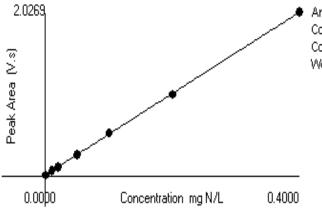
Comparison of Modified USGS Ammonia Method to modified EPA 350.1

Parallel study of tartrate/citrate buffered segmented flow versus EDTA buffered flow injection

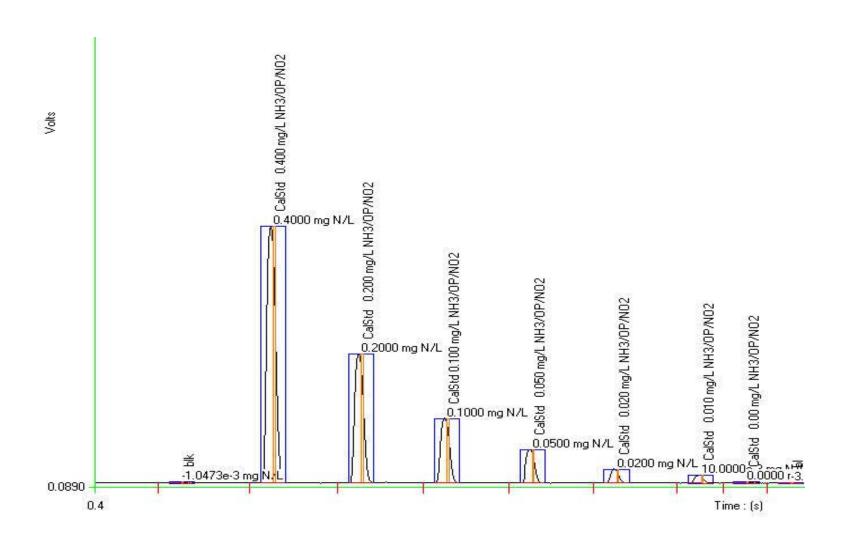
		New Method	Current Method	EPA Method
	Nide and Description List के attach SOPs for new and current. ि	Lachat 31-107-06-1-b Adaption of EPA 350-1	Skalar 156-350.1 032593 Adaption of USGS I- 2523-85 DEQ has current SOP on file.	EPA350.1
2	Procedural differences	Flow injection technology using same reagents as EPA 350.1	Segmented flow and uses different buffer and hypochlorite concentration compared to EPA 350.1	Segmented flow method
3.	Concentration Range of calibration standards	0.010 = 0.400 mg/L 6 point calibration	0.02 = 0.100 mg/L 5 point calibration	0.02 = 2.00 mg/L Uses 3 point calibration.
4	Initial Precision & Recovery	100+7-10% allowed (initially 99.3%)	100+7-10% allowed (103% November 2006)(Currently 98.1%)	100 +/- 10% allowed
5	Calibration Verification	Initially and then every 10 samples with recovery 100 +/- 10%	Initially and then every 10 samples with recovery 100 +/- 10%	Every 10 samples with recovery 100 +/- 10%
6.	Method Detection Limit	.003 mg/L	.004 mg/L	Does not quote one, only the range .02- 2.00 mg/L is quoted
7.	Reporting Limit (Practical Quantitation Limit	0.010mg/L	0,020 mg/L	0.02 mg/L (lowest std.)
8.	Correlation coefficient of calibration curve	<u>≥</u> 0.995	<u>≥</u> 0.995	<u>></u> 0.995
更	Sample matrix and concentration range for each (fresh and saline waters are separate matrices)	Instrument performs at full range whether saline or fresh up to approximately 35 ppt	Instrument performs to 0.100 mg/L but method breaks down at salinities approaching those of seawater.	Not designed and does not perform in seawater. Method was designed to have a preceding distillation.
10.	Paired t-test results ^t (per each matrix) A two-sided t-test with p-value of 0.01	Parallel study results included in Section 17.6 of SOP	First method put in place at DCLS for CBP ammonia so there was no comparison.	Not Quoted in method
11	Wilgaan Signed-Rank test ^a (if paired differences are not normally distributed)	na	NA	NA
12	Other Statistics"	NA	NA	NA


See section 13.1 and	See Section 13:1 of	Not Quoted but must
13.2 of SOP, 99.3%	SOP. 103% in	be in range of 90-
recovery in reagent water and 103% recovery in approximately 35ppt seawater	water.	110%
We can run WP, USGS, and blind and this instrument because of expanded range and capability.	Blind Audit, no failures last set. Most recent set for Winter 2011 has not been tabulated. WP sample range is to high for this method and does not match daily sample matrix.	No results listed
Required < 0.005 mg/L. See section 9.5 for listing of all QC limits.	Required ≤ 0.010 mg/L	Required ≤ 0.010 mg/L
NA (See 15) Lower than EPA requirement	NA (See 15) Lower than EPA requirement.	NA
CBP Required 100 +/- 20%	CBP Required 100 +/- 20%	100 +/- 10%
Study recoveries mean 98.1 % Section 13.3 of SOD	Current mean 92%	
	RPD≤20%	No requirement
Current study 3.97% Section 13.4 of SOP	Curent mean 8.0%	listed
File included in email with this file	NA	NA
No carryover. Study shown in SOP section 17.5	Can experience carryover when samples are overrange.	No study shown.
	13.2 of SOP. 99.3% recovery in reagent water and 103% recovery in approximately 35ppt seawater We can run WP, USGS, and blind audit on this instrument because of expanded range and capability. Required ≤ 0.005 mg/L. See section 9.5 for listing of all QC limits. NA (See 15) Lower than EPA requirement. CBP Required 100 +/- 20% Study recoveries mean 98.1 % Section 13.3 of SOP RPD ≤ 20% Current study 3.97% Section 13.4 of SOP File included in smail with this file No carryover: Study shown in SOP section	recovery in reagent water and 103% recovery in approximately 35ppt seawater We can run WP, USGS, and blind audit on this instrument because of expanded range and capability. Required ≤ 0.005 mg/L. See section 9.5 for listing of all QC limits. NA (See 15) Lower than EPA requirement. CBP Required 100 CBP Required 100 +/- 20% Current mean 92% Current study 3.97% Section 13.3 of SOP RPD ≤ 20% Current study 3.97% Section 13.4 of SOP File included in email with this file No carryover: Study shown in SOP section.

Ammonia by Flow Injection Calibration Curve 0.010 to 0.400 mg/L

Table: 1 (Ammonia)

	Known Conc. (mg N/L)	Rep	Peak Area (V.s)	Peak Height (V)	% RSD	% Residual	Det. Conc (mg N/L)	Detection Date	Detection Time
1	0.4000	1	2.0269	0.6524	0.0	0.0	0.4001	8/26/2010	2:46:57 PM
2	0.2000	1	1.0111	0.3265	0.0	0.9	0.1982	8/26/2010	2:49:50 PM
3	0.1000	1	0.5332	0.1698	0.0	-3.2	0.1033	8/26/2010	2:52:39 PM
4	0.0500	1	0.2630	0.0850	0.0	0.8	0.0496	8/26/2010	2:55:26 PM
5	0.0200	1	0.1121	0.0363	0.0	1.7	0.0196	8/26/2010	2:58:12 PM
6	10.0000e-3	1	0.0623	0.0204	0.0	2.3	9.7227e-3	8/26/2010	3:00:58 PM
7	0.0000	1	0.0105	3.9222e-3			-5.7712e-4	8/26/2010	3:02:27 PM


Figure: 1 (Ammonia)

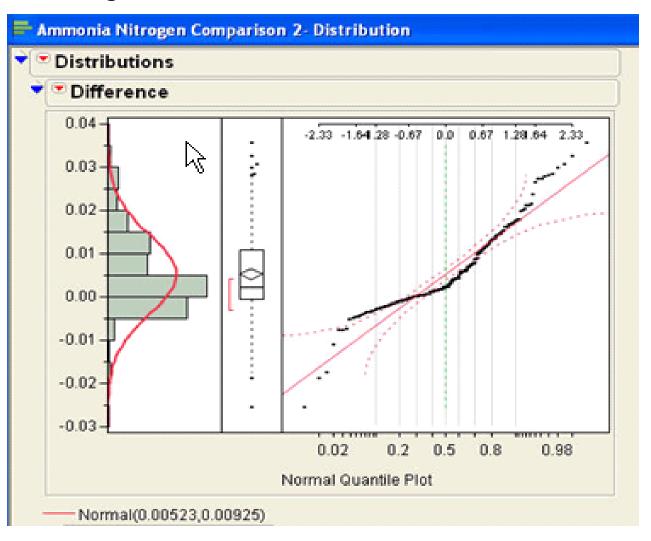
Area = 5.0320 * Conc + 0.0134 Conc = 0.1987 * Area - 2.6545e-3 Correlation Coefficient (r) = 0.99994

Weighting: None

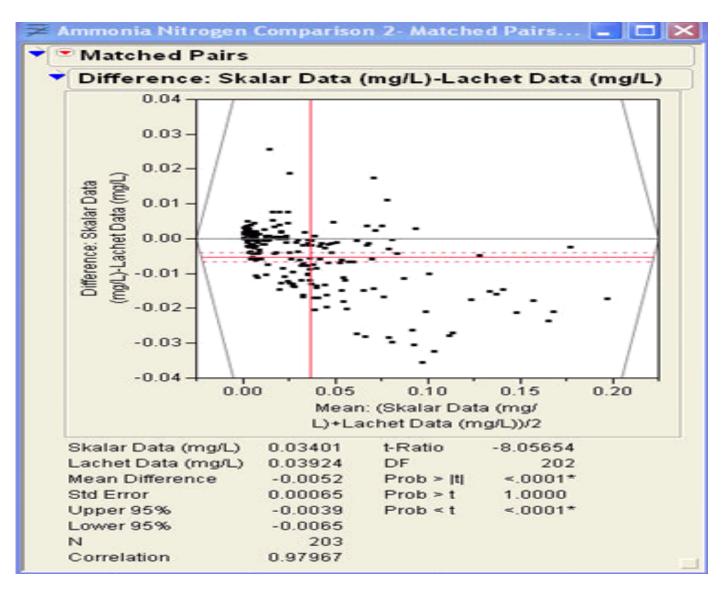
Carryover Study

<u>Got Standard</u>	Replicate∎			
<u>Mentifier</u>	Resulting/L	<u>True Value</u> m.g/L	% Recover;	<u>Matrix</u>
#417 INO-R/S 2008-2	0.0382	<u> </u>	95.5	DI
#417 INO-RAS 2008-2	0.0819	0.03	102,375	DI
#417 INO-RAS 2008-2	0.0358	□□4	89. 5	DI
#417 INO-RAS 2008-2	0.0825	0.08	103.125	DI
#417 INO-RAS 2008-2	0.0405	OD4	101 <i>.2</i> 5	DI
#417 INO-R/S 2008-2	0.0813	0.08	101.625	DI
#417 INO-R/S 2008-2	0.0804	0.03	100.5	DI
#417 INO-RAS 2008-2	0.082	0.03	102.5	DI
#417 INO-RAS 2008-2	0.0411	□□4	102.75	DI
#417 INO-RAS 2008-2	0.083	0.08	103.75	DI
#417 INO-R/S 2008-2	770.0	0.08	96.25	DI
#417 INO-RAS 2008-2	0.0702	0.08	87.75	DI
#417 INO-RAS 2008-2	0.0367	0.04	91.75	DI
#417 INO-RAS 2008-2	0.0364	O.D.↓	91	DI
#417 INO-RAS 2008-2	0.0738	0.08	92.25	DI
#417 INO-RAS 2008-2	0.07 16	0.08	89.5	DI
#417 INO-R/S 2008-2	0.0771	0.08	96,375	DI
#417 INO-R/S 2008-2	0.0388	□□4	97	DI
ERA P152-739b 1/25	0.348	0.327	106.42	DI
ERA P152-739b 1/100	870.0	0.082	95.12	DI
ERA P152-739b 1/25	0.339	0.327	103.67	DI
ERA P152-739b 1/25	0.341	0.327	104.28	DI
ERA P152-739b 1/25	0.3378	0.327	103,30	DI
ERA P152-739b 1/25	0.3406	0.327	1□4.16	DI
ERA P152-739b 1/100	0.0835	0.08	104.38	DI
ERA P152-739b 1/100	0.0838	0.08	104.75	DI
ERA P152-739b 1/100	0.0848	0.03	106.00	DI
ERA P152-739b 1/100	0.0833	0.08	104.13	DI
Absolute Grade	0.0807	0.08	100.88	DI
090808				
Absolute Girade	0.0401	□□↓	100.25	DI
090808 #288 INO R <i>I</i> S 2009-13	0.038	0.04	95	DΙ
#256 INO R/S 2009-13	0.0808	0.08	101	DI
#250 INO R/S 2009-13	0.0389	0.04	97.25	D.
#255 INO R/S 2009-13	0.08	0.08	31 20 100	DI
#288 INO R/S 2009-13	0.0372	0.04	93	DI
#288 INO RAS 2009-13	0.0795	0.08	99.375	DI.
#288 INO R/S 2009-13	0.078 ↓	0.08	99210 98	DI DI
#288 INO R/S 2009-13		п п	90 100	DI
#258 INO R/S 2009-13	0.0433	DD4	108.25	DI
#255 INO R/S 2009-13	0.0803	0.08	100.38	DI DI
Absolute Grade	0.003	0.08	96.25	dl U
D90808	од. (um	3020	u
		Avg.Rec	99.28	%
		8D	5.12	%
				

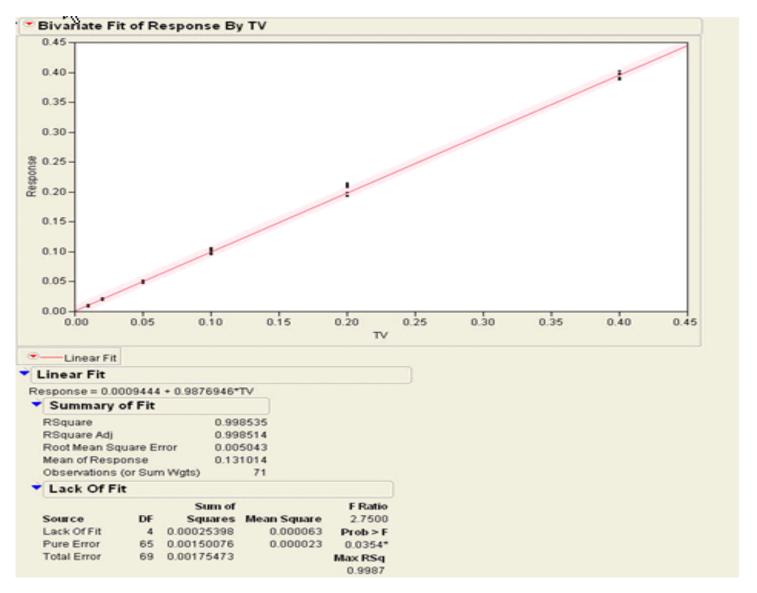
Saline Quality Control Sample Recovery in Synthetic Seawater


Ocs Saline Standard Replicates						
Identifier	Result mg/L	<u>Cates</u> <u>True Value</u>	% Recovery	Matrix		
/\\ <u>idendiei</u>	itesuit iiig/L	mg/L	A Recovery	MIGUIA		
#417 INO-R/S 2008-2	0.0394	0.04	98.5	saline		
#417 INO-R/S 2008-2	0.0841	0.08	105.125	saline		
#417 INO-R/S 2008-2	0.0408	0.04	102	saline		
#417 INO-R/S 2008-2	0.0866	0.08	108.25	saline		
#417 INO-R/S 2008-2	0.0422	0.04	105.5	saline		
#417 INO-R/S 2008-2	0.0882	0.08	110.25	saline		
#417 INO-R/S 2008-2	0.0789	0.08	98.625	saline		
#417 INO-R/S 2008-2	0.0382	0.04	95.5	saline		
ERA P152-739b 1/25	0.329	0.327	100.61	saline		
ERA P152-739b	0.088	0.082	107.32	saline		
1/100						
ERA P152-739b	0.0868	0.08	108.5	saline		
1/100						
ERA P152-739b	0.0877	0.08	109.625	saline		
1/100	0.0075	0.00	100.075	1:		
ERA P152-739b 1/100	0.0875	0.08	109.375	saline		
ERA P152-739b	0.088	0.08	110	saline		
1/100	0.000	0.00	'''	Saillie		
ERA P152-739b 1/25	0.306	0.327	93.58	saline		
ERA P152-739b 1/25	0.315	0.327	96.33	saline		
ERA P152-739b 1/25	0.322	0.327	98.47	saline		
		Avg Rec	103.39	%		
		SD	5.74	%		

Real world Sample performance:


Sample Spike Recovery: 98.1% with S.D of 5.8%

Duplicate RPD: Avg 4.0%


Differences of the Lachat Result – Skalar Result indicates a normal distribution with a slight high bias on the Lachat.

Matched pairs differences plot showing the small positive bias of the Lachat.

Variability of the Curve Standards.

The standard deviation associated with ten replicate readings of each standard over several runs and days. Concentration in mg/L

CONC	0.01000	0.02000	0.05000	0.10000	0.20000	0.40000
SD	0.00112	0.00109	0.00175	0.00367	0.00891	0.00563
VAR	0.0000013	0.0000012	0.0000031	0.0000134	0.0000794	0.0000317

Advantages of the flow injection and EDTA buffer:

- *Faster reaction and time of flight reducing the amount analyte and sample that spreads into the adjacent wash solution while flowing through the analyzer. Contributes to a sharper more well defined peak.
- •Can make calibration standards in DI water and use to analyze salinities equivalent to ocean water. EDTA buffer helps mitigate the negative bias produced by high concentrations of magnesium.
- •Uses peak integration instead of height to determine results. By integrating only a slice of the peak we can eliminate the interference from the refractive index/carrier to sample interface. Use of smaller flow cells with high color producing reactions also reduces refractive index effects.
- •The use of smaller flow cells with digital detector technology allows the lab the ability to analyze a wider range without the need for dilution.
- •No carryover issues leading to peak shoulder reruns.

Conclusions from statistical analysis:

- •Results from the flow injection are biased high in comparison to the segmented flow results. Avg. bias is on the order of 0.005 mg/L. While the result is statistically significant it is not practically significant.
- •Based on analysis by Elgin Perry the T-Test overstates the statistical significance and a more valid test would have been to use a nested analysis of variance test for this type of population (203 samples). The second test indicates that the difference is slightly significant, p=0.0458, and shows a mean bias of 0.005 mg/L.
- *Elgin's analysis concluded that the interval from 0.0 to 0.030 mg/L could be considered equivalent. Above 0.030 mg/L a correction factor may be needed should there be a step trend. Those factors are stated with his analysis and filed with the validation.
- •There were conclusions drawn from experimental design that deserve discussion in an upcoming AMQAW meeting.