




### Nutrient Attenuation in Chesapeake Bay Watershed Onsite Wastewater Treatment Systems

**September 22, 2016** 

**Presentation to Modeling Workgroup** 

**Victor D'Amato** 

## **Attenuation Panel**

- On-Site Wastewater Treatment Systems Nitrogen Reduction Technologies Panel
  - Initial BMP report approved in February 2014
  - Attenuation Panel formed in June 2014
- Panel Charge
  - Determine whether and how the Bay TMDL model can be improved by using variable total nitrogen (TN) attenuation rates
  - Determine whether the currently used 100% removal of total phosphorus (TP) is warranted and recommend methodologies as appropriate

## **Attenuation Panelists**

#### **Bay States**

- Tom Boekeloo, New York State DEC
- Jay Conta, Virginia Tech/Virginia DOH
- Marcia Degen, Virginia Dept. of Health
- Joshua Flatley, Maryland Dept. of Environment
- Jack Hayes, Delaware DNREC
- Nick Hong PA DEP
- Dave Montali, West Virginia DEP

#### **Other Panelists**

- Steven Berkowitz, North Carolina DHHS
- Judy Denver, USGS
- **John Galbraith**, Virginia Tech
- Barry Glotfelty, Frederick County (MD) HD
- Robert Goo, US EPA OWOW
- George Heufelder, Barnstable County (MA) DHE
- Michael O'Driscoll, East Carolina/Duke University
- **David Radcliffe**, University of Georgia
- Eberhard Roeder, Florida Department of Health
- Robert Siegrist, Colorado School of Mines

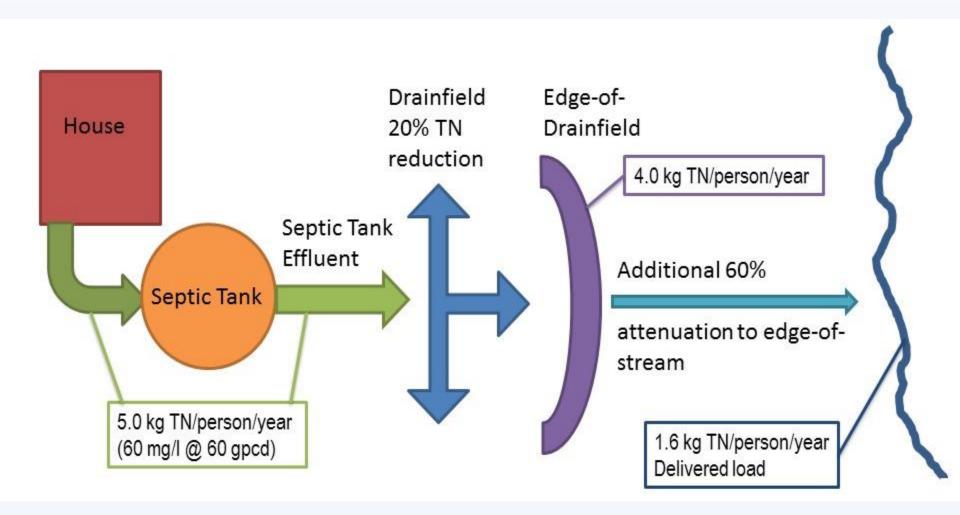
### Other Contributors and Former Panelists

#### **Chesapeake Bay Program Office**

- Lewis Linker
- David Wood
- Ning Zhou

#### **United States Geological Survey (USGS)**

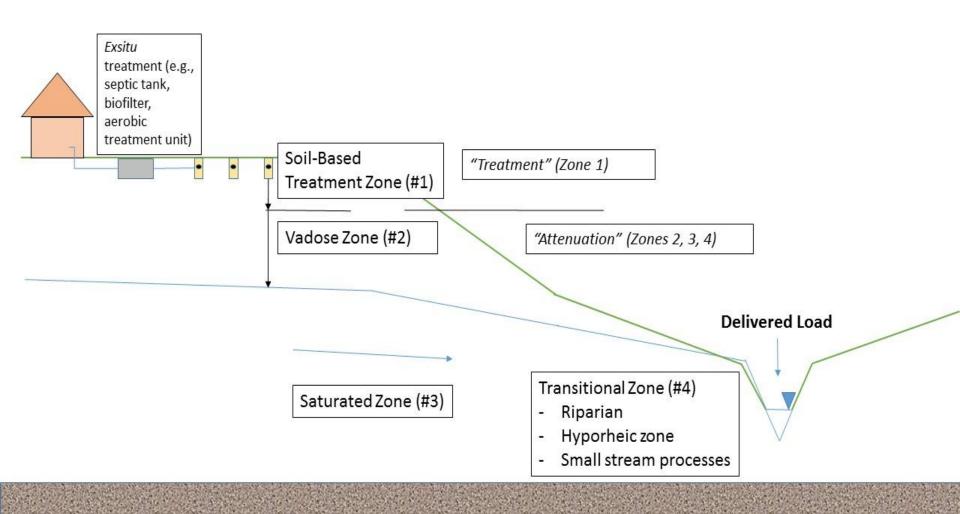
- Scott Ator
- John Brakebill
- Andrew Sekellick


#### **Advisors/Contributors**

- Rob Adler, US EPA Region 1 (retired)
- Jim Anderson, University of Minnesota
- Jason Baumgartner, Delaware DNREC
- John Diehl, Pennsylvania DEP (retired)
- Paul Finnell, US Department of Agriculture
- Mengistu Geza, Colorado School of Mines
- Kristina Heinemann, US EPA Region 2
- Charles Humphrey, East Carolina University
- Joyce Hudson, US EPA OWM (retired)
- Ruth Izraeli, US EPA Region 2

#### **Advisors/Contributors (continued)**

- Jim Kreissl, Tetra Tech
- David Lindbo, US Department of Agriculture
- Andrew J. Maupin, Idaho DEQ
- Kevin McLeary, Pennsylvania DEP
- Randy Miles, University of Missouri
- Ross Mandel, ICPRB
- Jeff Moeller, Water Environment Research Foundation
- Rich Piluk, Anne Arundel County (MD)
   Health Department
- Sushama Pradhan, North Carolina DHHS
- Jay Prager, Maryland Department of Environment (retired)
- Carol Ptacek, University of Waterloo
- Eric Regensburger, Montana DEQ
- David Sample, Virginia Tech
- Durrelle Scott, Virginia Tech
- Ivan Valiela, Cornell University
- Janice Vollero, Pennsylvania DEP
- Kang Xia, Virginia Tech


# **Current CBP OWTS Assumptions**



Panel Task: can we improve upon 20% and 60% TN reduction assumptions throughout watershed?

## **Attenuation Panel Conceptual Framework**

Assume: residential wastewater, 5 kg TN/cap/year



# **Zone Descriptions**

#### Zone 1 – Soil-Based Treatment Zone

- Extends 30-60 cm below infiltrative surface; outer edge similar to current "edge-of-drainfield"
- Defined by biogeochemistry induced by wastewater infiltration
- CBP currently assumes 20% TN reduction watershed-wide

#### Zone 2 – Vadose Zone

- TN reduction magnitude and rates similar to background conditions
- Typically insignificant TN reduction in comparison to other zones

#### Zone 3 – Groundwater Zone

- Mostly horizontal flow toward outlet/stream
- TN reduction function of decay rate and travel time
- TN reduction varies with hydrogeomorphology

#### Zone 4 – Transitional Zones

- Includes floodplain and riparian areas, hyporheic zone, small streams
- TN reductions can be significant (e.g., >50%)
- Being partially addressed by other CBP efforts

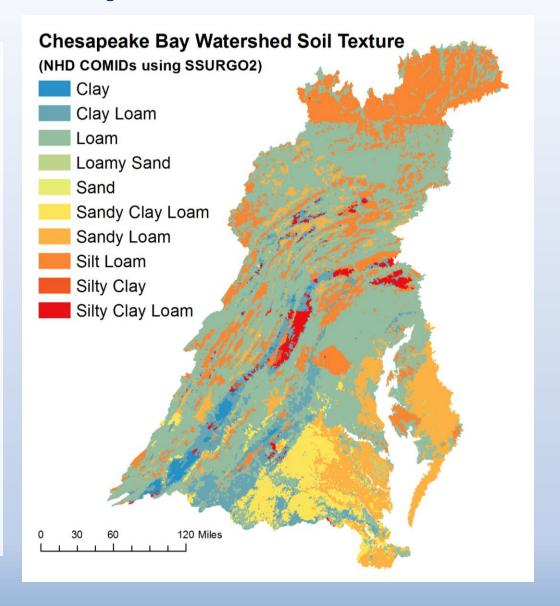
#### CBP currently assumes 60% for Zones 2-4 watershed-wide

# **TN Reductions in OWTS Components**

| Component                                      | Comment                                                                                 |
|------------------------------------------------|-----------------------------------------------------------------------------------------|
| Exsitu unit 1 (e.g., septic tank)              | No TN reduction assumed in septic tank (e.g., TN = 5 kg/cap /day)                       |
| Exsitu unit 2 (e.g., intermittent sand filter) | TN reductions based on CBP approved BMP credits                                         |
| Insitu Zone 1 (Soil-Based Treatment)           | Varies by soil texture, based on STUMOD and field observations                          |
| Insitu Zone 2 (Vadose Zone)                    | Assumed low in comparison to Zones 1 and 3; not explicitly addressed by Panel           |
| Insitu Zone 3 (Groundwater Zone)               | Varies by physiography and geology, informed by SPARROW modeling and field observations |
| Insitu Zone 4 (Transitional Zones)             | Small stream and riparian processing being partially addressed by other CBP efforts     |

# **Zone 1 Results and Recommendation**

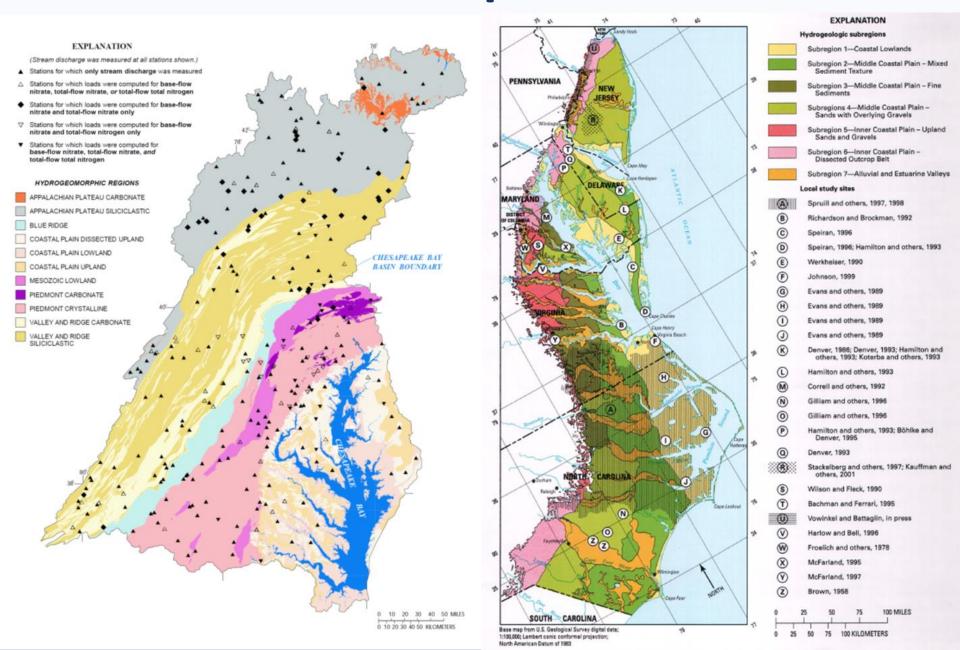
| Soil textural class | Loading rate<br>(cm/day) | TN reduction for a specified depth to groundwater and actual hydraulic loading rate applied |           |            |           |
|---------------------|--------------------------|---------------------------------------------------------------------------------------------|-----------|------------|-----------|
|                     |                          | 30 cm/100%                                                                                  | 30 cm/50% | 60 cm/100% | 60 cm/50% |
| Sand                | 4                        | 7%                                                                                          | 16%       | 16%        | 31%       |
| Loamy sand          | 4                        |                                                                                             |           |            |           |
| Sandy loam          | 3                        |                                                                                             |           |            |           |
| Loam                | 3                        |                                                                                             |           |            |           |
| Silt loam           | 1.8                      | 11%                                                                                         | 30%       | 34%        | 59%       |
| Clay loam           | 1.8                      |                                                                                             |           |            |           |
| Sandy clay loam     | 1.8                      |                                                                                             |           |            |           |
| Silty clay loam     | 1.8                      |                                                                                             |           |            |           |
| Silt                | 1.8                      |                                                                                             |           |            |           |
| Sandy clay          | 1                        | 29%                                                                                         | 54%       | 54%        | 80%       |
| Silty clay          | 1                        |                                                                                             |           |            |           |
| Clay                | 1                        |                                                                                             |           |            |           |


# **Zone 1 Implications**

 Change to spatially variable Zone 1 TN reduction rates results in a total OWTS sector load decrease of approximately 4 percent

~3 percent increase for sandy soils

~16 percent decrease for loamy soils


~45 percent decrease for clayey soils



## **Zone 3 Results and Recommendation**

| Hydrogeomorphic Region <sup>1</sup>                                                         | Relative TN<br>Transmission<br>Classification | Recommended Zone 3 Attenuation Factor (Transmission Factor) |
|---------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------|
| Fine Coastal Plain - Coastal Lowlands                                                       | Low                                           | 75% (25%)                                                   |
| Fine Coastal Plain - Alluvial and Estuarine Valleys                                         | Low                                           | 75% (25%)                                                   |
| Fine Coastal Plain - Inner Coastal Plain - Upland Sands and Gravels                         | Medium                                        | 60% (40%)                                                   |
| Fine Coastal Plain - Middle Coastal Plain - mixed sediment texture                          | Medium                                        | 60% (40%)                                                   |
| Fine Coastal Plain - Middle Coastal Plain - fine sediment texture                           | Low                                           | 75% (25%)                                                   |
| Coarse Coastal Plain - Middle Coastal Plain - Sands with Overlying Gravels (also dissected) | High                                          | 45% (55%)                                                   |
| Coarse Coastal Plain - Inner Coastal Plain - Dissected Outcrop Belt                         | High                                          | 45% (55%)                                                   |
| Crystalline Piedmont                                                                        | High                                          | 45% (55%)                                                   |
| Crystalline Blue Ridge                                                                      | High                                          | 45% (55%)                                                   |
| Carbonate Piedmont                                                                          | Very High                                     | 35% (65%)                                                   |
| Carbonate Valley and Ridge                                                                  | Very High                                     | 35% (65%)                                                   |
| Carbonate Appalachian Plateau                                                               | Very High                                     | 35% (65%)                                                   |
| Siliciclastic Mesozoic Lowland                                                              | High                                          | 45% (55%)                                                   |
| Siliciclastic Valley and Ridge                                                              | Medium                                        | 60% (40%)                                                   |
| Siliciclastic Appalachian Plateau                                                           | Low                                           | 75% (25%)                                                   |

# **Zone 3 Implications**



## **Overall Panel Recommendations**

| Soil Textural<br>Classification | USDA Soil Textures                                                 | Low TN<br>Transmission<br>Area | Medium TN<br>Transmission<br>Area | High TN<br>Transmission<br>Area | Very High TN<br>Transmission<br>Area |
|---------------------------------|--------------------------------------------------------------------|--------------------------------|-----------------------------------|---------------------------------|--------------------------------------|
| Sandy                           | Sand, Loamy Sand,                                                  | 1.1 kg/cap/yr                  | 1.7 kg/cap/yr                     | 2.3 kg/cap/yr                   | 2.7 kg/cap/yr                        |
|                                 | Sandy Loam, Loam                                                   | (-31%)                         | (6%)                              | (44%)                           | (69%)                                |
| Loamy                           | Silt Ioam, Clay Loam,<br>Sandy Clay Loam, Silty<br>Clay Loam, Silt | 0.8 kg/cap/yr<br>(-50%)        | 1.3 kg/cap/yr<br>(-19%)           | 1.8 kg/cap/yr<br>(13%)          | 2.1 kg/cap/yr<br>(31%)               |
| Clayey                          | Sandy Clay, Silty Clay,                                            | 0.6 kg/cap/yr                  | 0.9 kg/cap/yr                     | 1.3 kg/cap/yr                   | 1.5 kg/cap/yr                        |
|                                 | Clay                                                               | (-63%)                         | (-44%)                            | (-19%)                          | (-6%)                                |

Represents delivery to Zone 4 (additional removal possible) Change from current CBP load (1.6 kg/cap/yr) in parentheses

## **Stakeholder Comments and Loose Ends**

- Feedback has generally been positive
  - MDE provided the most detailed comments
- Scaling down to land/river segment
  - Dealing with different jurisdictional reporting scales
  - Overlaying census data, sewer service, and soil/hydrogeomorphic data
- Addressing BMPs/credits
- SPARROW run writeup
- Zone 4 appendix

## **MDE Technical Comments**

- Method of characterizing Zone 1 texture
  - SSURGO aggregated texture. Can this be verified with local onsite wastewater specialists?
- Scale at which recommendations apply
  - Land/river segment average should not be used to infer performance of individual systems
- Zone 3 attenuation relationship with distance
  - Can it be combined with hydrogeomorphic approach?