Animal Waste Management Systems Expert Panel

Preliminary Report

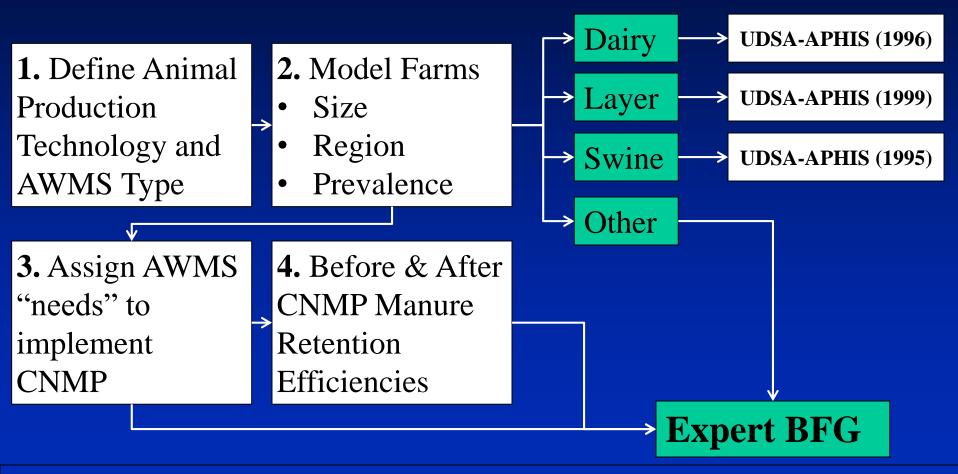
06/16/2016

Panel Composition

Shawn Hawkins, PhD, P.E.	Panel Chair, Animal Waste Management Specialist University of Tennessee
Peter Vanderstapen, P.E.	Pennsylvania Assistant State Engineer
	USDA NRCS
Doug Hamilton, PhD, P.E.	Animal Waste Management Specialist
	Oklahoma State University
Mark Risse, PhD, P.E.	Director of Marine Outreach
	University of Georgia
Jonathon Movle, PhD	Poultry Extension Specialist
	University of Maryland
Bridgett McIntosh, PhD	Equine Extension Specialist
	University of Virginia
Mark Dubin	Chesapeake Bay Agricultural Technical Coordinator
	University of Maryland
Matt Johnston, PhD	Chesapeake Bay Program Non-Point Source Analyst University of Maryland

Panel Topic

- Animal Waste Management System (AWMS)
 - "practices designed for proper handling, storage, and utilization of wastes generated from confined animal operations"
 - CBP Watershed Model component
 - Baseline manure nutrient losses from "improper storage and handling" (Solids – Liquid)
 - AWMS BMP is applied to reduce the baseline loss
- An AWMS is <u>NOT</u> simply a storage facility



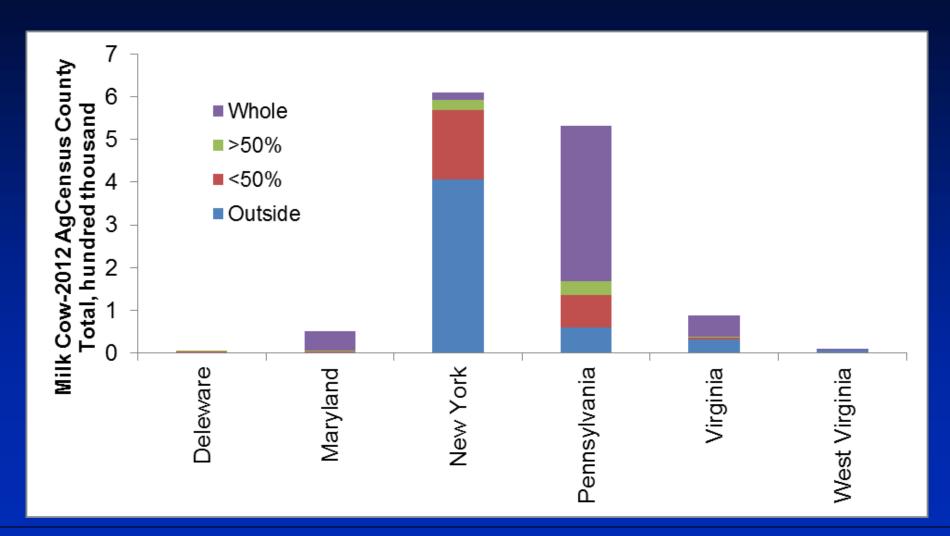
Suggested References

- USDA NRCS: Chapter 11, AWMFH, Waste Utilization (only Table 11-5 is useful)
 - USDA NRCS: Chapter 9, AWMFH, AWMS
- USDA NRCS Table B3: "Costs Associated with Development and Implementation of Comprehensive Nutrient Management Plans. Part I – Nutrient Management, Land Treatment, Manure and Wastewater Handling and Storage, and Recordkeeping"

CNMP "Needs" for Manure and Wastewater Storage

Model Dairy AWMSs

Model farms "derived" from 1996 USDA-APHIS survey of 2,542 dairies in 20 states (PA & NY)


- #1 Essentially no storage (frequent spreading)
- #2 Solids storage, no liquid storage (assumed to be "typically outside")
- #3 Liquid-Slurry storage, deep pit or above ground tank (no earthen storage), some solids storage (spreading > monthly)
- #4 Liquid storage in earthen impoundments or "lagoons", some solids storage, (spreading > monthly)

Model Dairy Sizes

- < 35 USDA Animal Units
 - Not a part of the survey
 - #1 model farm only
- 35-135 AU
 - All model farms
- 135-270 AU
 - All model farms
- > 270 AU
 - #2 and #3 model farms only

Farm Cian	Lanca	aster	Frai	ıklin	All Others		
Farm Size	# cows	%	# cows	%	# cows	%	
1-9	377	0%	62	0%	738	0%	
10-19	205	0%	132	0%	1257	0%	
20-49	33936	10%	2217	1%	29548	9%	
50-99	43449	13%	12279	4%	69291	20%	
100-199	11784	3%	16067	5%	39825	12%	
200-499	5474	2%	10158	3%	28172	8%	
500+	15580	5%	5489	2%	16696	5%	
Grand Total	110,805	32%	46,404	14%	185,527	54%	

Dairy Recoverability Factors

Cost Associated with Do	evelop	<mark>ment ar</mark>	nd Impl	<mark>lementati</mark>	on of CN	IMPs Par	t I	
Model Farm	% of	% Manure		% N in re	covered	% P in recovered		
		Recov	vered	mar	ure	man	ure	
(PA, NY)	rarms	Before	After	Before	After	Before	After	
#1 No storage	29	45-50	50	60	60-80	80-85	80-90	
#2 Solids storage	47	50-60	75	70-80	40 -80			
#3 Liquid deep pit/slurry	7	55	75	75	75	90	90	
#4 Liquid basin/pond/lagoon	17	55-60	75	40	30			

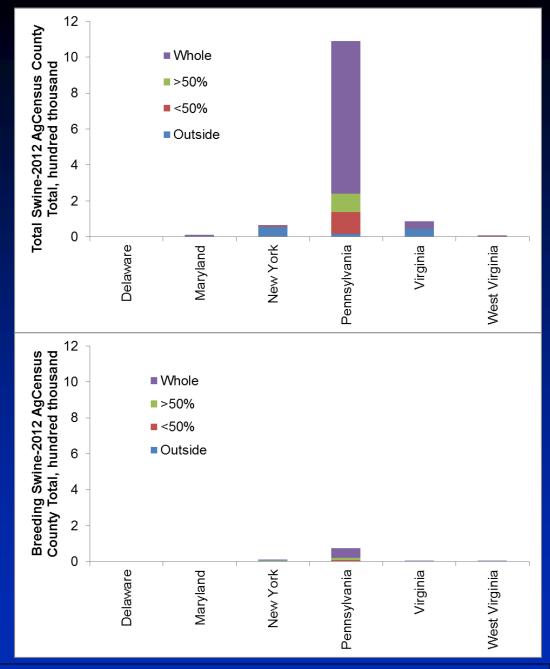
- Dairy size has limited effect on recoverability differences are shown as ranges.
- 2. Different model farms/values exist for Southeast (DE, MD, VA, WV) but those states were not a part of the survey.
- 3. Some dairies switch from solids to liquid storage which increases manure recovered but lowers %N in manure.

Chesapeake Bay Model											
	0/ of	% Ma	% Manure		ecovered	% P in recovered					
Model Farm	% of	Recovered		manure		manure					
	rarms	Before	After	Before	After	Before	After				
None used	100	55.3	67.75	?	?	?	?				

Basis for Nutrient Retention

	Model Farm		Farm "Needs" to Implement CN	IMD	% recovered					d
	louel Failii		rariii Neeus to Implement Ch	IMI	В	efo	re	P	Afte	r
Size	AWMS	%	Conservation Practice Standard	%	М	N	Р	M	N	Р
			558: Roof runoff management	80						
			362: Earth berm, underground outlet	50						
No storage	29	634: Solids Collection	10	45	60	80	50	60	80	
			313: Solids Storage	100						
			635: Liquid Treatment	65						
			558: Roof runoff management	80						
	Solids storage	47	362: Earth berm, underground outlet	50	60	80 9	۵n	75	QΛ	OΩ
	Solius storage	7/	634: Solids Collection	10	00		90	/)	00	90
35-135			313: Solids Storage	20						
22-T22	Liquid slurry	lurry	558: Roof runoff management	40	EE					5 90
	storage pit or	7	362: Earth berm, underground outlet	30		75	۵n	75	75	
	• .	/	313: Slurry storage	20	55	/ 3	90	/)	/)	90
	tank		533: Liquid transfer	30						
			558: Roof runoff management	40						
	Liquid system		362: Earth berm, underground outlet	40						
	•	17	634: Liquid collection	30 60 40 90			75 3	30	90	
	pond or lagoon		313: Liquid storage	20	20					
			533: Liquid transfer	30						
	UTITY	SILY U	r rennessee module of Agricultur							

Phase 6 Model


Draft Percent Recoverability Factors for Manure

Animal Type (Ref Doc Region)	"Before" Loss	AWMS BMP Reduction
Dairy (North Central, Northeast Milk Cows)	49	
Broilers (Northeast)	25	
Layers and Pullets (North Central and Northeast)	15	
Turkeys (East)	23.5	
Beef (PA, NY, NJ Fattened Cattle)	40	75
Other Cattle (Average Beef and Dairy)	45	
Hogs for Breeding (North Central and Northeast)	25	
Hogs for Slaughter (Northeast Pastured)	0.7	
All Horses, Sheep and Goats (Northeast Pastured)	0.59	

QUESTIONS

Swine Recoverability Factors

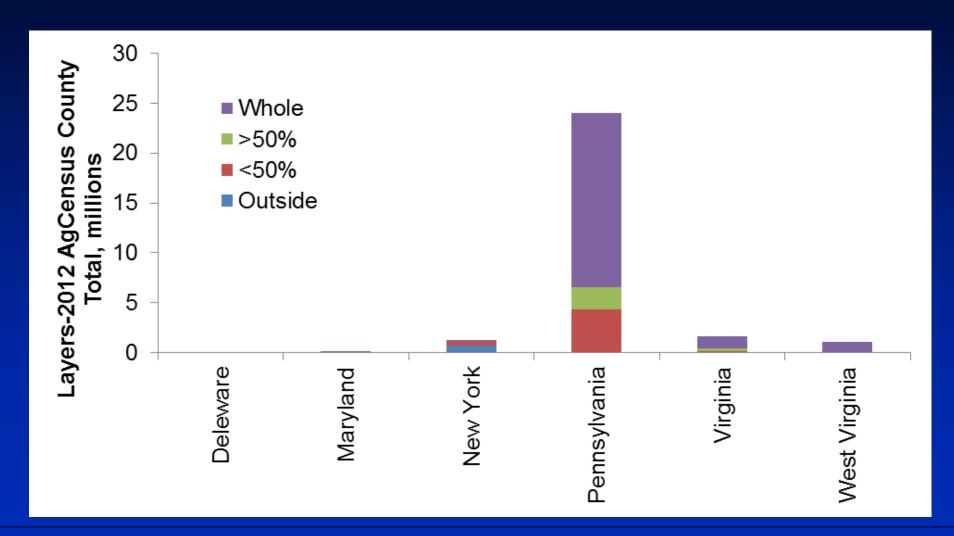
Hogs for Slaughter

Cost Associated with Development and Implementation of CNMPs Part I											
Model Farm	% of	_			% N in recovered % P in recover						
(DE, MD, PA, NY , VA, WV)	Farms	Reco	vered	manure Before After		manure					
(Midwest, NE)	i aiiiis	Before	After	Before	After	Before	After				
#1 Confined, liquid, lagoon	6	85	97	25		85					
#2 Confined, slurry, no lagoon	53	80	97	8	0	90					
#3 Building/outside, liquid	14	70	95	75		90					
#4 Building/outside, solid	27	75	90	7	0	8	0				

- #3 and #4 should be excluded for CBW?
- Farm size has no effect on recoverability.

Chesapeake Bay Model											
	0/ of	% Manure		% N in re	ecovered	l% P in recovered					
Model Farm	% of	Recovered		manure		manure					
	Farms	Before	After	Before	After	Before	After				
None used	100	77.5	94.83	?	?	?	?				

Swine Recoverability Factors


Hogs for Breeding

Cost Associated with Development and Implementation of CNMPs Part I											
Model Farm	% of	_	_			% P in recovered					
(DE MD DA NY VA W/V)	Recovere		vered	man	ure	manure					
(DE, MD, PA, NY, VA, WV)	i aiiiis	Before	After	Before	After	Before	After				
#1 Confined, liquid, lagoon	6	85	97	25		85					
#2 Confined, slurry, no lagoon	53	80	97	80		90					
#4 Building/outside, solid	27	75	90	7	0	80					

Farms with < 35 AU are not represented in this table; use pasture/lot. Otherwise, farm size has no effect on recoverability for the model farms. Values are identical to Hogs for Slaughter.

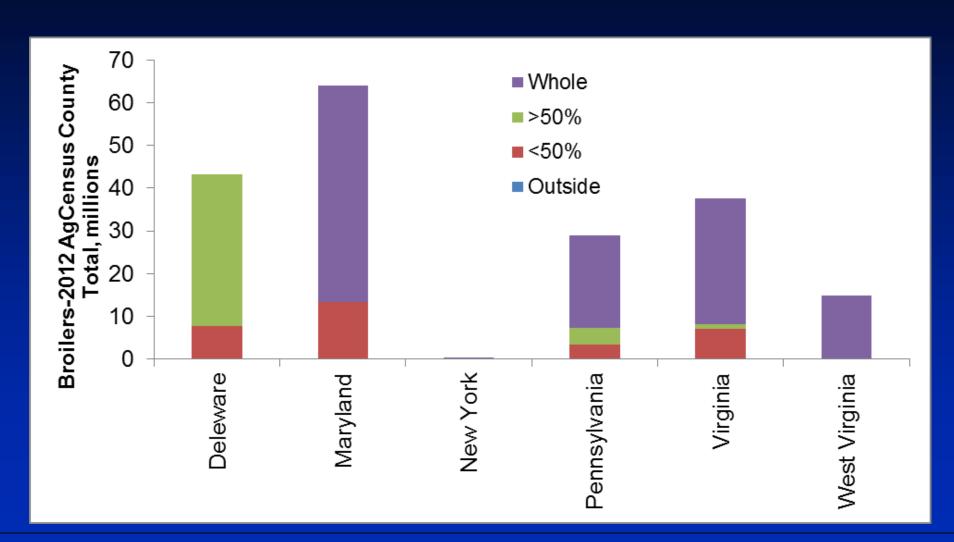
Chesapeake Bay Model											
	0/ - 6	T Recovered		% N in re	ecovered	% P in recovered					
Model Farm	% of			manure		manure					
	Farms	Before	After	Before	After	Before	After				
None used	100	79.8	96.02	?	?	?	?				

Layer Recoverability Factors

Cost Associated with Development and Implementation of CNMPs Part I											
Model Farm (DE, MD, PA, NY , VA, WV)	% of	% ∩t		nure % N in recover		d% P in recovered manure					
	Farms	Before	After	Before	After	Before	After				
#1a High rise, ground level pit	55	80		70		95					
#1b Shallow pit, ground level	25	85	95	85		90					
#3 Manure belt	20	85		70		95					

^{1.} Model farms were "derived" from a 1999 USDA, APHIS survey of 526 layer farms in 15 states.

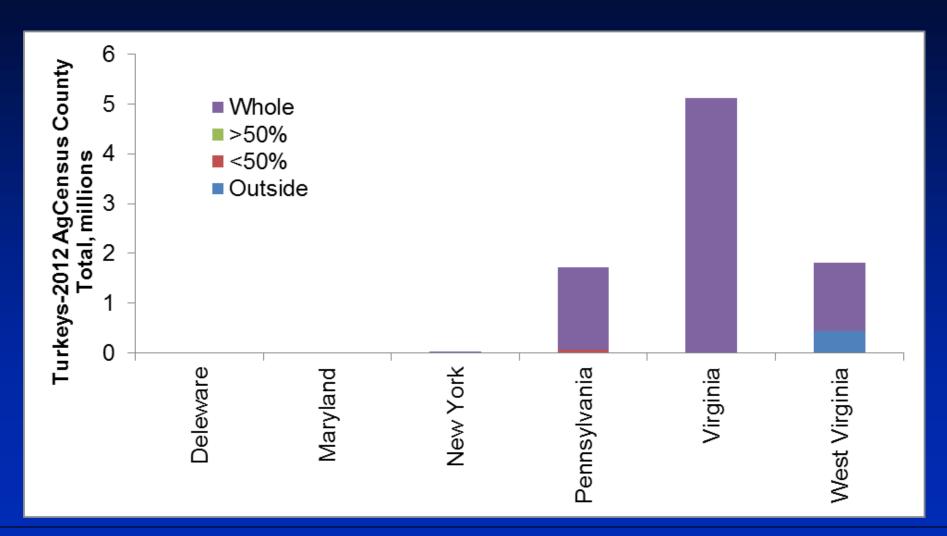
Chesapeake Bay Model										
	0/ of	% of Recovered		% N in recovered % P in recover						
Model Farm				manure		manure				
	Farms	Before	After	Before	After	Before	After			
None used	100	85	95	?	?	?	?			


Pullet Recoverability Factors

Cost Associated with Development and Implementation of CNMPs Part I									
Model Farm	0/ 04	% Ma	% Manure		covered	% P in recovered			
Model Farm	% of	Recovered		manure		manure			
(DE, MD, PA, NT, VA, WV)	Farms	Before	After	Before	After	Before	After		
Layer-type confinement house	100	85	95	70		90			
(DE, MD, PA, NY, VA, WV) Layer-type confinement house		Farms Before A			After	Before			

^{1.} No model farm basis – those with and without storage are unknown?

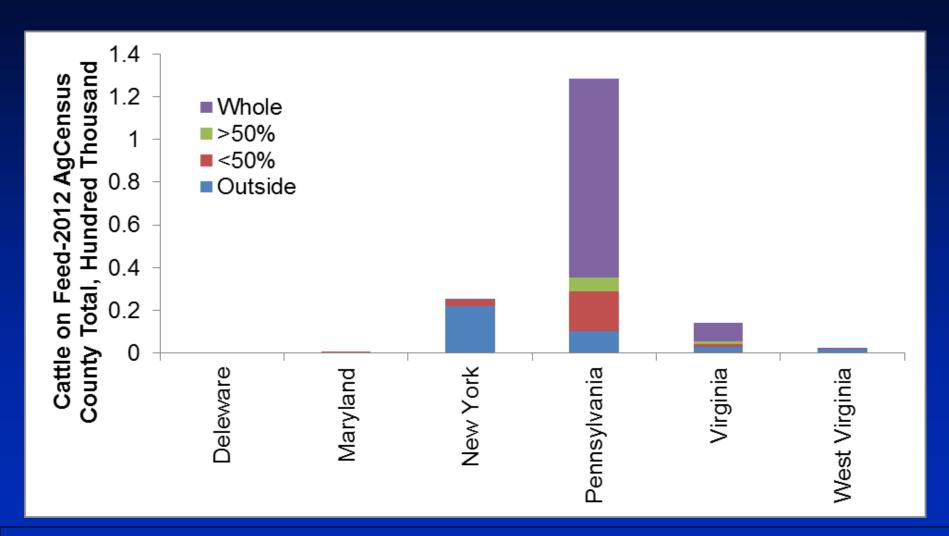
	Chesapeake Bay Model											
	0/ of	% Ma	% Manure		ecovered	% P in recovered						
Model Farm	% of	Recovered		manure		manure						
	Farms	Before	After	Before	After	Before	After					
None used	100	85	95	?	?	?	?					


Broiler Recoverability Factors

Cost Associated with Development and Implementation of CNMPs Part I											
	% of	% Ma	% Manure		% N in recovered		% P in recovered				
Model Farm		Recovered		manure		manure					
	Farms	Before	After	Before	After	Before	After				
Northeast (PA, NY)	100	75	00	70		95					
Southeast (DE, MD, VA, WV)	100	85	98	60		9	.				

^{1.} No model farm basis – those with and without storage are unknown?

Chesapeake Bay Model											
Model Farm	0/ of	Recovered		% N in re	ecovered	% P in recovered					
	% of			manure		manure					
	Farms	Before	After	Before	After	Before	After				
None used	100	75	98	?	?	?	?				


Turkey Recoverability Factors

Cost Associated with De	evelop	ment ar	nd Impl	<mark>lementati</mark>	on of CN	IMPs Par	t I
Model Farm	% of	% Manure		% N in re	covered	% P in recovered	
Model Farm	% 01	Recovered		manure		manure	
East (DE, MD, PA, NY, VA, WV)	rarms	Before	After	Before	After	Before	After
#1 Confinement Houses	90	80	98	60		95	
#2 Turkey Ranch	10	45	50	0	U	75	

1. No model farm basis – those with and without storage are unknown? Turkey ranches are now very rare?

Chesapeake Ba	Chesapeake Bay Model (refers to North Central area?)											
Model Farm	0/ of	Recovered		% N in re	ecovered	% P in recovered						
	% of			manure		manure						
	Farms	Before	After	Before	After	Before	After					
None used	100	76.5	93.2	?	?	?	?					

Fattened Cattle Recoverability Factors

Cost Associated with Development and Implementation of CNMPs Part I									
Model Farm	% of				covered	% P in recovered			
	% of Farms	KACAWATAA		manure		manure			
(PA, NY, NY)		Before	After	Before	After	Before	After		
Feedlot scrape, stack	100	60	75	70		85			

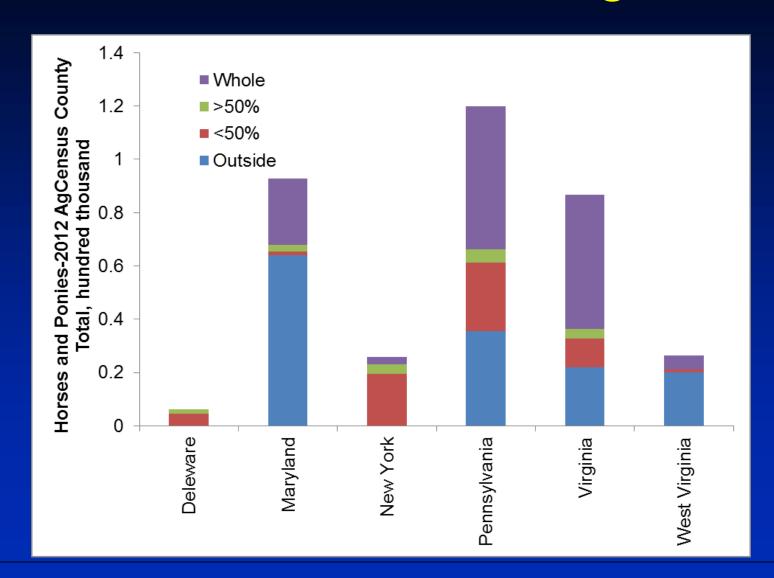
No model farm basis – those with and without storage are unknown?

Chesapeake Bay Model											
Model Farm	0/ of	Recovered		% N in re	ecovered	% P in recovered					
	% of			manure		manure					
	Farms	Before	After	Before	After	Before	After				
None used	100	60	75	?	?	?	?				

Other Cattle Recoverability Factors

Chesapeake Bay Model										
	% of Farms	% Manure		% N in recovered % P in recover						
Model Farm		Recovered		manure		manure				
		Before	After	Before	After	Before	After			
None used	100	57.65	71.375	?	?	?	?			
		-								

Average of dairy and beef.


Confined Heifer Recoverability Factors

Cost Associated with Do	evelop	ment ar	nd Imp	<mark>lementati</mark>	on of CN	IMPs Par	t I
Model Farm	% of	Pocos	Pocovorod		covered ure	% P in recovered manure	
	Farms	Before	After	Before	After	Before	After
#1 Confined, bedded manure	70	65	85	70		85	
#2 Feedlot scrap, stack (PA,NY)	30	60	80	6	65		0
		_					
#2 Feedlot scrap, stack (VA)	100	65	80	5	0	8	0

- 1. No model farm basis.
- Two different regions with different recoverability factors occur within CBW.
- This data used also for Horses, Sheep/Lambs, and Goats.

Chesapeake Bay Model											
	0/ of	Recovered		% N in re	ecovered	% P in recovered					
Model Farm	% of			manure		manure					
	Farms	Before	After	Before	After	Before	After				
None used	100	62.5	82.5	?	?	?	?				

Equine/small ruminant

- "Recoverable manure ... was estimated using manure recoverability factors and nutrient recovery parameters for grass-fed beef cattle"
 - These factors do not apply to stabled horses
 - Pastured animals are excluded from our consideration?

