Ag Land Use Loading Rate Subgroup (Steering Committee) Progress Report

Tom Jordan and Gene Yagow

- Ad hoc Subgroup of Ag Modeling Subcommittee
- Task: Review Tetra Tech and WSI literature reviews and databases to develop relative loading rates for 16 agricultural land uses in the Phase 6 WSM.
- March 25th: Initial all-day review
- April 16th: Preliminary relative ratios for nitrogen provided to the Ag Working Group along with a request for additional resources for more detailed screening and analysis of the data.

Progress Report (cont.)

- Virginia Tech cooperative agreement provided resources –
 Gene Yagow contracted, mid-May.
- June: Application of refined criteria requested by the steering committee and additional analysis by Yagow.
- July: Steering Committee members undertook additional reviews for land uses or pollutants in their area of expertise.
- Hybrid justifications being developed to support relative loading rates for N, and modeling approaches for P and sediment ratios.

Update from the Ag Land Use Loading Rate Steering Committee

Draft Agriculture Relative Load Ratio Estimates (07/15/15)

		Relative N Loadings		Relative P Loadings		Relative Sediment
			Notes &	(sediment-	,	Loadings
Land Use	Manure	(leach. + runoff)	Updates	attached P)	(dissolved P)	(runoff)
Corn grain	No	1.00		1.00	1.00	1.00
Corn silage	No	1.09	in review] 	I	
Corn grain	Yes	1.27 වැවැරිරි 1.59	likely increase			i !
Corn silage	Yes	<u>جَ</u> 1.59	in review	I I		ł
Soybean, full seas.	No	0.88	likely decrease	ı variability	Variability between	II Variability between
Small grain & Soybean	No	0.82		between	landuses will	
Small grain & Forage	Yes	0.95		l landuses will be captured as a function of	be captured as a function	
Other Agronomic	Yes	0.55		LRseg-based	of LRseg-	function of LRseg-
Legume or mixed Hay	Yes	0.16		RUSLE2 erosion	based APLE dissolved P	based RUSLE2 erosion estimates,
Grass or other Hay	Yes	0.14		estimates, so	estimates, so no further	so no further relative ratios are
Pasture	Yes	0.11 0	in review	no further relative ratios	relative ratios are	proposed.
Ag Open Space	No	0.04		are proposed.	proposed.	<u> </u>
Special Crops, high	Yes	1.41		 		!
Special Crops, low	Yes	0.32		 		į

The Steering Committee has reservations about the old RUSLE rates for pasture and hay relative to cropland (too high) and would like to review the new RUSLE2 rates to ensure better relative representation of these land uses in P6.

Pasture/Hay Literature Review J. Cropper

		A	Ratios to			
Parameter	Units	Pasture		Other H	Pasture	
		Range	(Mean)	Range	(Mean)	rasiule
Dissolved P	(lbs/ac)	0.10 - 1.3	(0.70)	0.30 - 0.83	(0.64)	0.91
Total P	(lbs/ac)	0.10 - 1.8	(0.95)	0.32 - 0.91	(0.70)	0.74
Sediment	(lbs/ac)	50 - 200				
Total N	(lbs/ac)	1.3 - 3.84			0.52	0.20

References:

Kilmer, V. J., J. W. Gilliam, J. F. Lutz, R. T. Joyce, and C. D. Eklund. 1974. Nutrient Losses from Fertilized Grassed Watersheds in Western North Carolina. J. Environ. Quality, 3:214-219.

McMullen, R.L. and K.R. Brye. 2012. Leachate Water Quality from Pasture Soil after Long-term Broiler Litter Applications. Wayne E. Sabbe Arkansas Soil Fertility Studies. AAES Research Series 608. pp. 28.

Owens, L. B. and M. J. Shipitalo. 2006. Surface and Subsurface Phosphorus Losses from Fertilized Pasture Systems in Ohio. J. Environ. Qual. 35:1101 -1109.

Vadas, P. A., D. L. Busch, J. M. Powell, and G. E. Brink. 2014. Monitoring runoff from cattle-grazed pastures for a phosphorus loss quantification tool. Agriculture, Ecosystems and Environment 199 (2015) 124-131.