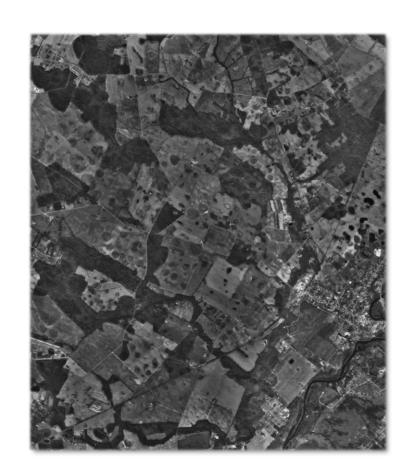


Rachel Rhodes

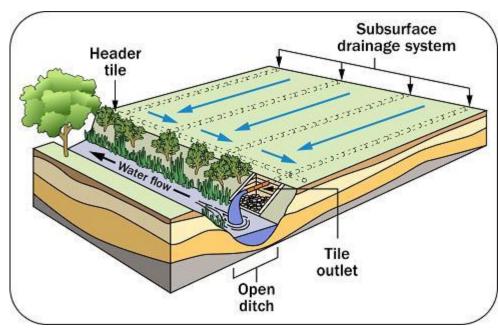
Maryland Department of

Agriculture



Ditch Drained Systems

- Flat, low-lying, poorly drained coastal plain soils
- Extensive ditching: In MD approximately 821 miles of ditches drain 183,000 acres of land
- Primarily corn, wheat and soybeans rotation
- High density poultry production has led to elevated soil P



Artificial drainage has modified hydrology

Ditching

- Placed 2-4 feet below surface
- Lowered water tables
- More efficient transport of water
- Tile drainage
 - Lowered water tables
 - Piped surface and groundwater

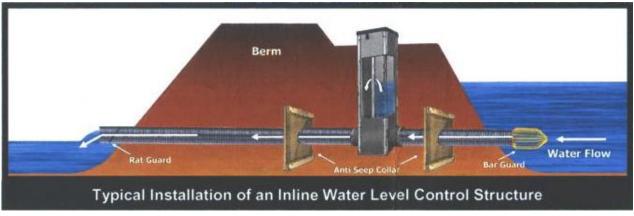
Ditching and tile drainage is effective, but....

- Concentrates nitrate
- Reduces processing
 - Loss of ecosystem services
- Increases transport

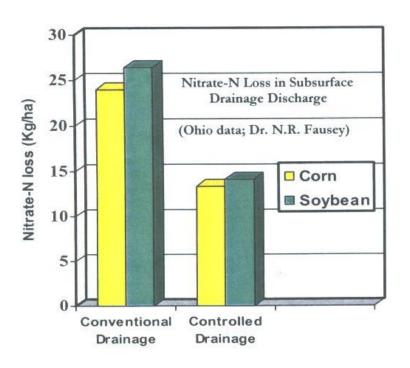
Practice Options

- Water Control Structures
- Bioreactors
- Passive Phosphorus Removal Systems

Water Control Structures


- USDA Natural Resources
 Conservation Service Practice
- Regulates water in a drainage system to manage the outflow of drainage water
- Controls water surface elevations and discharge from surface and subsurface drainage

Inlet vs Inline Water Control Structure

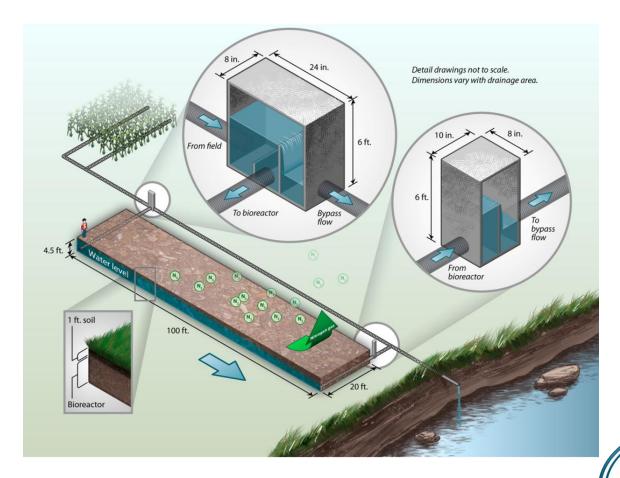


Benefits of Implementation

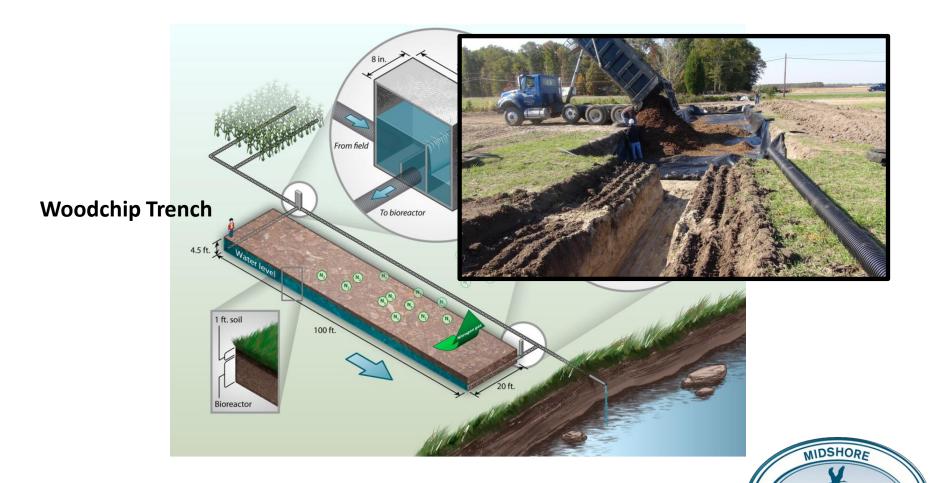
- Improve water quality
 - Denitrification
 - Reduce soil erosion
 - Trap sediment
- Improve soil environment for vegetative growth
- Reduce the rate of oxidation of organic soils
- Reduces flashiness of drainage system
- Wildlife habitat seasonal shallow flooding

Research

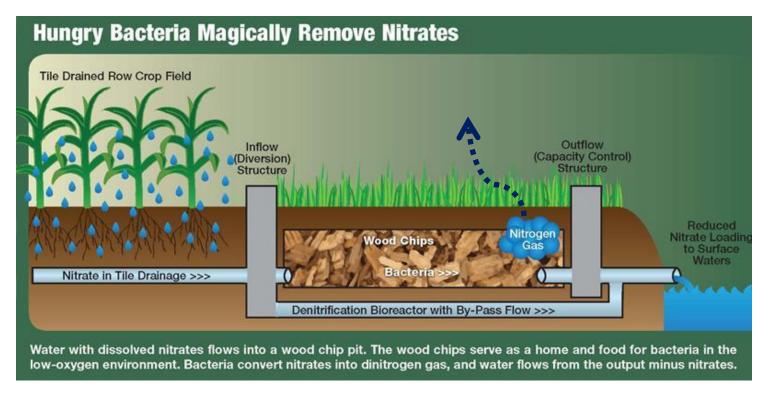
- North Carolina Robert Evans (1989)
 - Neuse River Watershed
 - 45% N reduction
 - 35% P reduction
 - Based on pounds/acre/year
- Delaware DNREC (2004)
 - 33% N reduction
 - Did not assign P reduction efficiency
- Chesapeake Bay Program (2005)
 - Approved agricultural BMP for nutrient reduction credit
 - 30% N reduction

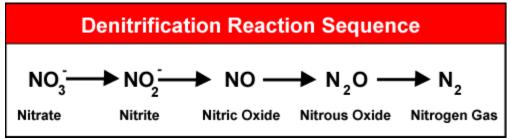

Cost-Share Assistance Available

- 87.5% through MACS Program
- Up to \$20,000
- 10 year maintenance life
- Maintenance agreement



Bioreactor




MIDSHORE

Components

Nitrate Removal

Nitrate (mg/l)

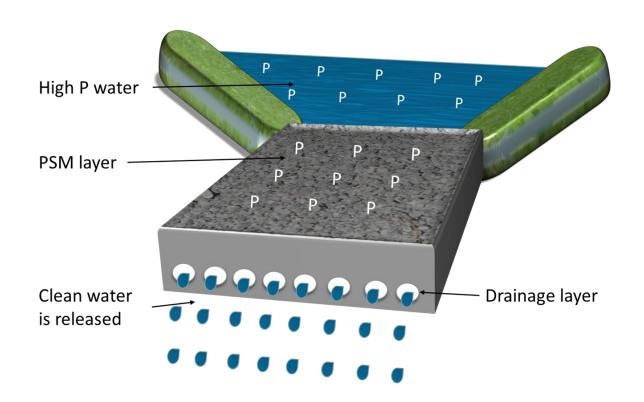
	Box 1	Box 2	Box 1	Box 2		
	NO3-N	NO3-N	NO3 Load	NO3 Load	Load	Concentration
Date	(mg/l)	(mg/l)	(lbs/d)	(lbs/d)	Reduction	Reduction
11/20	9.14	0.07				99.28%
11/26	9.13	0.07				99.28%
11/27	0.97	0.32				67.18%
12/3	0.01	0.03	0.000	0.000	-97.86%	-97.86%
2/7	13.41	0.68	3.307	0.033	15.60%	94.92%
2/12	20.60	0.03	14.977	0.003	10.73%	99.85%
2/17	13.64	0.91	5.973	0.080	15.55%	93.33%
3/11	17.50	0.10	12.723	0.005	6.01%	99.43%
4/28	2.41	0.10	0.114	0.009	62.29%	95.85%
AVERAGE	9.65	0.26	6.18	0.02	22.0%	94.0%

How well are they working?

- Highly efficient at reducing nitrate
 - 94%-98% efficiency (concentration)
- Load reduction low
 - Amount of water diverted into bioreactor
 - 22% load reduction
- Ammonium treatment variable
 - Depends on influent concentration
 - Source during periods of low influent concentration
- Bioreactor is leaching phosphorus
 - High at onset as bound phosphorus is freed (anaerobic conditions)
 - Will continue at some level

Effectiveness

- 23% to 98% reduction in nitrate load
 - Temperature
 - Retention Time
- Lifespan of greater than 15 years
- Low Maintenance
- Cost Effective
 - Less than \$3.50 per kg N removed
- Edge of field


Drawbacks

- Some N2O production
 - Negligible to 4 %
 - Higher during cold conditions
- May cause methylation of mercury
 - Rare
 - Occurs if sulfate reducing conditions present

Passive Phosphorus Removal Systems

Ditch P Transport

- Legacy P releases dissolved P over many years
- There are no BMP's designed to control dissolved P transport
 - dissolved P is most dangerous to aquatic ecosystems
- Ditches provide direct transport path for dissolved P
- Majority of the P in ditches gets there through shallow subsurface flow
- Ditches provide ideal collection point for treatment

Basic Ditch Filter

- Structure filled with P sorbing materials (PSMs)
 - Any material that chemically sorbs P through precipitation or fixation reactions
 - Fe, Mg, Al, or Ca containing materials, or combination of these elements
 - Typically focused on industrial residuals
- Alter hydraulic head in ditch to force flow through filter material
- Confine material in some sort of structure

Confined Bed

- Good for large filter
- Ideal for drainage swales that require high peak flow and little water backing
 - Achieved through shallow PSM with large surface area

Tile Drain

- Similar to bed, but without confinement
- Allows large amount of material to be used
- Use flow control to build head
- Low cost
- Probably best option, but there seems to bias with landowners

Box Filter

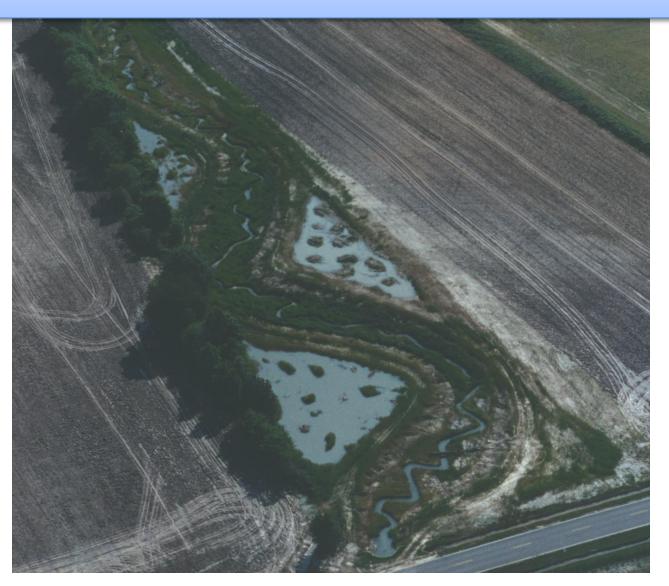
- Easily switch out material
- Modular design integrates with flow control
 - Agri-Drain
- Small ditches or pond overflow
- Drawback: Small amount of material

Performance

- Slag confined bed: 43% removal
- Gypsum tile drain: initial (limited) data indicates 67% removal
- Box style filter approximately 20% load reduction
 - Approximately 50% when flow is good
 - Reduced FWMC of TP 25%
 - Reduced FWMC of DRP 29%

- To date model predicts P removal accurately
- Need robust field data to validate model and to predict overflow versus flow through
 - 4 ditches with tile filters
 - 3 ditches with cartridge filters
 - 2 ditches (1 ag and 1 golf course)
 with confined bed filters
 - 1 retention pond with box filter
- Developing complete guidance for government and private stakeholders

Weed Wiper


- Selectively targets tall woody vegetation and brush without harming the low growing vegetation
- Used to stabilize and protect the ditch slopes
- Allows for increased wildlife habitat

Hydromodification....

Partners

Questions?

Follow MDA on Twitter @MdAgDept Follow MDA on Facebook www.facebook.com/MdAgDept

