

Panel Membership

- 6 voting members
 - 3 recognized panel topic experts: Biological/Biosystems [Agricultural] Engineers
 - 3 recognized experts in environmental and water quality-related issues
 - USDA representative familiar with USDA NRCS Conservation Practice Standards
 - Knowledge of AWMS dairy & poultry required; swine, beef, & equine preferred
- 2 non-voting members from Watershed Technical Workgroup and Chesapeake Bay Program modeling team + Regulator Representative
 - Knowledge of how BMPs are tracked and reported
 - Chesapeake Bay Program modeling tools
- All members certified with no Conflicts of Interest

Panel roster

Shawn Hawkins, Ph.D., P.E.	Panel Chair, Animal Waste Management Specialist						
	University of Tennessee						
Doug Hamilton, Ph.D., P.E.	Animal Waste Management Specialist						
	Oklahoma State University						
Jonathan Moyle, Ph.D.	Poultry Extension Specialist						
	University of Maryland Extension						
Pete Vanderstappen, P.E.	Pennsylvania Assistant State Engineer						
	USDA-NRCS-Pennsylvania						
Mark Risse, Ph.D.	Director of Marine Outreach						
	University of Georgia						
Bridgett McIntosh, Ph.D.	Equine Extension Specialist						
	Virginia Tech						
Matt Johnston	University of Maryland, CBPO (Modeling Team Rep)						
Greg Albrecht	NYS Dept. of Ag and Markets (WTG Rep)						
Ashley Toy	EPA Region 3 (Regulatory Representative)						
Mark Dubin	University of Maryland Extension, CBPO, AgWG coordinator						
Jeremy Hanson	Virginia Tech, CBPO, Panel Coordinator						

Panel Charge

- Review Phase 5.3.2 AWMS BMP:
 - Review definition
 - Consider different loss and recoverability factors for specific animal species
 - Definition and effectiveness of Poultry Heavy Use Area Concrete Pads
 - No consideration of treatment practices, only collection, handling and storage

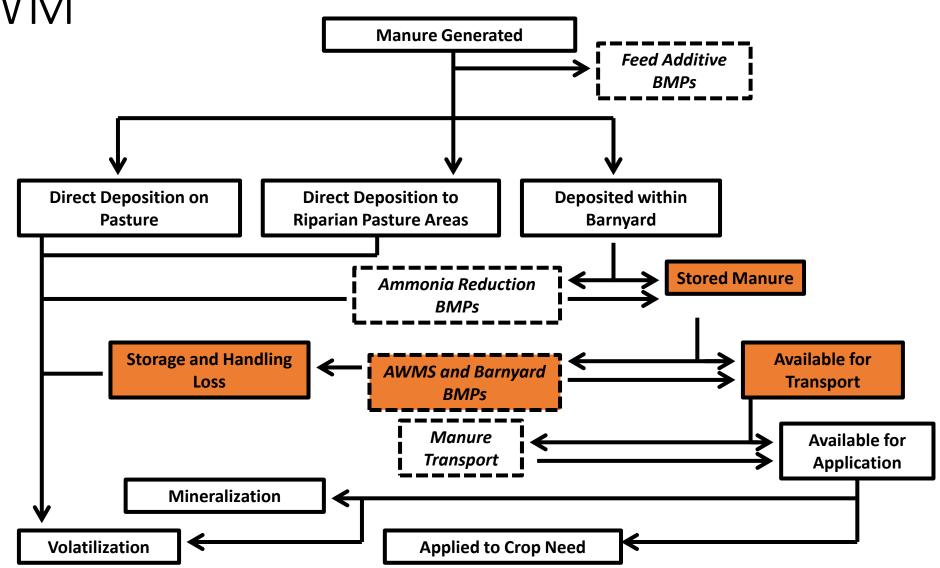
• References:

- Table 11-5, USDA-NRCS Agricultural Waste Management Field Handbook Chapter 11, Waste Utilization
- Table B-3, USDA-NRCS-Costs Associated With Development and Implementation of Comprehensive Nutrient Management Plans. Part I— Nutrient Management, Land Treatment, Manure and Wastewater Handling and Storage, and Recordkeeping

Timeline

- Convened for first call: March 2016
- Public stakeholder meeting: April 2016
- Preliminary recommendations approved by AgWG for beta-4:
 September 2016
- Draft report available December 6th, comments requested by COB December 12th
- Draft report approved by AgWG + WTWG December 16
- Seek approval by WQGIT, December 19

Phase 6 AWMS definition


- September preliminary report had explicit definition, but it was not adapted into Dec. 5th draft. We've added it to Exec. Summary, Chapter 9, and Appendix A.
 - "...for annual BMP progress reporting in Phase 6, an Animal Waste
 Management System is any structure designed for collection, transfer, and
 storage of wastes generated from the confined portion of animal operations
 and complies with NRCS 313 (Waste Storage Facility) or NRCS 359 (Waste
 Treatment Lagoon) practice standards. Reduced storage and handling loss is
 conserved in the manure and available for land application or export from the
 farm."
- Credit duration in the model: 15 years (same as Phase 5.3.2)

Important Panel Deliberations

 AWMS is a much broader system than simply USDA NRCS Conservation Practice Standard 313/359

- The panel focused on physical manure recoverability rather than nutrient loss
 - Atmospheric ammonia losses are not directly affected by AWMS BMP
 - Ammonia losses are modeled with an atmospheric management BMP

Figure 2. Manure application processes in P6 CBWM


Poultry Heavy Use Area Concrete Pads

- "Concrete pads at the primary doors of poultry housing facilities to reduce environmental litter handling losses ... "
- Another use is to protect soil from damage during bird harvest and litter removal
- Not a BMP in Phase 5.3.2 model
- Manure recovered is < 0.1% of total removed
- EP does not recommend as model BMP

Panel Research – Dairy Farm Example

- A model farm concept was adopted to set manure recoverability
- Research defined location and size of farm for each animal type

Farm Size (# of dairy cows)			1987 Ag Census Data						
	Lanca	aster	Fran	nklin	Stat	tewide	Statewide		
	#	%	#	%	#	%	#	%	
1-9	377	0	62	0	1,177	0	5,680	1	
10-19	205	0	132	0	1,594	0	15,733	2	
20-49	33,936	10	2,217	1	65,701	19	235,735	35	
50-99	43,449	13	12,279	4	125,019	36	266,083	40	
100-199	11,784	3	16,067	5	67,676	20	116,793	17	
200-499	5,474	2	10,158	3	43,804	13	28,844	4	
500+	15,580	5	5,489	2	37,765	11	4,686	1	
Grand Total	110,805	32	46,404	14	342,736	100	673,054	100	

Model Farm Concept – Dairy Example

- "Before" Circa 1985 (representing all dairy farms)
 - Located in Lancaster County, herd size 20 99
 - Tiestall barn, gutter cleaner or freestall barn with alley scrapping
 - Direct loading to a manure spreader or into short-term storage
 - Open lots without proper curbing and drainage
 - Pasturing during permissible times year, significant nutrition from pasture
- "After" Circa 2016 (representing only "small" dairy farms)
 - Located in Lancaster County, herd size 20 199
 - Tiestall barn, gutter cleaner or freestall with alley scrapping
 - Direct loading to a manure spreader or into short-term storage.
 - Open lots with proper curbing and drainage
 - Pasturing during permissible times year, significant nutrition from pasture

Expert Panel Consultations

- David Moffitt, primary reference co-author
- Bill Brown, University of Delaware Poultry Extension Specialist
- Bud Malone, University of Delaware Poultry Specialist (retired)
- Jennifer Rhodes, University of Maryland Extension Educator
- Tara Felix, Penn State University Extension Beef Specialist

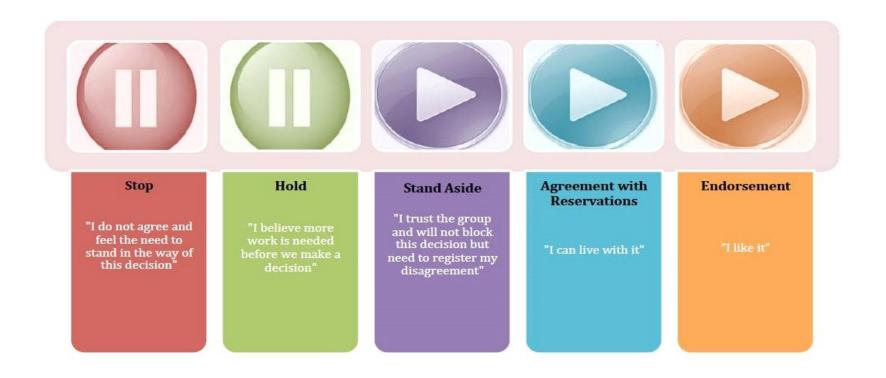
	Robert L. Kellogg <i>et al.</i> (2000)									USDA Natural Resources		RECOMMENDED	
	Small Farm Head Count	Large Farm Head Count	Confined Manure % Recoverability	Overall manure Recoverability						Conservation Service (2003) ^a		RECOVERABILITY FACTORS	
				DE	MD	NY	PA	VA	wv	Before CNMP	After CNMP	Before AWMS BMP	After AWMS BMP
Beef cows	20	None	98	10	10	10	5	10	0	-	-	-	-
Confined Heifers	20	None	98	70	70	70	65	70	70	60-65	80-85	60	99
Fattened cattle	15	200	90	85	85	85	85	85	98	60	75	60	99
Milk cows & calves	20	None	98	80	80	80	80	60	80	45-60	50-75	75	95
Hogs, breeding	10	50	95	80	80	80	80	80	75	80	97	90	99
Hogs, slaughter	50	450	95	80	80	80	80	80	75	80	97	90	99
Chickens, layers	50	400	98	90	90	90	95	98	98	85	95	90	99
Chickens, pullets	25	400	98	90	90	90	95	98	98	85	95	90	99
Chickens, broilers	100	400	98	95	95	95	95	98	98	85	98	90	99
Turkeys, breeding	50	2,000	98	95	95	95	95	98	98	80	98	90	99
Turkeys, slaughter	50	5,000	98	95	95	95	95	98	98	6U			
Equine, small ruminants												95	98

^a Continuous loafing / grazing (0% recoverable).

^b Continuous confinement with confined manure recoverability.

^c Confined Heifers – Northeast (RF#1 - RF#2); Fattened Cattle – PA, NY, NJ, > 35 AU/farm (AF#1: feedlot scrape, stack); Milk cows –Northeast, > 35 AU/farm (RF#1-RF#4); Breeding Hogs – Northcentral, Northeast > 35 AU/farm (RF#2: confinement, liquid, no lagoon); Hogs for Slaughter – Northcentral, Northeast, > 35 AU/farm (RF#2: confinement, liquid, no lagoon); Layers – North Central & Northeast, > 35 AU/farm (RF#1 and RF#3); Pullets – North Central & Northeast, (RF#1 layer type confinement house); Broilers – Southeast, (RF#1: confinement, standard broiler house); Turkeys – East, <35 AU/farm (RF#1: confinement house).

Overview of comments received


- Comments are being addressed with clarifying additions or edits
 - CD DOEE
 - Beth McGee, CBF
 - EPA Water Permits Division
 - PA DEP
 - MDA
- No comments required substantive changes, i.e. changes to key recommended values for AWMS manure recoverability.
- More minor editing is expected to improve grammar, formatting, picture selection. This will occur post-WQGIT approval.

Timeline for CBP-approval

- December 12: Comments received by COB
- December 16: AgWG + WTWG approval
- December 19: Seek WQGIT approval

Consensus Continuum

Questions or comments?

Jeremy Hanson, Panel Coordinator

jchanson@vt.edu

410-267-5753