

Impacts of Climate Change and Emissions Reductions on Atmospheric Nitrogen Loading to the Chesapeake Bay

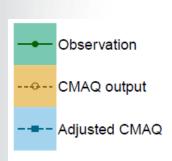
Jesse O. Bash, Chris G. Nolte, Kristen Foley, Tanya L. Spero, Ellen J. Cooter

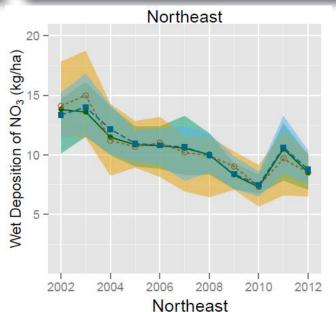
Outline

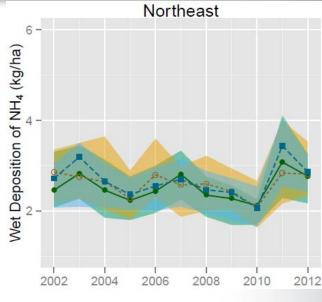
- Review of the WRF-CMAQ modeling system
 - Isolating changes due to emissions and climate
- Trends in N deposition to Chesapeake Bay Watershed
 - Modeled and observed deposition and atmospheric concentrations
- Changes in N deposition due to climate
 - RCP 4.5, 6.0, 8.5 scenarios
- Future scenarios integrating emissions, land use, and climate change
 - Preliminary results
- Future outlook and conclusions

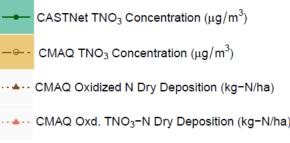
The WRF-CMAQ modeling system

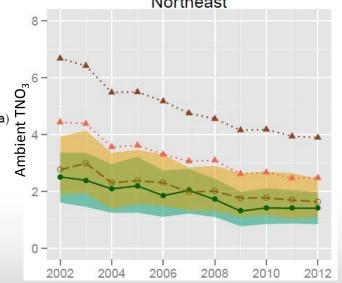
- "One atmosphere" modeling system
 - Chemistry and physics of pollutant transport and fate solved simultaneously
 - Options to Couple agricultural cropping management and soil biogeochemical processes using EPIC model
 - Dynamic air-surface exchange of trace gases and aerosols
 - NH₃ emissions from fertilizer application
 - Biogenic VOC and dust emissions
- WRF climate dynamic downscaling
 - Spectrally nudged to CESM climate simulations
- Working towards a "One biosphere" model
 - Coupled energy system, agricultural, meteorological, air and water quality models

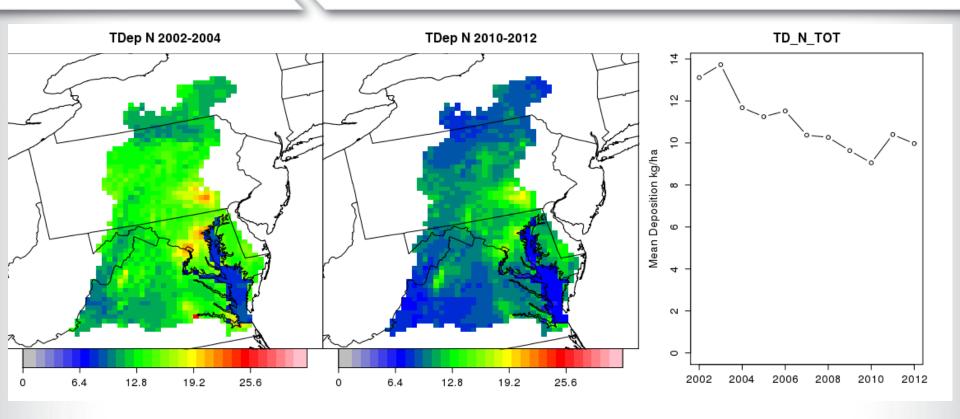



Emission reduction simulations


- Simulations of emissions reductions from 2002-2012
- WRF-CMAQ-EPIC simulations
 - Simulates year specific meteorology, chemistry and agricultural cropping practices
- WRF meteorology incorporated observational assimilation
 - Best estimate of retrospective meteorology
- Used nearest year EPA National Emission Inventory emissions
 - Updated with observations from Continuous Emissions Monitoring Systems for point sources
 - Updated meteorological dependent emissions

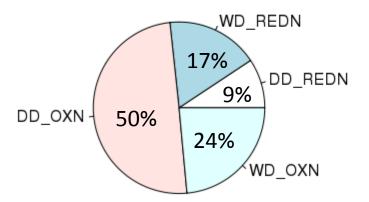



Model Evaluation

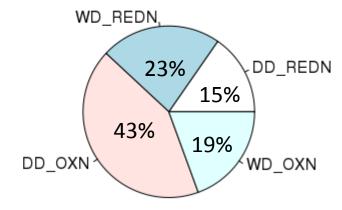


Captures the trends and magnitude in deposition and ambient concentrations well - (approximately 14% and 17% error for NO₃ and NH₄ respectively)

Total Nitrogen Deposition


- 24% reduction in total nitrogen atmospheric deposition
- Clear benefits from air-quality standards

N Deposition Budget


2002-2004

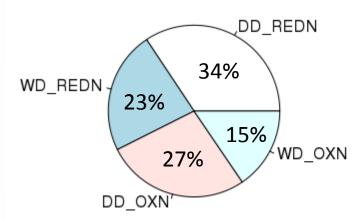
Mean: 13 kg N/ha

2010-2012

Mean: 10 kg N/ha

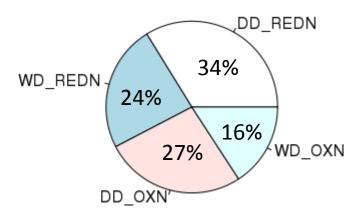
- Overall N deposition has decreased due to air quality standards
- Ratio of oxidized to reduced N deposition is changing
- Oxidized N deposition is decreasing
 - In response to controls on combustion sources
- Reduced N deposition is increasing
 - In response to changes in atmospheric composition and a lack of controls on NH₃ emissions

Climate scenario simulations


- Based on Community Earth System Model v1.0 (CESM)
 GCM simulations
- Dynamically downscaled using Weather Research and Forecasting (WRF) v3.4.1 model using spectral nudging
 - Preserves large scale atmospheric motions from CESM and allows
 WRF to provide the more detailed regional scale dynamics
- Air quality and deposition simulated using climate conditions for 2000 and 2030
- Emissions and boundary conditions based on 2030 projections for both 2000 and 2030 scenarios
 - Used to isolate the impact that climate has on air-quality and deposition

N Deposition Budget

1995-2005


Mean: 8 kg N/ha

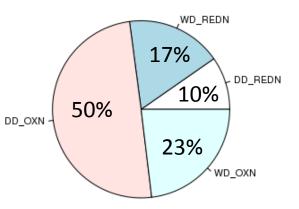
- Climate downscaling in WRF requires different configuration of CMAQ
 - Likely overestimates NH₃ dry deposition
- All Representative Concentration Pathways (RPC) scenarios result in increased N deposition
 - Deposition increase closely mirrors the air quality changes

RCP 6.0 2025-2035

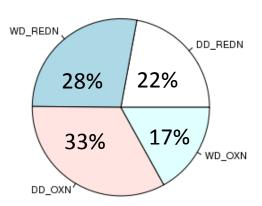
Mean: 9 kg N/ha

Scenario	Precipitation Change (%)	N Deposition Change (%)
RCP 4.5	+3.9%	+2.2%
RCP 6.0	+8.9%	+2.9%
RCP 8.5	+1.0%	+3.3%

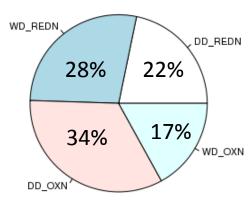
Future Emission Scenarios


- WRF-CMAQ-EPIC simulations
 - 2002 following retrospective analysis
 - 2022 with reductions on the books
 - 2022 with reductions on the books and with additional corn based biofuels
- Emissions grown using the MARKet Allocation (MARKAL) energy system model coupled to the Center for Agricultural and Rural Development (CARD) to develop 2022 and 2022 ethanol scenarios
 - MARKAL/CARD simulations combined with EPIC provide feasible future agricultural and biofuel futures
 - Constrained by economic and biological productivity factors
- 2002 WRF meteorology was used to isolate emission changes

N Deposition Budget


2002

Mean: 13.2 kg N/ha


2022 Base

Mean: 8.7 kg N/ha

2022 Biofuels

Mean: 8.8 kg N/ha

- Deposition changes are dominated by 2002-2022 emission reductions
- Additional corn production for biofuels increased N deposition by 0.7%
 - Largely responds to slightly higher NOx emissions from mobile sources
 - Impacts are likely larger in areas where agricultural production changed more.

Conclusions

- The CMAQ modeling system captures the observed deposition and ambient concentrations trends well
- Future nutrient deposition is dominated by emission reductions
 - This may change with a more climate-land use-biogeochemistry integrated model
- Oxidized nitrogen deposition primarily from combustion sources has decreased more rapidly than total N deposition
- Future reductions in NOx will likely plateau
- Reduced N (i.e. NH_x) deposition will likely represent a larger portion of the N deposition budget
- More comprehensive coupled climate, energy sector and air and water quality models are needed to better assess nutrient loading

Future Directions

- Model development work is needed to integrate future climate and emissions work
 - Primarily, land use surrogates and some meteorological dependencies
- Model development needs to incorporate future land use in future simulations
 - Current climate land use schemes are simple
 - Need dynamic vegetation and soil processes
- Developing model simulations for the Conterminous US circa 2050 that will include impact of emissions, meteorology, land use, and agriculture
 - Explore the impact of non-linear interactions between emissions and climate, e.g. N & C biogeochemistry