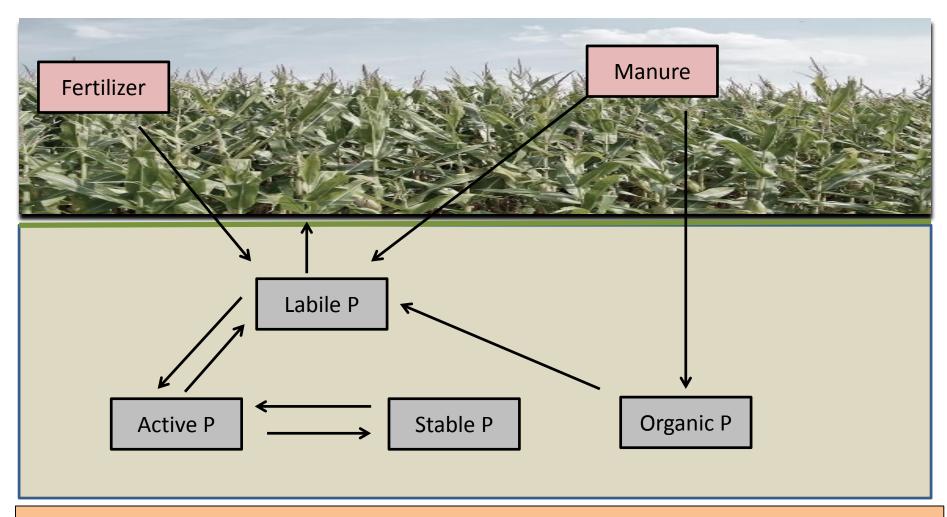
APLE Phosphorus Model: Preliminary estimates of P loading


Alisha Spears Mulkey

Graduate Research Assistant Univ. Maryland, College Park Advisor: Frank Coale

<u>Annual P Loss Estimator (APLE) tool</u>

- Developed by Vadas, et al. (USDA-ARS)
- Annual time step
- Edge-of-field (EOF) estimation
- Simulates sediment and dissolved P surface losses from soil, manure, and fertilizer sources
- Minimal subsurface loss or leaching to groundwater simulated

Diagram of APLE Nutrient Sources and Soil Pools

Equations to estimate Manure runoff P, Fertilizer runoff P, Sediment P loss, and Dissolved Soil P runoff

Nutrient Application Assumptions

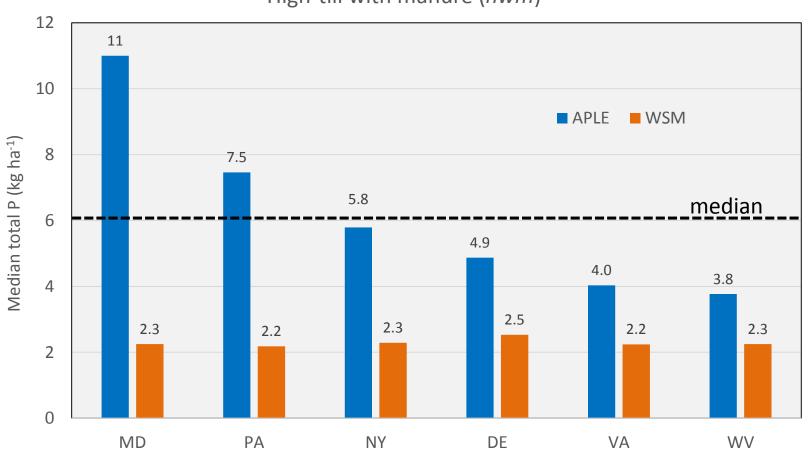
- Application rates are user-defined by season
- Fertilizer
- Manure
 - solid or liquid forms (user-defined)
 - Direct excretion of manure (i.e. pasture) is considered a separate manure source
 - Proportioned as water-extractable P (WEP) and non-WEP

APLE Equations

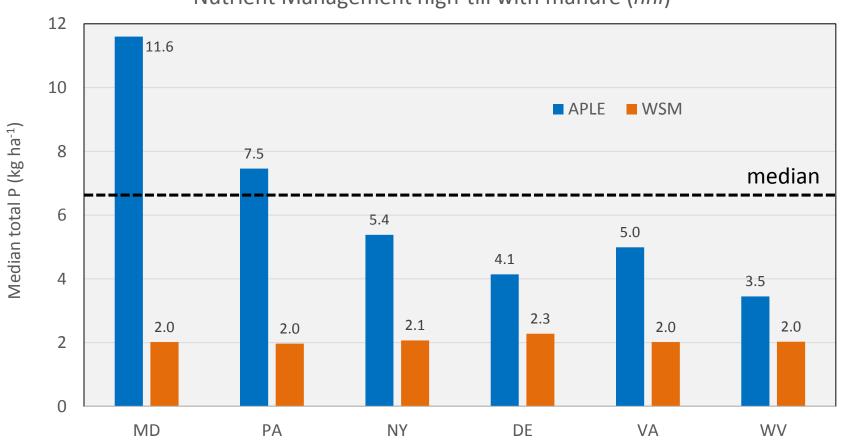
- Sediment P Loss (kg ha⁻¹)= Eroded sediment *
 Soil Total P * P Enrichment Ratio
- Manure Runoff P (kg ha⁻¹)= WEP *
 Runoff/Precipitation * Distribution Factor
- Fertilizer Runoff P (kg ha⁻¹)= Fertilizer P *
 Runoff/Precipitation * Distribution Factor
- Dissolved Soil Runoff P (kg ha⁻¹)= Soil Labile P *
 0.005 * Annual Runoff * 10⁻⁶

Methodology

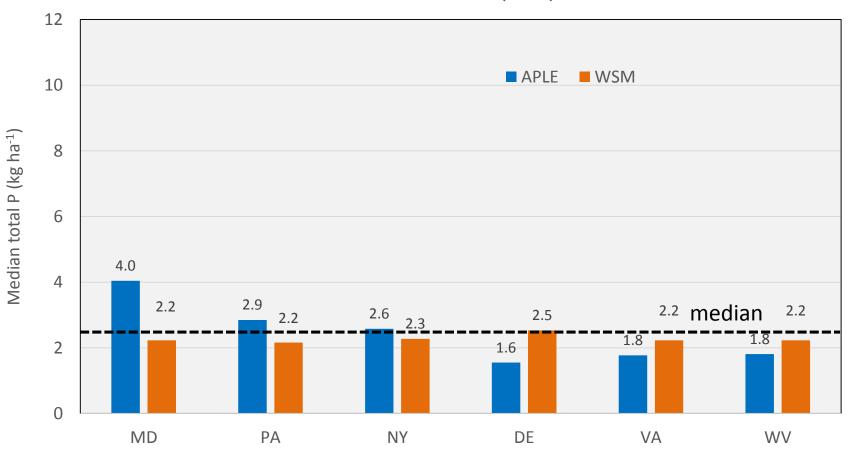
- The primary objective of our research is to identify, evaluate and improve the mechanics and representation of soil P as simulated within the Chesapeake Bay Watershed Model
- Using identical data provided by the CBP to estimate average EOF P loss for five land uses (hwm, lwm, nhi, nlo, and pas)
- LSEG county scale
- Simulation years: 1992-2005

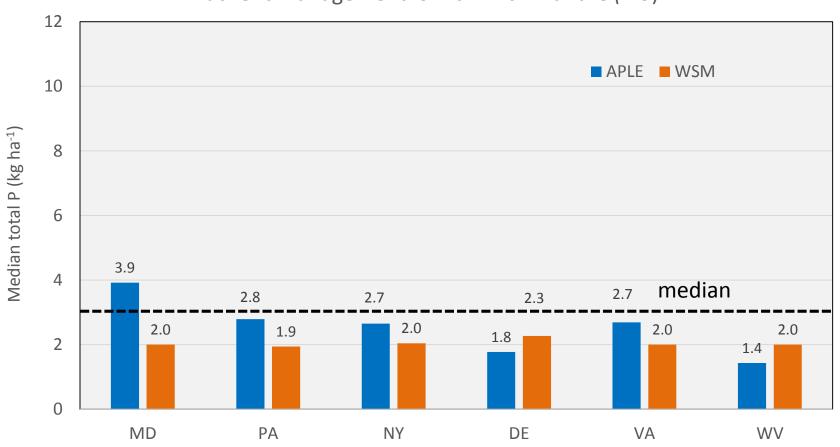

Methodology

CATEGORY	DATA PARAMETER	UNITS	DATA SOURCE
Soil Properties	Depth of soil layer(s)	Inches	Variable based on land use
	Mehlich-3 soil P	ppm	University soil test labs
	Clay content	Percent	Chesapeake Bay Program
	Organic matter content	Percent	Chesapeake Bay Program
Transport Factors	Annual rain	Inches	Chesapeake Bay Program
	Annual runoff	Inches	Chesapeake Bay Program
	Annual erosion rate	tons acre ⁻¹	Chesapeake Bay Program
	Field size (pasture land use only)	acres	Chesapeake Bay Program
	Annual crop P uptake	pounds acre ⁻¹	Chesapeake Bay Program
	Manure application	kg ha ⁻¹	Chesapeake Bay Program
	Manure solids	Percent	Scholarly literature
Field	Manure WEP/TP	Percent	Scholarly literature
Properties	Manure incorporation	Percent and inches	Variable based on land use
	Fertilizer application	kg ha ⁻¹	Chesapeake Bay Program
	Fertilizer incorporation	Percent and inches	Variable based on land use
	Degree soil mixing	Percent	Variable based on land use


Results: annual Total P EOF losses by land use

LAND USE	MEAN	MEDIAN	MAX	MIN
hwm	10.1 kg ha ⁻¹	5.98 kg ha ⁻¹	131.0 kg ha ⁻¹	0.011 kg ha ⁻¹
	9.02 lb ac ⁻¹	5.32 lb ac ⁻¹	117.0 lb ac ⁻¹	0.010 lb ac ⁻¹
lwm	4.34 kg ha ⁻¹	2.46 kg ha ⁻¹	83.2 kg ha ⁻¹	0.002 kg ha ⁻¹
	3.88 lb ac ⁻¹	2.19 lb ac ⁻¹	74.0 lb ac ⁻¹	0.002 lb ac ⁻¹
nhi	10.9 kg ha ⁻¹	6.56 kg ha ⁻¹	131.0 kg ha ⁻¹	0.011 kg ha ⁻¹
	9.70 lb ac ⁻¹	5.87 lb ac ⁻¹	117.0 lb ac ⁻¹	0.010 lb ac ⁻¹
nlo	5.05 kg ha ⁻¹	2.87 kg ha ⁻¹	83.4 kg ha ⁻¹	0.002 kg ha ⁻¹
	4.49 lb ac ⁻¹	2.55 lb ac ⁻¹	74.2 lb ac ⁻¹	0.002 lb ac ⁻¹
pas	3.77 kg ha ⁻¹	2.03 kg ha ⁻¹	80.4 kg ha ⁻¹	0.002 kg ha ⁻¹
	3.36 lb ac ⁻¹	1.81 lb ac ⁻¹	71.6 lb ac ⁻¹	0.002lb ac ⁻¹


High-till with manure (hwm)


Nutrient Management high-till with manure (*nhi*)

Low-till with manure (*lwm*)

Nutrient management low-till with manure (nlo)

Sediment contributions to TP loads

Sediment P Loss = Eroded sediment * Soil
 Total P * P Enrichment Ratio

97.9% of TP loads are sediment P loads for hwm

94.7% of TP loads are sediment P loads for lwm

85.1% of TP loads are sediment P loads for pas

Results: annual Dissolved P EOF losses by land use

LAND USE	Mean Total P	Mean Dissolved P	Median Dissolved P
hwm	10.1 kg ha ⁻¹	0.190 kg ha ⁻¹	0.126 kg ha ⁻¹
	9.02 lb ac ⁻¹	0.169 lb ac ⁻¹	0.112 lb ac ⁻¹
lwm	4.34 kg ha ⁻¹	0.220 kg ha ⁻¹	0.126 kg ha ⁻¹
	3.88 lb ac ⁻¹	0.196 lb ac ⁻¹	0.112 lb ac ⁻¹
nhi	10.9 kg ha ⁻¹	0.253 kg ha ⁻¹	0.154 kg ha ⁻¹
	9.70 lb ac ⁻¹	0.225 lb ac ⁻¹	0.137 lb ac ⁻¹
nlo	5.05 kg ha ⁻¹	0.308 kg ha ⁻¹	0.155 kg ha ⁻¹
	4.49 lb ac ⁻¹	0.274 lb ac ⁻¹	0.138 lb ac ⁻¹
pas	3.77 kg ha ⁻¹	0.549 kg ha ⁻¹	0.274 kg ha ⁻¹
	3.36 lb ac ⁻¹	0.489 lb ac ⁻¹	0.244 lb ac ⁻¹

EXTRAS

Model Validation

- Ploss in runoff
 - Measured data from 28 crop studies from 13 states, Australia, and Ireland; 14 pasture studies from 5 states, Australia, and New Zealand
- Soil P dynamics
 - Measured data from 19 studies monitoring changes in soil P from 1 to 25 years
- Under all scenarios, the model was <u>not</u> calibrated differently

References

Model Development and Validation:

- Vadas, P.A., P.J.A. Kleinman, and A.N. Sharpley. 2004. A simple method to predict dissolved phosphorus in runoff from surface-applied manures. J. Environ. Qual. 33:749-756.
- Vadas, P.A., B.E. Haggard, and W.J. Gburek. 2005a. Predicting dissolved phosphorus in runoff from manured field plots. J. Environ. Qual. 34:1347-1353.
- Vadas, P.A., P.J.A. Kleinman, A.N. Sharpley, and B.L. Turner. 2005b. Relating soil phosphorus to dissolved phosphorus in runoff: A single extraction coefficient for water quality modeling. J. Environ. Qual. 34:572-580.
- Vadas, P.A. 2006. Distribution of phosphorus in manure slurry and its infiltration after application to soils. J. Environ. Qual. 35:542-547.
- Vadas, P.A., W.J. Gburek, A.N. Sharpley, P.J.A. Kleinman, P.A. Moore, M.L. Cabrera, and R.D. Harmel. 2007. A model for phosphorus transformation and runoff loss for surface-applied manures. J. Environ. Qual. 36:324-332.

References

- Vadas, P.A., L.B. Owens, and A.N. Sharpley. 2008. An empirical model for dissolved phosphorus in runoff from surface-applied fertilizers. Agric. Ecosys. Environ. 127:59-65.
- Vadas, P.A., and M.J. White. 2010. Validating Soil Phosphorus Routines in the Swat Model. Trans. ASABE 53:1469-1476.

Soil Pools (Epic/SWAT):

- Sharpley, A.N., C.A. Jones, C. Gray, and C.V. Cole. 1984. A Simplified Soil and Plant Phosphorus Model .2. Prediction of Labile, Organic, and Sorbed Phosphorus. Soil Sci. Soc. Am. J. 48:805-809.
- Vadas, P.A., T. Krogstad, and A.N. Sharpley. 2006. Modeling phosphorus transfer between labile and nonlabile soil pools: Updating the EPIC model. Soil Sci. Soc. Am. J. 70:736-743.

Leaching Studies:

- Nelson, N.O., and J.E. Parsons. 2006. Modification and validation of GLEAMS for prediction of phosphorus leaching in waste-amended soils. Trans. ASABE 49:1395-1407.
- Nelson, N.O., J.E. Parsons, and R.L. Mikkelsen. 2005. Field-scale evaluation of phosphorus leaching in acid sandy soils receiving swine waste. J. Environ. Qual. 34:2024-2035.