Update from the Ag Land Use Loading Rate Steering Committee

Draft Agriculture Relative Load Ratio Estimates (07/15/15)

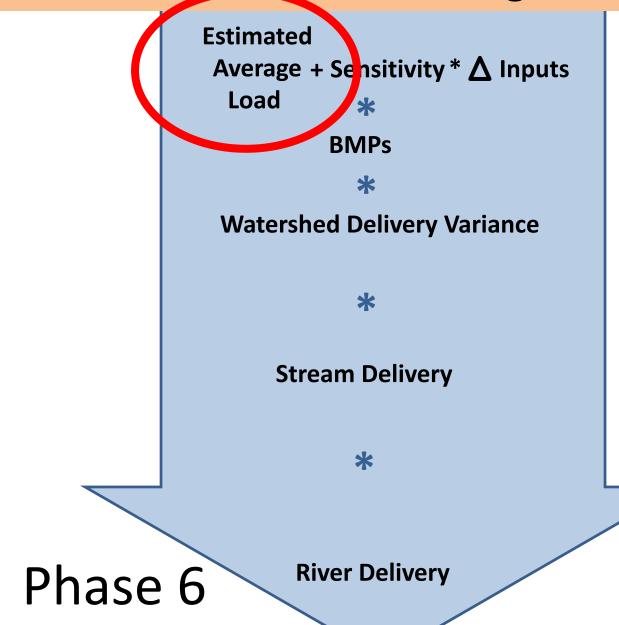
		Relative N Loadings		Relative P Loadings		Relative Sediment	
			Notes &	(sediment-	į	<u>Loadings</u>	
Land Use	Manure	(leach. + runoff)	Updates	attached P)	(dissolved P)	(runoff)	
Corn grain Corn silage	No No	1.00 1.09	in review	1.00	1.00	1.00	
Oom shage	110	1.00	III ICVICW		į	į	
Corn grain	Yes	1.27	likely increase		! !	į	
Corn silage	Yes	1.59	in review		į	į	
Soybean, full seas.	No	0.88	likely decrease	 Variability	Variability between	ļ	
Small grain & Soybean	No	0.82		between landuses will	landuses will	,	
Small grain & Forage	Yes	0.95		be captured as	be captured in as a function	landuses will be i captured as a	
Other Agronomic	Yes	0.55		a function of LRseg-based	of LRseg- based APLE	function of LRseg- based RUSLE2	
Legume or mixed Hay	Yes	0.16		RUSLE2 erosion	dissolved P	erosion estimates,	
Grass or other Hay	Yes	0.14		estimates, so	estimates, so no further	so no further relative ratios are	
Pasture	Yes	0.11	in review	no further relative ratios	relative ratios are	proposed.	
Ag Open Space	No	0.04		are proposed.	proposed.	į	
Special Crops, high	Yes	1.41			 	į	
Special Crops, low	Yes	0.32			 	ļ	

The Steering Committee has reservations about the old RUSLE rates for pasture and hay relative to cropland (too high) and would like to review the new RUSLE2 rates to ensure better relative representation of these land uses in P6.

Pasture/Hay Literature Review J. Cropper

	Units	A	Ratios to			
Parameter		Pasture		Other H	Pasture	
		Range	(Mean)	Range	(Mean)	rasiule
Dissolved P	(lbs/ac)	0.10 - 1.3	(0.70)	0.30 - 0.83	(0.64)	0.91
Total P	(lbs/ac)	0.10 - 1.8	(0.95)	0.32 - 0.91	(0.70)	0.74
Sediment	(lbs/ac)	50 - 200				
Total N	(lbs/ac)	1.3 - 3.84			0.52	0.20

References:


Kilmer, V. J., J. W. Gilliam, J. F. Lutz, R. T. Joyce, and C. D. Eklund. 1974. Nutrient Losses from Fertilized Grassed Watersheds in Western North Carolina. J. Environ. Quality, 3:214-219.

McMullen, R.L. and K.R. Brye. 2012. Leachate Water Quality from Pasture Soil after Long-term Broiler Litter Applications. Wayne E. Sabbe Arkansas Soil Fertility Studies. AAES Research Series 608. pp. 28.

Owens, L. B. and M. J. Shipitalo. 2006. Surface and Subsurface Phosphorus Losses from Fertilized Pasture Systems in Ohio. J. Environ. Qual. 35:1101 -1109.

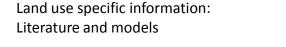
Vadas, P. A., D. L. Busch, J. M. Powell, and G. E. Brink. 2014. Monitoring runoff from cattle-grazed pastures for a phosphorus loss quantification tool. Agriculture, Ecosystems and Environment 199 (2015) 124-131.

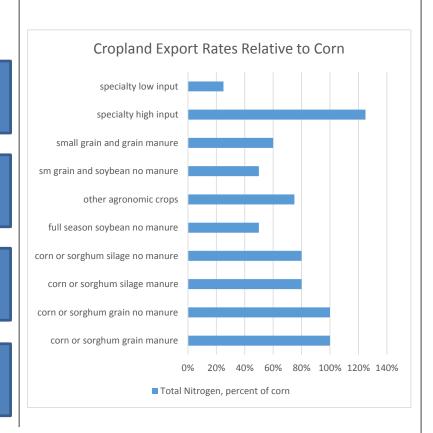
Load for a land use in a segment =

TN Target Development

Decision Point #2

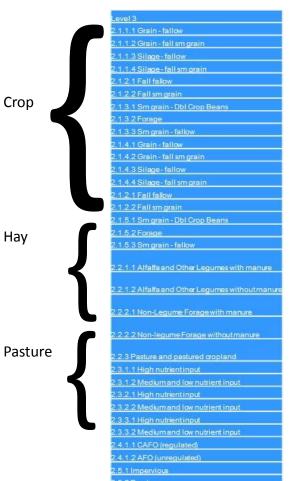
Decision Point #1


Global Model: e.g. Sparrow


Crop 25 Lbs/A/Yr

Pasture 20 Lbs/A/Yr

Urban 10 Lbs/A/Yr


Natural 2 Lbs/A/Yr

Decision Point #3

Map the land uses

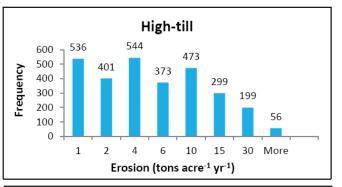
<u>Annual P Loss Estimator (APLE)</u> tool

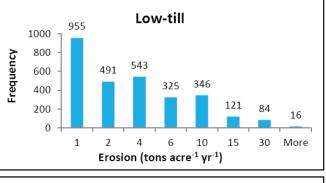
Developed by Vadas, et al. (USDA-ARS)

Annual time step

Excel-based model

Edge-of-field estimation


Simulates sediment and dissolved P surface losses from soil, manure, and fertilizer sources


Sediment P + Dissolved P = Total P loss

Minimal subsurface loss or leaching to groundwater simulated

APLE input assumptions (v.5.3.2)

		. •	· •			
Land Summary Use Statistic		· ·	Annual Runoff (inches)	Annual Erosion (tons acre ⁻¹)		
		Mean	3.46	6.19		
	HWM	Median	2.74	3.78		
		Range	1.15 x 10 ⁻² – 20.3	1.18 x 10 ⁻³ - 73.0		
		Mean	2.31	3.70		
	LWM	Median	1.67	1.99		
		Range	0.01 – 17.21	1.15 x 10 ⁻⁴ – 47.8		
		Mean	2.22	1.64		
	PAS	Median	1.54	0.525 Excer		
		Range	0.98 x 10 ⁻² – 17.0	1.0 x 10 ⁻⁶ – 60.		

Pasture

1500 7 1409 erpt from Section 9 of the Watershed Model Documentation (2010) on the use of the NRI RUSLE.

		Conventional	Conservation			
٠.		Tillage Crop	Tillage Crop	Pasture	Hay	Forest
	State	(tons/ac)	(tons/ac)	(tons/ac)	(tons/ac)	(tons/ac)
	Average	5.92	3.55	1.53	1.52	0.26
	Standard Deviation	4.19	2.51	2.12	1.07	0.1
	Maximum	24.47	14.68	11.5	6.27	0.6
	Minimum	0.09	0.06	0.02	0.02	0.13
	Median	4.96	2.97	0.76	1.27	0.26
	Ratio Relative to Conventional Till	1.00	0.60	0.26	0.26	0.04
	Ratio Relative to Cropland	1.0	00	0.32	0.32	0.05