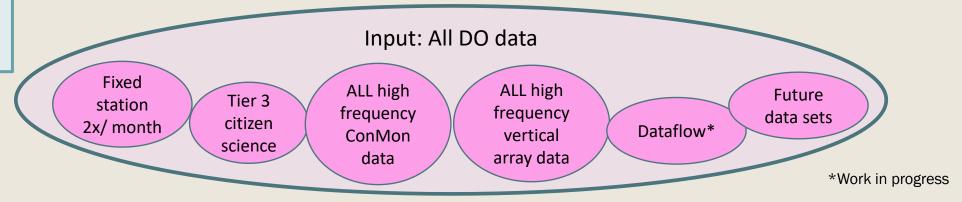
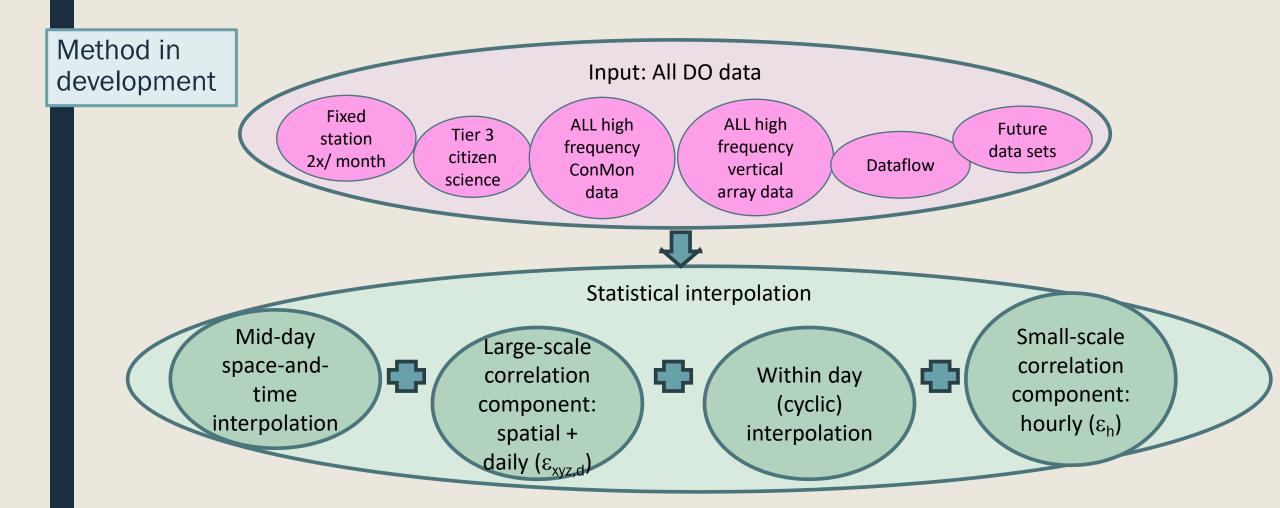
How are you currently using or plan to use the data from the hypoxia stations to support projects?

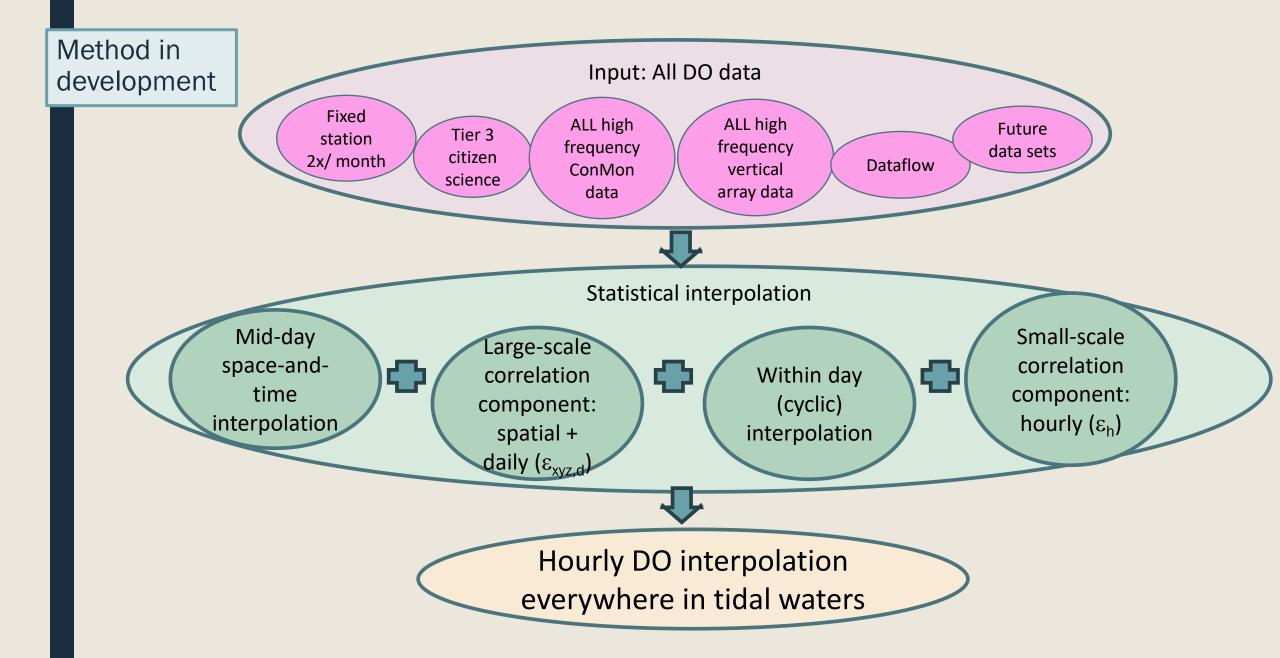
4-dimensional (4-D) interpolator

Rebecca Murphy (UMCES/CBP)
With key input from Elgin Perry (consultant) and Jon Harcum (Tetra Tech)
Hypoxia Collaborative
Oct. 16, 2024

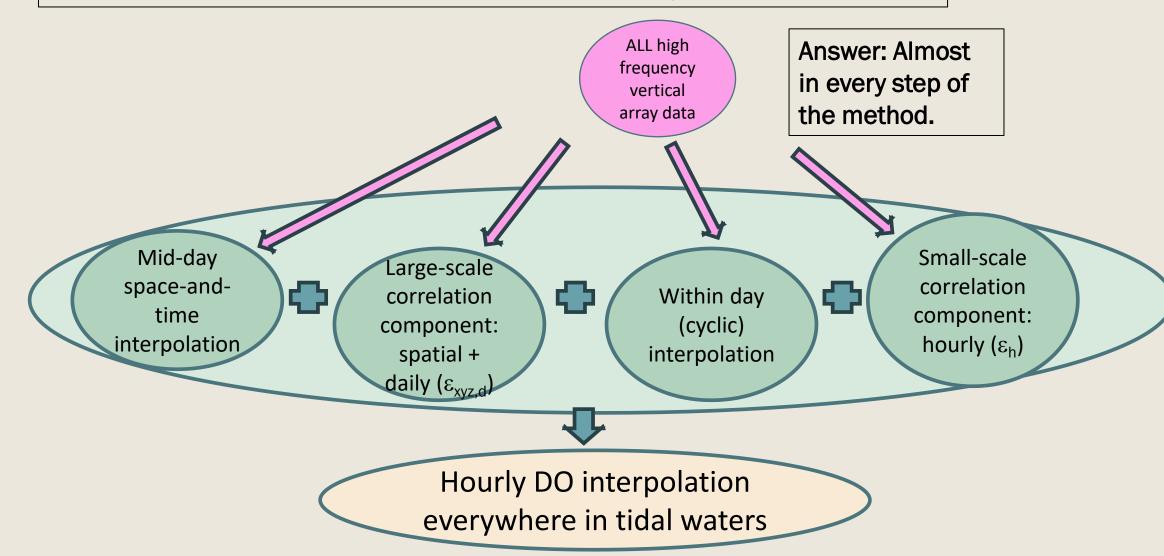
Goal for BORG team & 4-D tool

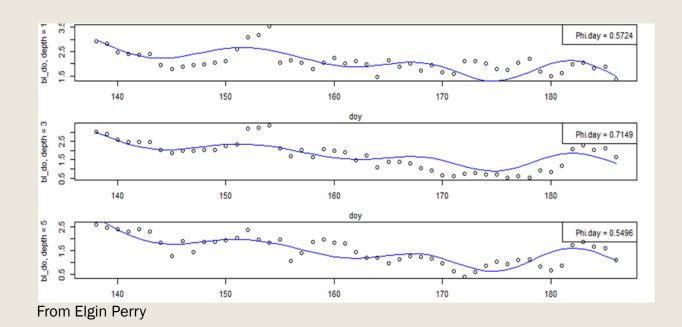

To develop a spatial-and-temporal interpolation tool for water quality monitoring data collected in the tidal waters of the Chesapeake Bay, thus enabling the evaluation of both long- and short-duration water quality criteria.


Specifically, the tool should be able to:


- Interpolate observed dissolved oxygen in space and time ("4D"),*
- Provide statistical estimates of uncertainty,
- Reproduce daily and hourly variability of the data, and
- Allow for post-processing of the interpolation output into designated uses (DU).

^{*}Note: Focus on development so far has been on dissolved oxygen, but ultimately chlorophyll a and clarity may be evaluated as well.


Method in development


Question: Where is/will the vertical array data be used?

Uses/plans for vertical array data todate:

- 1. Development and Testing
- 2. Parameterization
- 3. Implementation

- We've compiled all data we have (including vertical arrays) into a data set that has been used to decide on the right statistical approaches for each part of the tool.
 - Daily: Testing of the GAM to get the right equation

CBP DataHub

- 1984-2022
- 835 stations
- 819k obs.

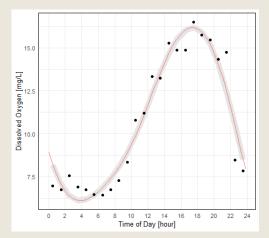
EOTB: Eyes on the Bay

- 2001-2022
- 126 stations
- 11,916k obs.

VECOS: Virginia Estuarine and Coastal Observing System

- 2003-2022
- 54 stations
- 6,776k obs.

NOAA vertical array


- 2022-2023
- 5 stations
- 440k obs.

DATAFLOW (pilot)

- 2007-2008 (Potomac)
- 576k obs.

From Jon Harcum, Tetra Tech

- We've compiled all data we have (including vertical arrays) into a data set that has been used to decide on the right statistical approaches for each part of the tool.
 - Daily: Testing of the GAM to get the right equation
 - Hourly: Finding cyclic parameters for hourly variability, figuring out how to represent them with depth, season, space

From Jon Harcum, Tetra Tech

CBP DataHub

- 1984-2022
- 835 stations
- 819k obs.

EOTB: Eyes on the Bay

- 2001-2022
- 126 stations
- 11,916k obs.

VECOS: Virginia Estuarine and Coastal Observing System

- 2003-2022
- 54 stations
- 6,776k obs.

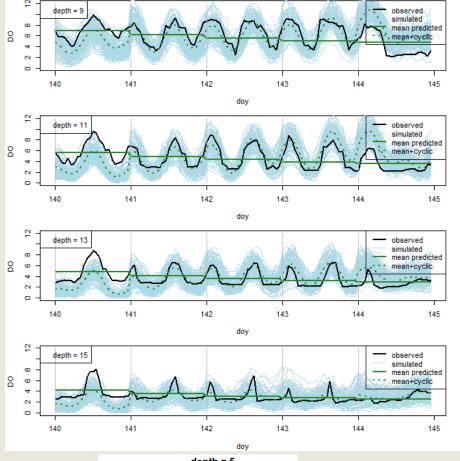
NOAA vertical array

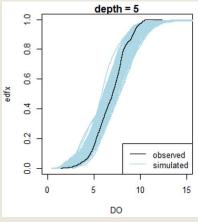
- 2022-2023
- 5 stations
- 440k obs.

DATAFLOW (pilot)

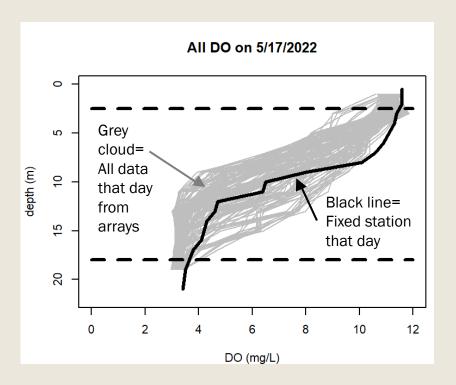
- 2007-2008 (Potomac)
- 576k obs.

■ As a test case location for putting all 4 pieces of the tool together (Elgin's work)

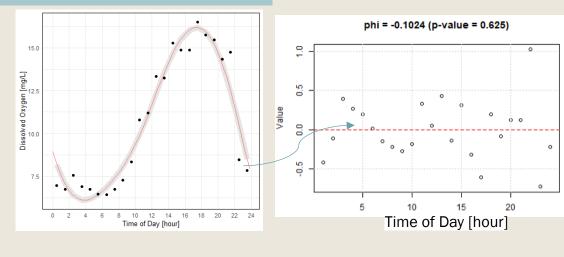

West Gooses Profiler Data Simulation Overview Presentation to BORG 9/16/2024, Elgin Perry

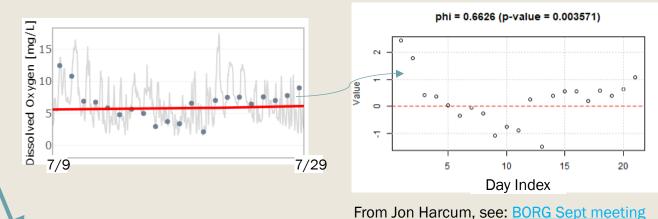

Goals:

Test if the interpolation will mimic within day cycles and hour-to-hour correlation.


Test concepts for simultaneously predicting temporal and spatial correlation.

Test if a cloud of multiple interpolations covers the observed data.

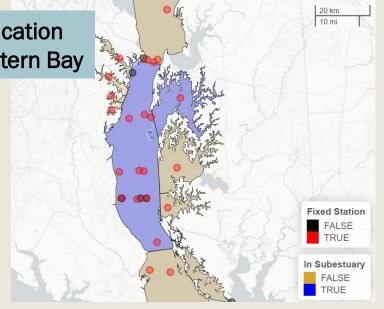

- Pycnocline movement at high frequency: TBD
 - Will use the salinity and temperature data collected


2. Parameterization

Correlation components of the model are being parameterized with available data. Vertical array data is very useful for this:

Hour-by-hour autocorrelation

Day-to-day autocorrelation



And depth-to-depth residual correlation

Example Application CB4MH + Eastern Bay

3. Implementation

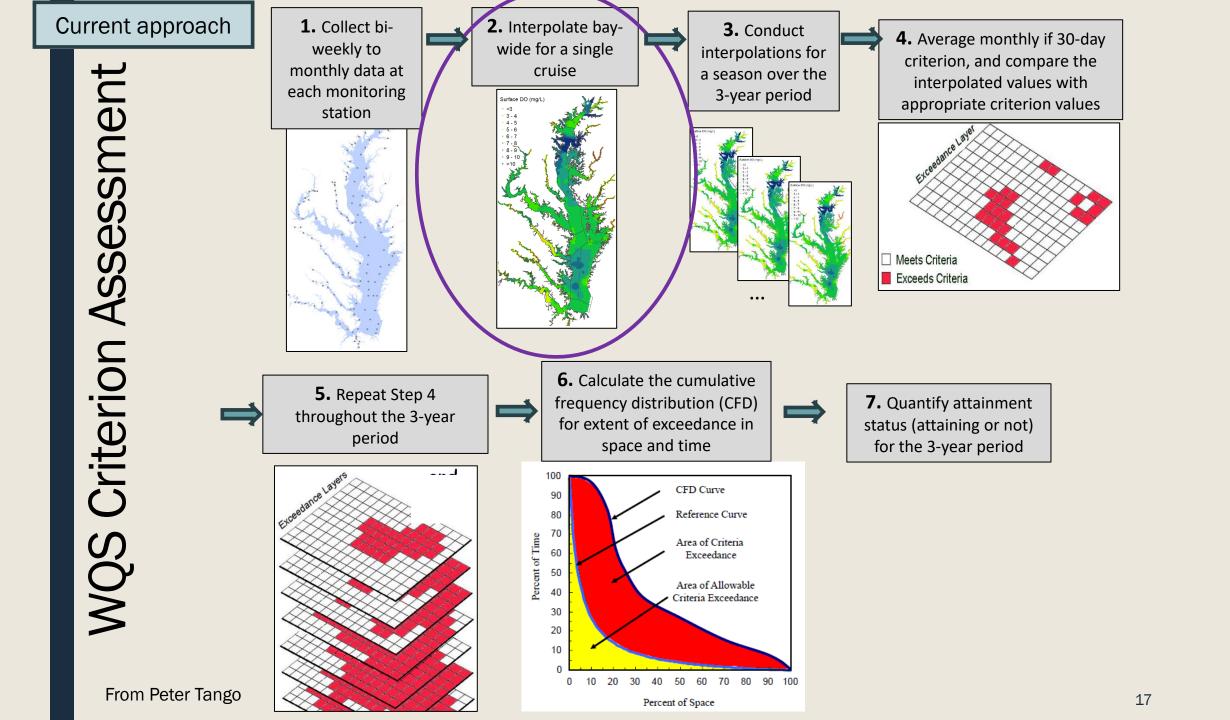
Any segment with vertical array data would have that data included in its interpolation for criteria assessment analysis in a particular year.

Sample Count (2022, individual days with data)

	Observation count by station and depth																																				
station	in_subestuary	fixed	reg	cbseg_92	num_rec_tot	0	1	2	3	4	5	6	7 8	9	10	11	12 1	13	14 15	16	17	18	19	20 2	21 2	22 2	3 2	4 25	26	27	28	29 3	30 31	32	33	34	35
CB4.1C	TRUE	TRUE	CB4eas	СВ4МН	371	15	15	15	15	7	15 1	0 :	15 12	15	13	15	13 1	15	13 15	12	15	8	15	5 1	.5	1 1	5	1 15	1	15		15	2 13	3 5	;		
CB4.4	TRUE	TRUE	CB4eas	CB4MH	362	15	15	15	15	5	15 1	0 :	15 12	15	12	15	12 1	15	11 15	10	15	8	15	4 1	.5	1 1	5	1 15	1	15		15	2 13	3 5	5		
CB4.2C	TRUE	TRUE	CB4eas	CB4MH	331	15	15	15	15	4	15	8	15 10	15	11	15	11 1	15	11 15	11	15	11	15	8 1	.5	3 1	5	2 15	7	8	1						
CB4.3C	TRUE	TRUE	CB4eas	CB4MH	316	15	15	15	15	6	15 1	0 :	15 10	15	11	15	11 1	15	12 15	10	15	8	15	4 1	.5	2 1	5	1 15	6								
CB4.1E	TRUE	TRUE	CB4eas	CB4MH	207	11	10	10	10	5	10	8	10 9	10	9	10	9 1	10	8 10	8	10	6	10	2	9		9	4									
CB4.3E	TRUE	TRUE	CB4eas	CB4MH	173	9	9	9	9	2	9	6	9 7	9	8	9	9	9	9 9	8	9	4	9	4	8												
EE1.1	TRUE	TRUE	CB4eas	EASMH	156	12	12	12	12	12	12 1	2	12 12	12	13	11	12																				
CB4.1W	TRUE	TRUE	CB4eas	CB4MH	91	10	10	10	10	10	10 1	0 :	10 9	2																							
CB4.3W	TRUE	TRUE	CB4eas	CB4MH	90	9	9	9	9	9	9	9	9 9	9																							
CB4.2E	TRUE	TRUE	CB4eas	CB4MH	84	9	9	9	9	9	9	9	9 9	3																							
CB4.2W	TRUE	TRUE	CB4eas	CB4MH	83	9	9	9	9	9	9	9	9 9	2																							
east- gooses	TRUE	FALSE	CB4eas	СВ4МН	905		78		75	1	L00	10	00	100	,	100	9	97	78	3	77	'	100														
west- gooses	TRUE	FALSE	CB4eas	СВ4МН	467		131		76	1	L30	13	30																								
XEF3551	TRUE	FALSE	CB4eas	CB4MH	98	8	6	8	8	8	8	8	8 8	8	8	12																					
XGF7832	TRUE	FALSE	CB4eas	CB4MH	54	8	6	8	8	8	8	8																									

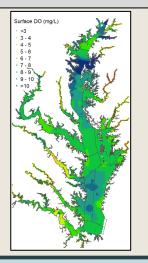
Summary


Vertical array data has already been used in development and testing for all parts of the 4-D tool.


Parameterization is underway, and current data collection will very likely be used to inform the correlation part of the interpolation going forward.

Vertical array data will be important for interpolation each year, especially at deep depths where we have little other high frequency data.

extras


4d interpolator development timeline

Current interpolation

2. Interpolate baywide for a single cruise

Problems with current interpolation

- Does not use the high frequency data (except the calibration data).
- Vertical layers interpolated horizontally and stacked;
- One cruise at a time, meaning a 2-week period assumed static; and
- Not statistical.

This NEW interpolation will:

- Use ALL high frequency data (ConMon and vertical array)
 - Interpolate all data together, not in layers.
 - Interpolate in time, so that we do not have to artificially split time periods.
 - Statistical allowing for uncertainty bounds if needed.