sampling method	Patent tong
	Spatial scale of sample with units	1 m²
	Number of samples collected	5
	Method used to assess biomass	Default regression
	Method used to calculate mean biomass	Average of all samples
	Mean biomass: Tissue	119 g DW m ⁻²
4	Approach used to estimate denitrification enhancement	Default
	Annual enhanced denitrification per acre	179 lbs acre ⁻¹ year ⁻¹
5	Total annual denitrification enhancement	179 lbs year ⁻¹

Unintended Consequences

- The Panel's review of published data found no instances where the restoration of subtidal oyster reefs using small substrates resulted in a decrease in net denitrification at the restoration site.
- In some circumstances, the efficiency of the process may be variable.
- We have less information on potential effects of large substrates (e.g., engineered structures).

Summary

- The Panel has determined that the process of denitrification in restored oyster reefs results in a net removal of nitrogen and merits inclusion as a BMP
- Crediting in restored oyster reefs can be carried out using "default" rates or by site-specific rates (i.e. denitrification measurements). For large substrates, in lieu of a lot more data, crediting is available only for site-specific data.

Thank you for joining!

Please enter your questions in the Q&A

Contact Olivia Caretti with feedback & additional questions: oysterBMPresponse@oysterrecovery.org