

Improvements in CMAQ NH₃ Emission and Deposition Processes

Jesse O. Bash¹, Ellen J. Cooter¹, Robin L. Dennis¹, John T. Walker², Daven K. Henze³, Gill-Ran Jeong³, Robert W. Pinder¹

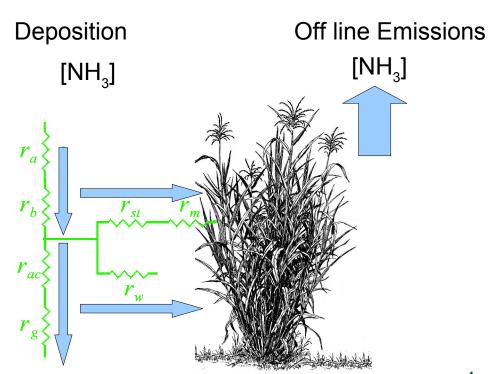
¹Atmospheric Modeling and Analysis Division, NERL, EPA ²Air Pollution Prevention and Control Division, NRMRL, EPA ³University of Colorado, Department of Mechanical Engineering

> Modeling Quarterly Review Meeting Annapolis, MD 8 January 2013

Scope of the Talk

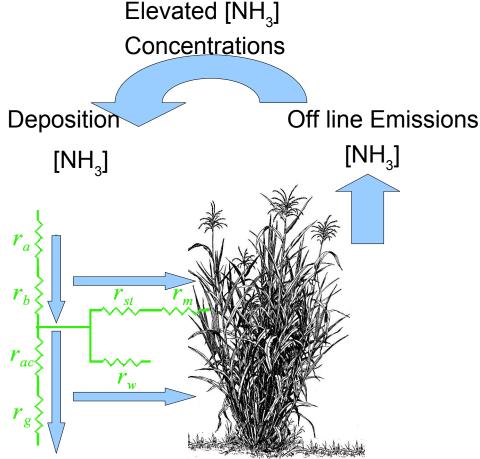
- Motivation
 - What is bidirecitonal NH3 exchange?
 - Why invest the effort?
- NH₃ bidirectional exchange in CMAQ v5.0
 - Coupled Agro-ecosystem model to the chemical transport model
 - Impact on model results
 - Concentration, deposition and emission fields
 - Evaluation against network observations
 - NH_x Wet Deposition, Inorganic aerosol and NH₃ ambient concentrations
 - Chesapeake Bay deposition budget
- Temporal NH₃ CAFO emissions (still in development)
 - Conceptual model and preliminary evaluation
- Next Steps

Reduced N in the environment


- NH₃ is the primary atmospheric base
 - -Precursor to atmospheric particulate matter formation
 - Deleterious to human respiratory and cardiovascular systems
 - Short term climate forcer
 - -NH₃ + NH₄⁺ Deposition accounts for ~35% of the total nitrogen deposition in the U.S. (Dennis et al. In Review)
 - Contributes to excess nitrogen in ecosystems
 - Surface water eutrophication and terrestrial biodiversity loss
 - Contributes to soil and surface water acidification
- NH₃ air-surface exchange is bi-directional
 - -NH₃ can be emitted (evasion) or deposited
 - Net evasion or deposition varies spatially and temporally
 - Depends on land use, environmental variables, ambient NH₃
 concentration and land management practices
 - Unidirectional dry deposition velocity concept does not represent this dynamic process

NH₃ air surface exchange

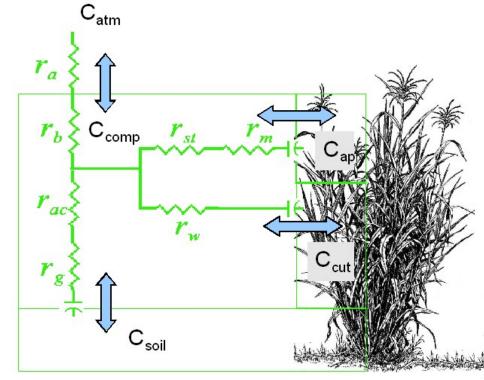
- Unidirectional exchange is used by most air-quality models
- Assumes that the subsurface concentration is zero
 - Not applicable to NH₃
 - NH₃ emissions and deposition are typically modeled separately
 - Overestimates deposition in areas where there is a large subsurface NH₃ concentration, e.g. agricultural fields.



NH₃ air surface exchange

- Unidirectional exchange is used by most air-quality models
- Assumes that the subsurface concentration is zero
 - Not applicable to NH₃
 - NH₃ emissions and deposition are typically modeled separately
 - Overestimates deposition in areas where there is a large subsurface NH₃ concentration, e.g. agricultural fields.

NH₃ air surface exchange

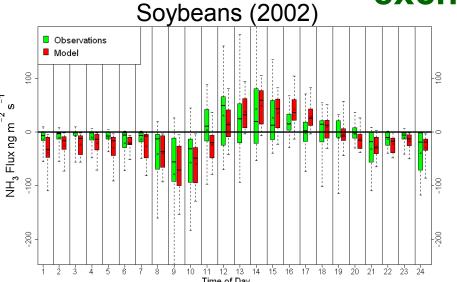


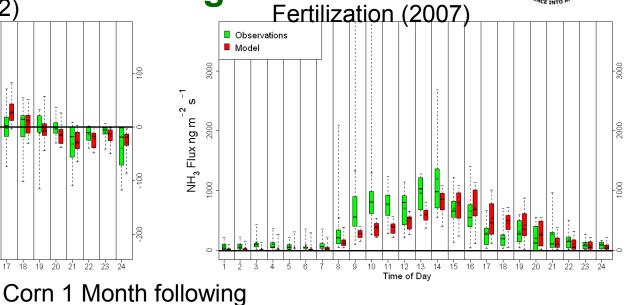
 Regional and global models generally do not parametrize bidirectional NH₃ exchange

• CMAQ Bidirectional exchange model was developed based on field scale models (Bash et al. 2012, Bash et al 2010, Cooter

et al. 2010)

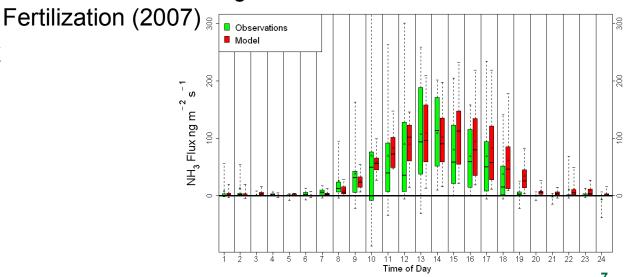
- Estimates a compensation point based on soil water solution and apoplastic NH₄⁺ and pH
 - Compensation point is an ambient concentration at which the flux is zero
- Modeled NH₃ flux evaluated in a collaborative measurement campaign (Pleim et al. in review, Walker et al. 2012)




SEPA

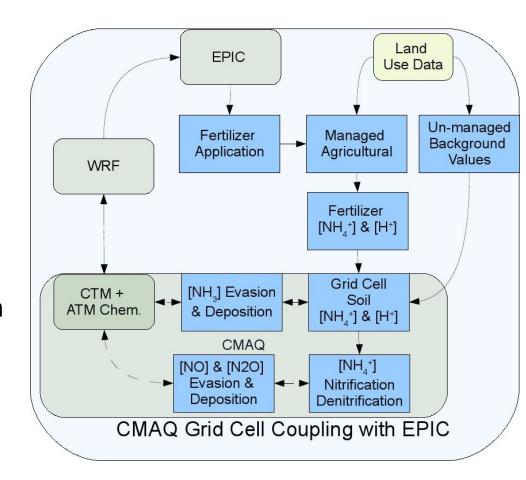
Modeled Bidirectional NH₃ air surface

United States Environmental Protection Agency

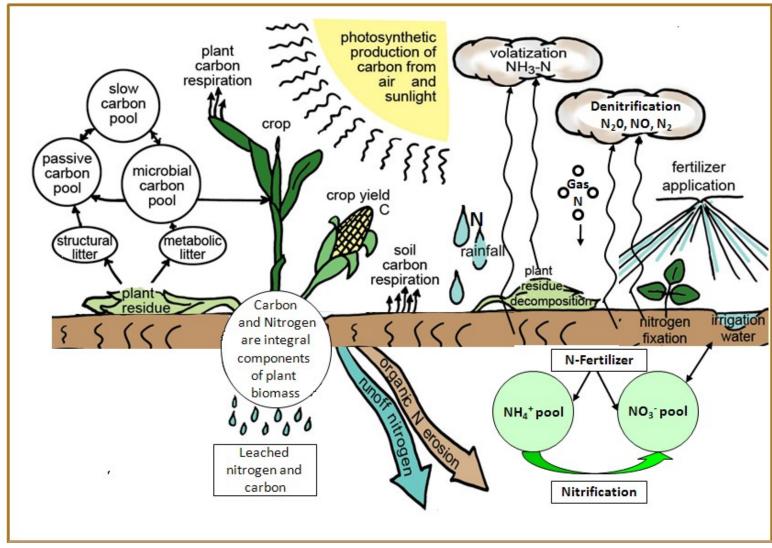

exchange Corn 1 Week following

Direction and magnitude of the flux captured well

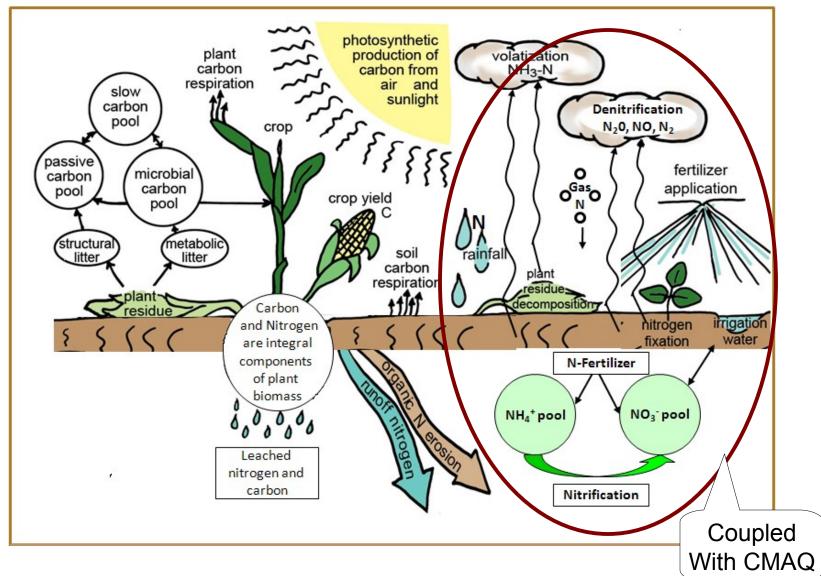
- Dynamics following fertilization captured
- Dry deposition of NH₃ is reduced



Regional Scale Application


- Agriculture activity data modeled using the USDA's Environmental Policy Integrated Climate model (EPIC) for the Continental US (Cooter et al. 2012)
- Fertilizer NH₄⁺ is applied to subgrid cell agricultural land use soil layers by crop type
- The NH₃ flux is estimated for each sub grid cell land use type
- CMAQ modeled soil NH₄⁺ in agricultural soils are updated due to the NH₃ flux and nitrification
- Aggregated fluxes are passed to the CTM

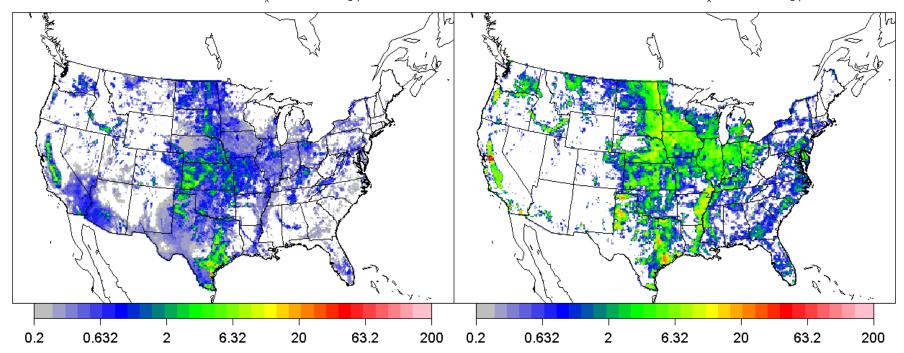
EPIC Processes



EPIC Processes

Regional Scale Simulations

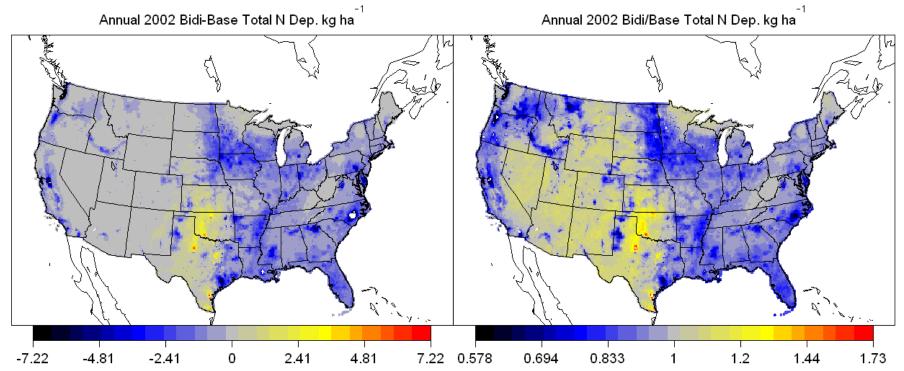
- Simulations using CAMQ v5.0.1
 - -2002 annual run evaluated against network observations
 - -July 2007 simulations (Base case only)
 - CAFO diurnal emissions evaluated against NH₃ observations
- Two model cases were simulated
 - -Base case:
 - NEI Emissions
 - No bidirectional NH₃ exchange
 - -Bidi case:
 - NEI Emissions without NH₃ evasion from agricultural cropping sectors
 - Bidirectional NH₃ exchange
 - Identical model inputs and configurations except for the NH₃
 emissions from cropping systems and bidirectional NH₃ exchange



NH₃ emissions

Annual 2002 Bidi Fertilizer NH, Emissions kg / ha

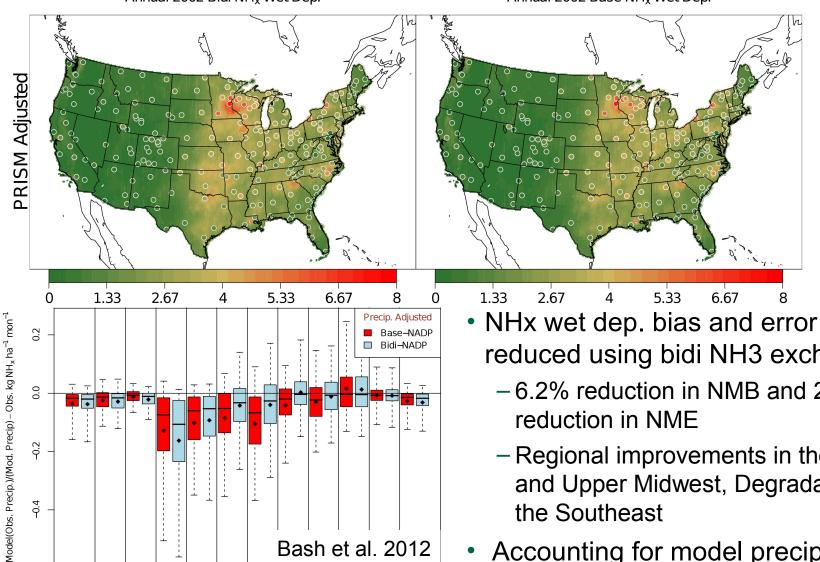
Annual 2002 NEI Fertilizer NH, Emissions kg / ha



- 66% lower fertilizer emissions (20% total reduction)
 - -30% from fertilizer and 70% from animal operations in CMU
 - -13% from fertilizer and 87% from animal operations in Bidi
 - More in line with other contemporary estimates (Gilliland et al 2006)

Total N Deposition


- 6.4% lower total N deposition to Continental US
 - Reduced NH₃ dry deposition to agricultural areas
 - -Increased NH_x wet deposition in the West and Midwest



NH, Wet Deposition

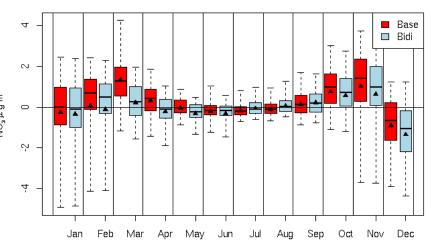
Annual 2002 Bidi NH_x Wet Dep.

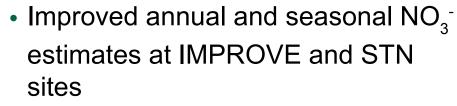
- reduced using bidi NH3 exchange
 - -6.2% reduction in NMB and 2% reduction in NME
 - Regional improvements in the West and Upper Midwest, Degradation in the Southeast
- Accounting for model precip. errors is critical

J ul

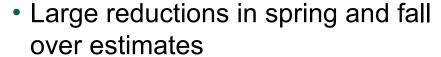
Sep

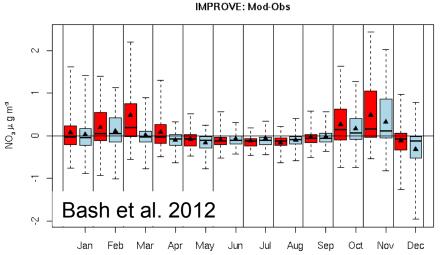
Bash et al. 2012


Oct



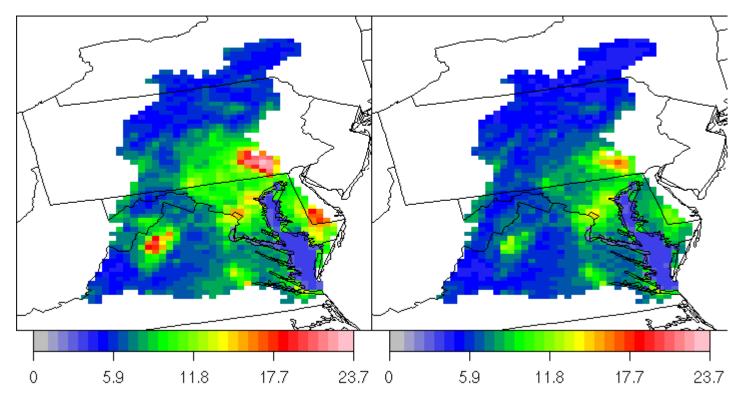
NO₃ Aerosol Concentrations





- Introduced an annual bias of -11% and increased NMB at STN sites
- 18% reduction in NMB at IMPROVE sites

- Up to 80% reduction in NMB
- Due to reduced NH₃ evasion from cool soil surfaces



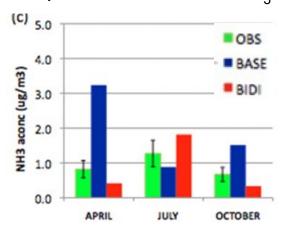
Chesapeake Bay Total N Dry Deposition

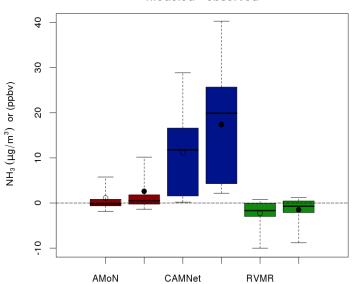
Base Total N Dry Deposition (kg/ha)

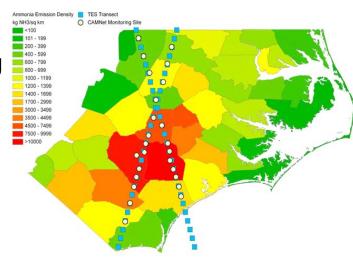
Bidi Total N Dry Deposition (kg/ha)

- 16.0% reduction in total N dry deposition
 - -3.3% increase in direct deposition to water bodies
 - -16.1% reduction in deposition to terrestrial land use
 - -19% wetlands, -15.6% developed, -13.8% forested, -20.2% agriculture

Change in Chesapeake Bay N Deposition


	Dry Deposition			Wet Deposition		
Land Use	Total N	Oxidized N	Reduced N	Total N	Oxidized N	Reduced N
Total	-16.0%	-0.7%	-46.4%	8.7%	0.9%	17.8%
Terrestrial	-16.1%	-0.8%	-46.1%	8.6%	0.8%	17.7%
Water	3.3%	0.1%	12.4	8.7%	0.9%	19.7%
Forest	-13.8%	-0.8%	-46.3%	8.8%	0.8%	18.4%
Developed	-15.6%	-0.6%	-44.3%	8.5%	0.8%	17.2%
Agriculture	-20.2%	-0.6%	-45.5%	8.1%	0.9%	16.3%
Wetlands	-19%	-0.1%	-52.7%	9.0%	0.8%	18%


2009 Ambient NH₃ Case Studies



- Fertilizer emission dominated sites
 - Improved seasonal NH₃ estimates

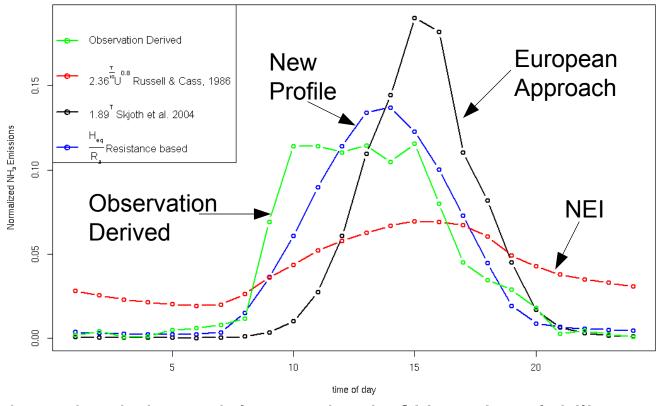
- Animal emission dominated sites
 - Degradation in NH₃ model estimates when using bidirectional exchange
 - Model biased high against two week surface and biased low against mid day satellite observations
 - Model biased 10x high against nighttime and
 10% low against daytime surface observations

Conceptual Mechanistic Model for Animal Emissions

 R_a

 $R_{\text{management}}$

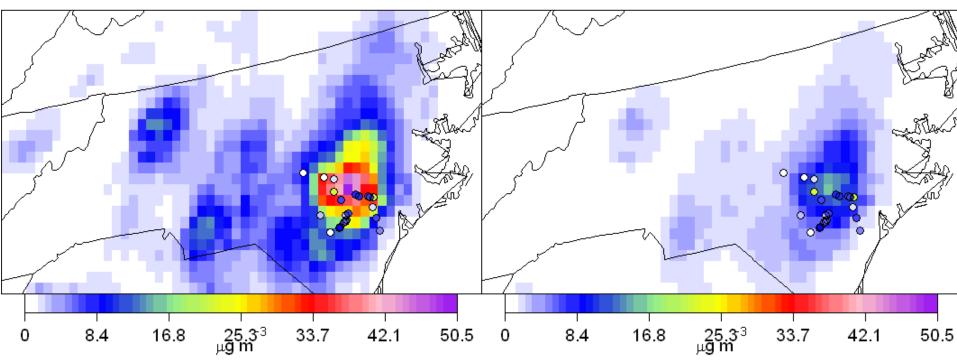
- Use a resistance model approach
- Assume NH₃ at the source is >> that in atmosphere
- Assume NH₃ emissions originate from an aqueous pool
- Key parameters are atmospheric resistance and NH₄ (aq) ← NH_{3(g)} equilibrium


Urea -> $NH_{4}^{+}_{(aq)}$ -> $NH_{3(g)}$

Surface NH₃ pool

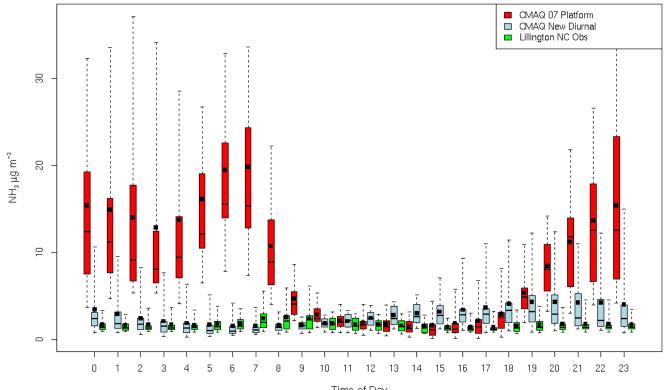
Improved Diurnal NH₃ Profile

- Semi-mechanistic model comprised of Henry's solubility equilibria and aerodynamic resistance
 - Used to temporally reallocate monthly emission totals
- Compares well with observation derived profiles and European emission modeling profiles



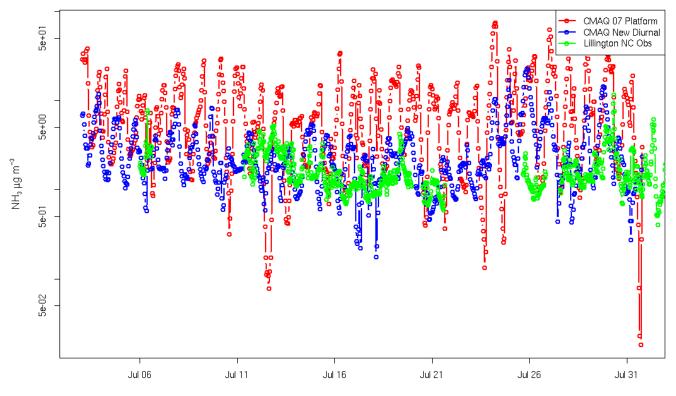
Improved NH₃ Estimates

2007 New CAFO emissions NH3_UGM3



	Mean	NMB
Observations	7.5 μg m ⁻³	-
NEI Profile	25 μg m ⁻³	238%
New Profile	8.1 μg m ⁻³	9%

Model and Observations at Lillington, NC



	Mean	NMB
Observations	1.8 μg m ⁻³	-
Original Profile	9.0 μg m ⁻³	349%
New Profile	2.9 μg m ⁻³	59%

Model and Observations at Lillington, NC

- New emissions profile capture the dynamics and magnitude of emissions better
 - Large disagreements still exist
- Bi-directional NH₃ model will likely better capture the observed variability but increase bias at this site

Current and Future Research

- Field measurements and modeling to better understand soil nitrification processes and N cycling in natural systems
 - –Are these processes important to air-quality as well as climate?
 - Expand soil geochemistry to include organic N mineralization and soil nitrification processes
 - Improve geochemistry in natural systems
 - Couple N₂O and NO fluxes with land use management
- Modeling and measurements at animal facilities to develop better mechanistic NH₃ emission estimates
- Compensation points in water bodies
- Couple CMAQ with meteorological, biogeochemical, and hydrological models
 - Develop tools for robust system analysis of future climate/emission scenarios

Conclusions

- CMAQ with bidirectional NH₃ exchange:
 - Represents the state-of-the-science of NH₃ air-surface exchange
 - -Improved NH_x wet deposition and NH₄⁺ and NO₃⁻ evaluation
 - Connects land use and agricultural management practices to ambient air-quality and acid and nutrient deposition
 - Reduces N dry deposition to terrestrial land use by ~15%
 - Increased direct N dry deposition to water bodies by ~3%
- Satellite observations, monitoring networks, and intensive NH₃ measurements integrated with modeling is improving process based NH₃ emission estimates
 - Allowed for robust case study evaluations
 - Necessary to identify modeling and measurement needs

Questions?

References:

- Bash, J.O., Walker, J.T., Katul, G.G., Jones, J.R., Nemitz, E., Robarge, W.P.: Estimation of in-canopy ammonia sources and sinks in a fertilized *Zea mays* field, Environ. Sci. Technol. 44, 1683-1689, 2010
- Cooter, E.J., Bash, J.O., Walker, J.T., Jones, M.R., Robarge, W.: Estimation of NH3 bidirectional flux from managed agricultural soils. Atmos Environ. 44, 2107-2115, 2010
- Pinder, W.P., Walker., J.T., Bash, J.O., Cady-Pereira, K.E., Henze, D.K., Lou, M., Osterman, G.B., Schephard, M.W., Quantifying spatial and seasonal variability in atmospheric ammonia with in situ and space-based observations, Geophys. Res. Lett., 38, L04802, 2011
- Shephard, M.W., Cady-Pereira, K.E., Lou, M., Henze, D.K., Pinder, P.W., Walker, J.T., Rinsland, C.P., Bash, J.O., Zhu, L., Payne, V.H., Clarisse, L., TES ammonia retrieval strategy and global observations of the spatial and seasonal variability of ammonia, Atmos. Phys. Chem. 11, 10743-10763, 2011
- Walker, J.T., Jones, M.R., Bash, J.O., Myles, L., Luke, W., Meyers, T., Schwede, D., Herrick, J., Nemitz, E., Robarge, W.: Processes of ammonia air-surface exchange in a fertilized *Zea mays* canopy, Biogeosciences, 9, 2012 (accepted)
- Bash, J.O., Cooter, E.J., Dennis, R.L., Walker, J.T., Pleim, J.E.: Evaluation of an regional airquality model with bidirectional NH3 exchange coupled to an agro-ecosystem model, Biogeosciences Discuss., 9, 11375-11401, 2012
- Cooter, E.J., Bash, J.O., Benson, V., Ran, L-M.: Linking agricultural crop management and air quality models for regional to national-scale nitrogen assessments, Biogeosciences, 9, 4023-4035, 2012
- Dennis, R.L., Schwede, D., Bash, J.O., Pleim, J.E., Walker, J.T., Foley, K.: Removal of gaseous and particulate nitrogen compounds from the atmosphere. Phil. Trans. R. Soc. B, (in review)
- Pleim, J.E., Bash, J.O., Walker, J.T., Cooter, E.J., Development and testing of an ammonia bi-directional flux model for air-quality models. J. Geophys. Res. (in review)