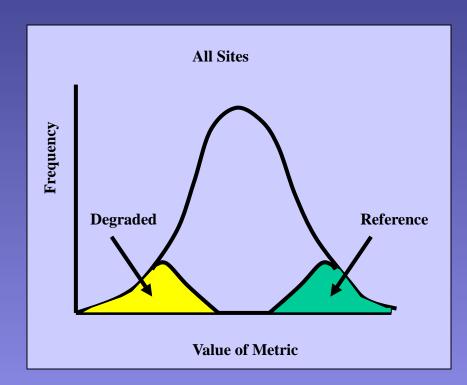
Chesapeake Bay Benthic Monitoring Program Innovations and Accomplishments

Daniel M. Dauer ¹, Roberto J. Llansó ², Mike F. Lane ¹

1 – Department of Biological Sciences, Old Dominion University, Norfolk, Virginia 23529 2 - Versar, Inc., Columbia, Maryland 21045

Benthic Indicators, Monitoring Design and ³ Interpretation Issues

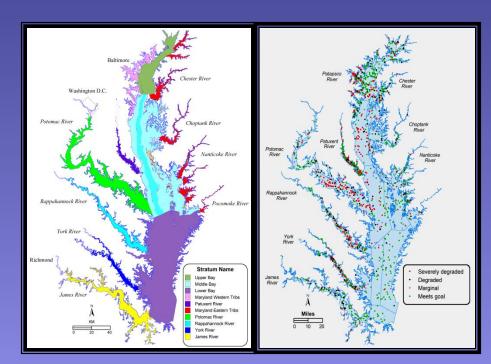

Overview

Chesapeake Bay accomplishments

- 1. Index development
- 2. Index relationship to watershed stressors
- 3. Sample allocation
- 4. Index relationship to habitat quality
- 5. Causes of degradation (diagnostics)
- 6. Impaired waters designations 303(d)
- 7. Functional metric/index (Secondary productivity)
- 8. BIBI recalibration
- 9. International collaboration

(1) Benthic Index of Biotic Integrity (BIBI).

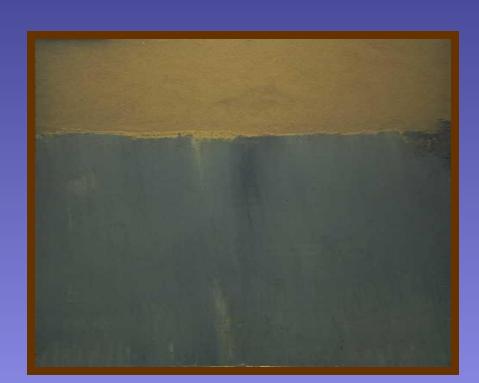
(Weisberg et al. 1997. Estuaries; Alden et al. 2002. Environmetrics)



- (1) Benthic Index of Biotic Integrity (BIBI). (Weisberg et al. 1997. Estuaries; Alden et al. 2002. Environmetrics)
- (2) Establishing relationships between the BIBI and land use patterns, nutrient loads, low dissolved oxygen events, and sediment contaminants at watershed levels. (Dauer et al. 2000. Estuaries)

- (1) Benthic Index of Biotic Integrity (BIBI). (Weisberg et al. 1997. Estuaries; Alden et al. 2002. Environmetrics)
- (2) Establishing relationships between the BIBI and land use patterns, nutrient loads, low dissolved oxygen events, and sediment contaminants at watershed levels. (Dauer et al. 2000. Estuaries)
- (3) Implementation of probability-based sampling to generate areal estimates of levels of degraded benthos.

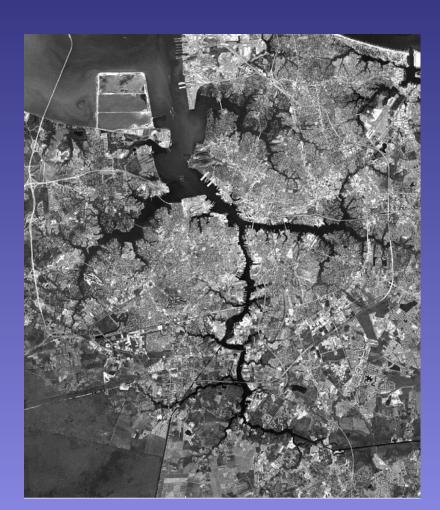
(Alden et al. 1997. Marine Pollution Bulletin; Llansó et al. 2003. Environmental Monitoring and Assessment; Dauer and Llansó. 2003. Ibid)



- (1) Benthic Index of Biotic Integrity (BIBI). (Weisberg et al. 1997. Estuaries; Alden et al. 2002. Environmetrics)
- (2) Establishing relationships between the BIBI and land use patterns, nutrient loads, low dissolved oxygen events, and sediment contaminants at watershed levels. (Dauer et al. 2000. Estuaries)
- (3) Implementation of probability-based sampling to generate areal estimates of levels of degraded benthos.

(Alden et al. 1997. Marine Pollution Bulletin; Llansó et al. 2003. Environmental Monitoring and Assessment; Dauer and Llansó. 2003. Ibid)

(4) Quantifying the relationship between benthic biotic integrity and benthic habitat quality.


(Diaz et al. 2003. Journal of Experimental Marine Biology and Ecology)

(5) Diagnostic approaches to causes of degradation of benthic communities.

Low dissolved oxygen Eutrophication Sediment Contamination

(Dauer et al. 2002. EPA Technical Report)

(5) Diagnostic approaches to causes of degradation of benthic communities.

Low dissolved oxygen

Eutrophication
Sediment Contamination

(Dauer et al. 2002. EPA Technical Report)

(6) Impaired waters designations of Maryland DNR and Virginia DEQ 303d

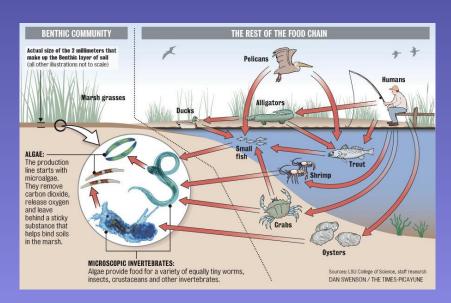
(Llansó et al. 2009. Marine Pollution Bulletin)

(5) Diagnostic approaches to causes of degradation of benthic communities.

Low dissolved oxygen

Eutrophication

(Dauer et al. 2002. EPA Technical Report)

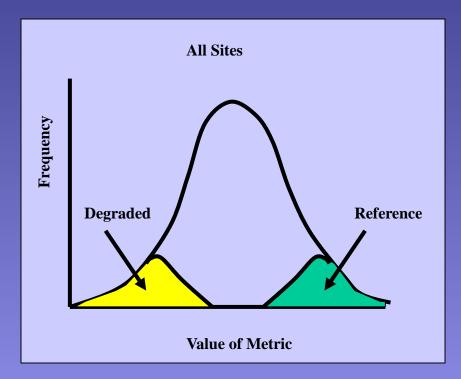

Sediment Contamination

(6) Impaired waters designations of Maryland DNR and Virginia DEQ 303d

(Llansó et al. 2009. Marine Pollution Bulletin)

(7) Functional metric/index approach
Benthic Secondary Productivity

(Dauer et al. 2011. VADEQ Technical Report; Sturdivant et al. 2014. Estuaries and Coasts; Llansó et al. 2017. *In Preparation*)



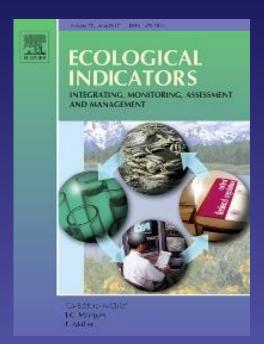
(7) Functional metric/index approach Benthic Secondary Productivity

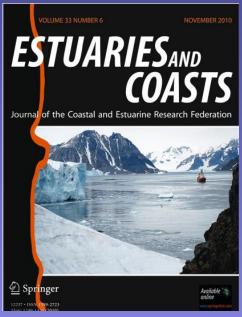
(Dauer et al. 2011. VADEQ Technical Report; Sturdivant et al. 2014. Estuaries and Coasts; Llansó et al. 2017. *In Preparation*)

(8) BIBI recalibration

(Llansó et al. 2016. VADEQ Technical Report; de-la-Ossa et al. 2016. Ecological Indicators)

(7) Functional metric/index approach Benthic Secondary Productivity


Dauer et al. 2011. VADEQ Technical Report Sturdivant et al. 2014. Estuaries and Coasts


(8) BIBI recalibration

(Llansó et al. 2016. VADEQ Technical Report de-la-Ossa et al. 2016. Ecological Indicators)

(9) International collaboration

(Borja and Dauer. 2008. Ecological Indicators; Borja et al. 2010. Estuaries and Coasts; Borja et al. 2012. Ecological Indicators)

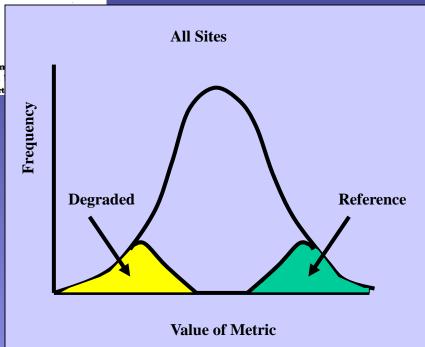
(1) Benthic Index of Biotic Integrity (BIBI).

(Weisberg et al. 1997. Estuaries; Alden et al. 2002. Environmetrics)

Estuaries Vol. 20, No. 1, p. 149-158 March 1997

An Estuarine Benthic Index of Biotic Integrity (B-IBI) for Chesapeake Bay

STEPHEN B. WEISBERG^{1,2}
J. ANANDA RANASINGHE
Versar, Inc.
9200 Rumsey Road
Columbia, Maryland 21045


DANIEL M. DAUER
Department of Biological Sciences
Old Dominion University
Norfolk, Virginia 23529

ROBERT J. DIAZ School of Marine Science The College of William and Mary Gloucester Point, Virginia 23062

LINDA C. SCHAFFNER

JEFFREY B. FRITHSEN Versar, Inc. 9200 Rumsey Road Columbia, Maryland 21045

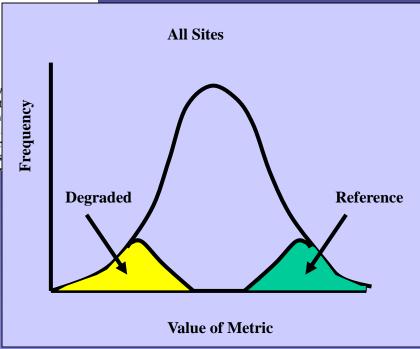
ABSTRACT: A multimetric benthic index of biotic integrity (B-IBI) was developed using data from Bay sampling programs conducted between 1972 and 1991. Attributes of the index were selected response of 17 candidate measures of benthic condition (metrics) between a set of minimally affect

(1) Benthic Index of Biotic Integrity (BIBI).

(Weisberg et al. 1997. Estuaries; Alden et al. 2002. Environmetrics)

ENVIRONMETRICS

Environmetrics 2002; 13: 473-498 (DOI: 10.1002/env.548)


Statistical verification of the Chesapeake Bay benthic index of biotic integrity

Raymond W. Alden III¹,**,† D. M. Dauer², J. A. Ranasinghe³, L. C. Scott⁴ and R. J. Llansó⁴

University of Nevada, Las Vegas, NV 89154-1002, U.S.A.
 Old Dominion University, Norfolk, VA 23523, U.S.A.
 SCCWRP, Westminster, CA 92683, U.S.A.
 Versar, Inc., Columbia, MD 21045, U.S.A.

SUMMARY

The benthic index of biotic integrity (B-IBI) developed for the Chesapeake Bay was statistically simulations and a suite of multivariate statistical techniques. The B-IBI uses a simple scoring syst community metrics to assess benthic community health and to infer environmental quality of ben the Bay. Overall, the B-IBI was verified as being sensitive, stable, robust and statistically sound effectiveness of the B-IBI increased with salinity, from marginal performance for tidal freshwater excellent results for polyhaline areas. The greater classification uncertainty in low salinity habitats difficulties in reliably identifying naturally unstressed areas or may be due to regional ecotopes or

Benthic Index of Biotic Integrity (B-IBI)

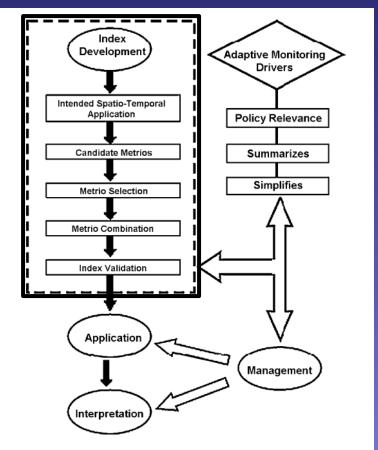
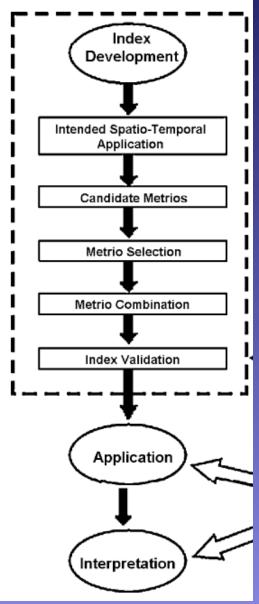



Fig. 2 – Index development, application and interpretation. Dashed rectangle encloses the primary steps in index development. Adaptive monitoring feedback loops and adaptive change decision drivers are indicted by open arrows.

Benthic Index of Biotic Integrity



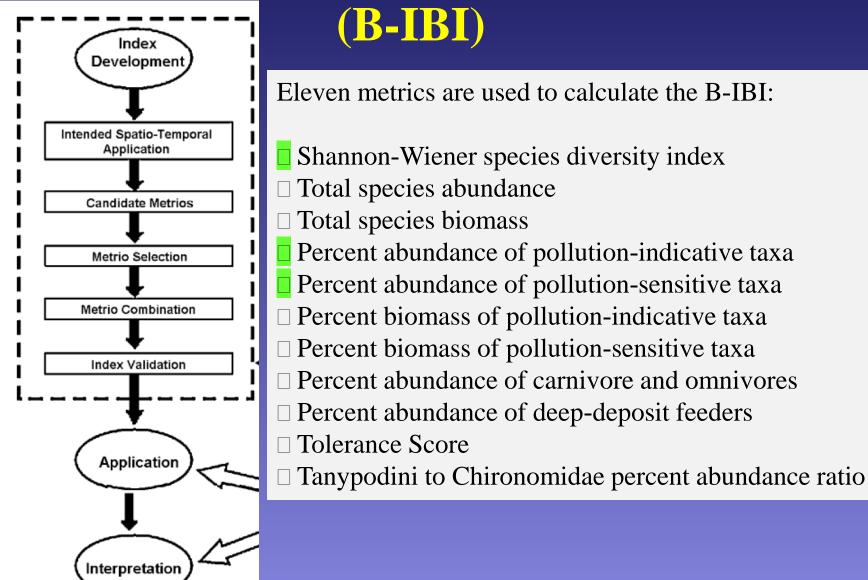
(B-IBI)

- (i) Defining criteria for degraded and undegraded sites based on nonbiological measures such as bottom-water dissolved oxygen and sediment contaminant concentrations;
- (ii) identifying biological measures which respond to (and differ among) degraded and undegraded sites;
- (iii) adjusting these responses for habitat differences, if necessary;
- (iv) combining responsive measures into an index; and
- (v) validating the index using independent data.

Indices formulated on ecological principles and properly validated will better communicate the complexity of ecological integrity.

Benthic Index of Biotic Integrity (B-IBI)

Summer Index period July 15 – Sept. 30


17 Candidate Metrics

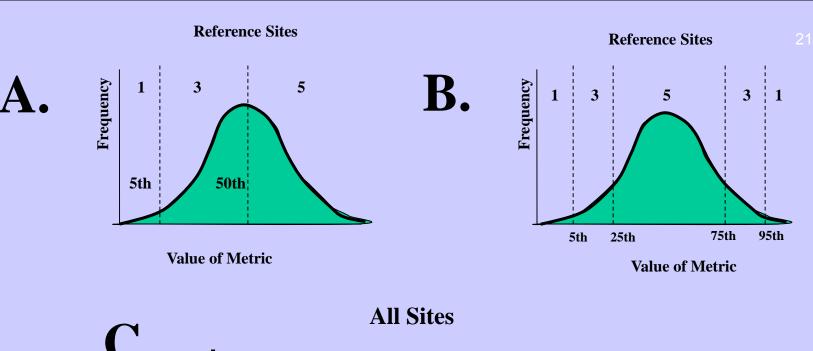
Test Candidate Metrics (reference against degraded)

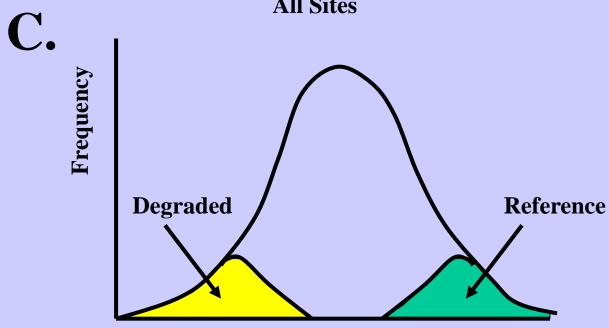
Scaled scoring (1-3-5- or 1-3-5-3-1)

Independent data set

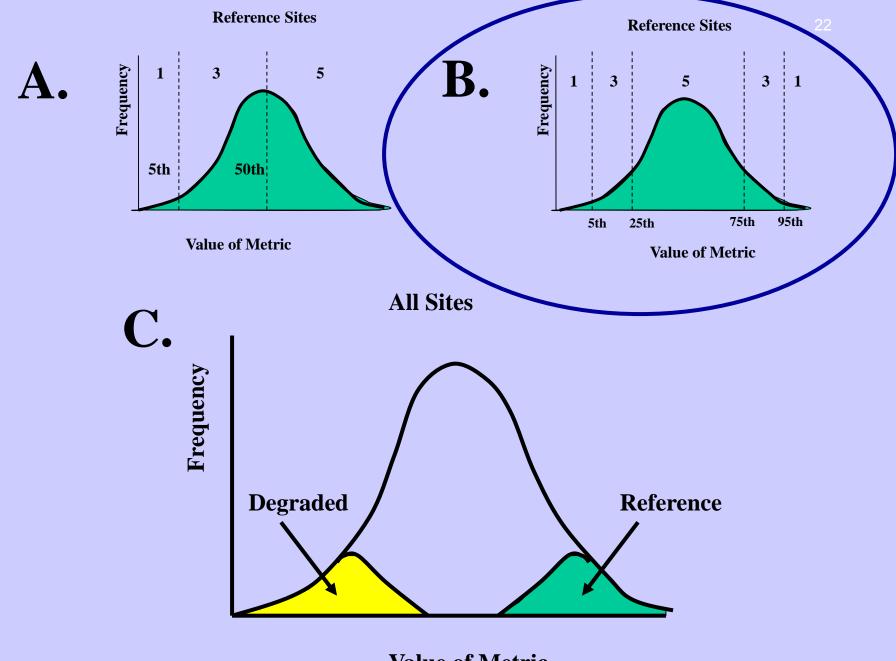
Benthic Index of Biotic Integrity (B-IBI)

Benthic Index of Biotic Integrity (B-IBI)

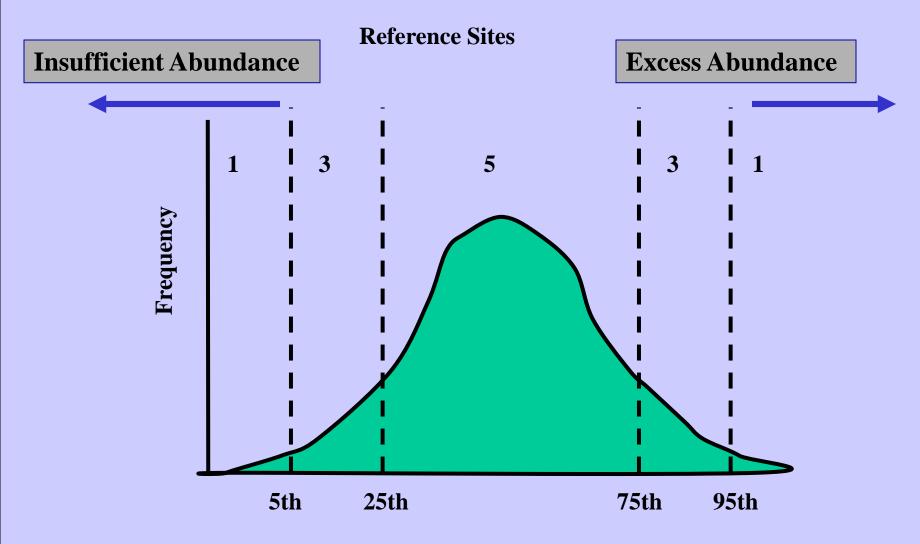

Metric selection and scoring thresholds habitat specific (7 habitats determined)


Habitat	Bottom Salinity (psu)	Silt-clay (<63 μ) content by weight (%)
Tidal freshwater	< 0.5	N/A
Oligohaline	≥ 0.5 - 5	N/A
Low Mesohaline	$\geq 5 - 12$	N/A
High Mesohaline sand	≥ 12 - 18	0 - 40
High Mesohaline mud	≥ 12 - 18	> 40
Polyhaline sand	≥ 18	0 - 40
Polyhaline mud	≥ 18	> 40

Index of Biotic Integrity (IBI)


All Sites Frequency Degraded Reference

Value of Metric



Value of Metric

Value of Metric

Index of Biotic Integrity (IBI)

Value of Metric

Chesapeake Bay - B-IBI

- Value is the mean of the metric scores
- Range is 1-5
- Values < 3 represent degraded benthos
- Values ≥ 3 represent undegraded benthos

B-IBI Thresholds Example of Polyhaline Sand Habitat

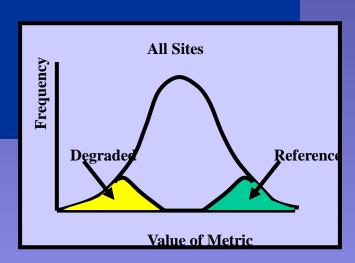
	Score		
	5	3	1
Shannon-Wiener	≥3.5	2.7-3.5	<2.7
Abundance (m ⁻²)	≥3,000-5,000	1,500-3,000 or ≥5,000-8,000	<1,500 or ≥8,000
Biomass (g m ⁻²)	≥5-20	1-5 or ≥20-50	<1 or ≥50
Pollution Indicative species biomass (%)	≤ 5	5-15	> 15
Pollution Sensitive species abundance (%)	≥50	25-50	<25
Deep deposit feeder abundance (%)	≥25	10-25	<10

Summary Advantages

Simple communication

Binomial categories

- ≥ 3 represent undegraded condition
- < 3 represent degraded condition


Additional categories

≥ 3 represent undegraded condition

2.9 - 2.7 - Marginal

2.6 - 2.1 - Degraded

 \geq 2.0 – Severely degraded

B-IBI

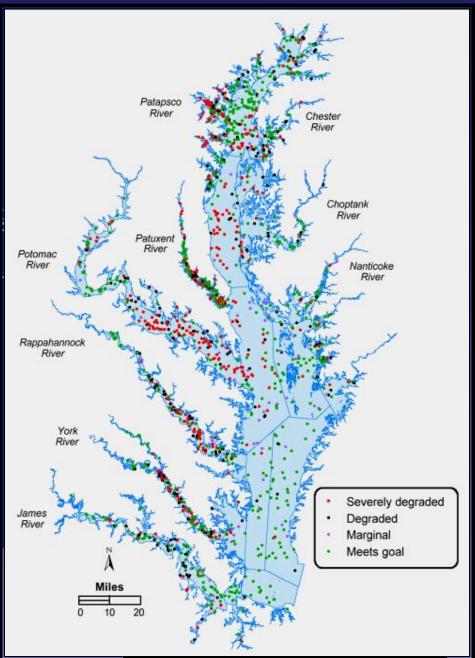
Summary Advantages

Simple communication

Binomial categories

 \geq 3 represent under

< 3 represent degra

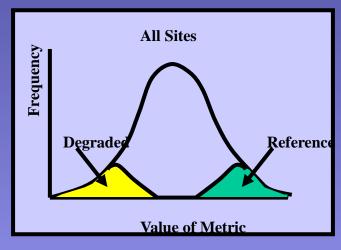

Additional categories

≥ 3 undegraded

2.9 - 2.7 - Marginal

2.6 - 2.1 - Degraded

 $\geq 2.0 -$ Severely degraded



Summary Advantages

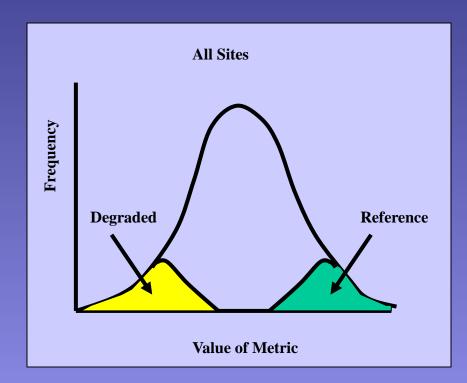
- 1. Simple communication
- 2. Metric thresholds become Restoration Goals
- 3. Metrics can be examined for additional insight into causes of degradation

(1) Benthic Index of Biotic Integrity (BIBI).

(Weisberg et al. 1997. Estuaries; Alden et al. 2002. Environmetrics)

Methods for Calculating
The Chesapeake Bay Benthic Index of Biotic Integrity

Roberto J. Llansó VERSAR Inc Columbia, MD 21045


VERSAR

and

Daniel M. Dauer
Department of Biological Sciences
Old Dominion University
Norfolk, VA 23529

2002

(1) Benthic Index of Biotic Integrity (BIBI).

(Weisberg et al. 1997. Estuaries; Alden et al. 2002. Environmetrics)

(2) Establishing relationships between the BIBI and land use patterns, nutrient loads, low dissolved oxygen events, and sediment contaminants at watershed levels. (Dauer et al. 2000. Estuaries)

Estuaries Vol. 23, No. 1, p. 80-96 February 2000

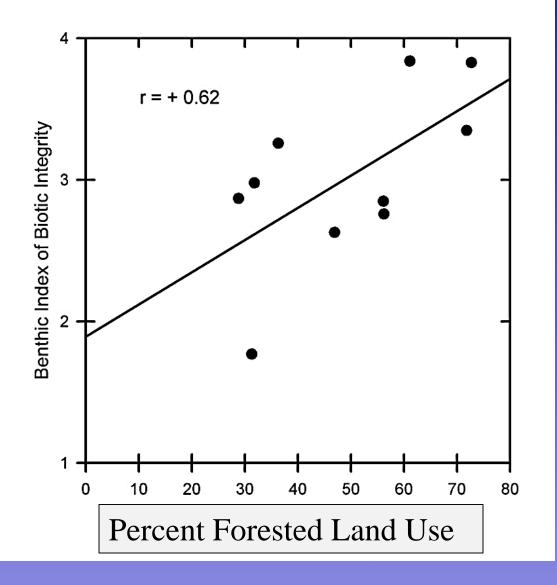
Relationships Between Benthic Community Condition, Water

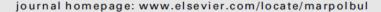
Quality, Sediment Quality, Nutrient Loads, and Land Use Patterns
in Chesapeake Bay

DANIEL M. DAUER¹
Department of Biological Sciences
Old Dominion University
Norfolk, Virginia 23529

J. ANANDA RANASINGHE Versar, Inc. 9200 Rumsey Road Columbia, Maryland 21045

STEPHEN B. WEISBERG Southern California Coastal Water Research Project 7171 Fenwick Lane Westminster, California 92683


ABSTRACT: Associations between macrobenthic communities, measures of water column and sediment exp measures of anthropogenic activities throughout the watershed were examined for the Chesapeake Bay, U.5 dition of the macrobenthic communities was indicated by a multimetric benthic index of biotic integrity (compares deviation of community metrics from values at reference sites assumed to be minimally altered by genic sources of stress. Correlation analysis was used to examine associations between sites with poor benthif and measures of pollution exposure in the water column and sediment. Low dissolved oxygen events we extensive and strongly correlated with benthic community condition, explaining 42% of the variation in the liment contamination was spatially limited to a few specific locations including Baltimore Harbor and the South



Marine Pollution Bulletin 59 (2009) 14-25

Contents lists available at ScienceDirect

Marine Pollution Bulletin

Development and evaluation of a spatially-explicit index of Chesapeake Bay health Michael Williams a,*, Ben Longstaffb, Claire Buchananc, Roberto Llansód, William Dennisona

^a University of Maryland Center for Environmental Science, Annapolis Synthesis Center, Suite 301, Annapolis, MD 21401, USA

ARTICLE INFO

Keywords:
Chesapeake Bay
Chlorophyll-a
Dissolved oxygen
Environmental health index
Secchi depth
Submerged aquatic vegetation
Water quality

ABSTRACT

In an effort to better portray changing health conditions in Chesapeake Bay and support restoration efforts, a Bay Health Index (BHI) was developed to assess the ecological effects of nutrient and sediment loading on 15 regions of the estuary. Three water quality and three biological measures were combined to formulate the BHI. Water quality measures of chlorophyll-a, dissolved oxygen, and Secchi depth were averaged to create the Water Quality Index (WQI), and biological measures of the phytoplankton and benthic indices of biotic integrity (P-IBI and B-IBI, respectively) and the area of submerged aquatic vegetation (SAV) were averaged to create the Biotic Index (BI). The WQI and BI were subsequently averaged to give a BHI value representing ecological conditions over the growing season (i.e., March–October). Lower chlorophyll-a concentrations, higher dissolved oxygen concentrations, deeper Secchi depths,

b NOAA-UMCES Partnership, Cooperative Oxford Laboratory, Oxford, MD 21654, USA

^c Interstate Commission on the Potomac River Basin, 51 Monroe St., Suite PE-08, Rockville, MD 20850, USA

^d Versar Inc., 9200 Rumsey Road, Columbia, MD 21045, USA

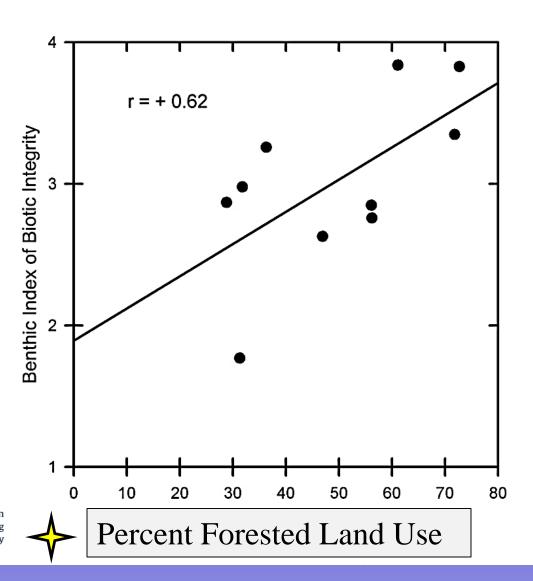



Fig. 6. The total of developed and agricultural land use (2001) (as % of total area in each reporting region) versus the mean Bay Health Index from 1985 to 2007 using all reporting regions (panel A) and without the James, York and SW tributary regions included (panel B).

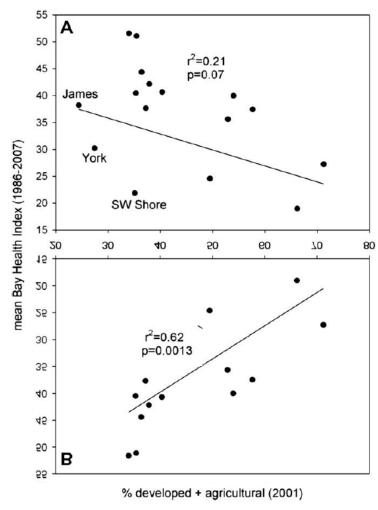
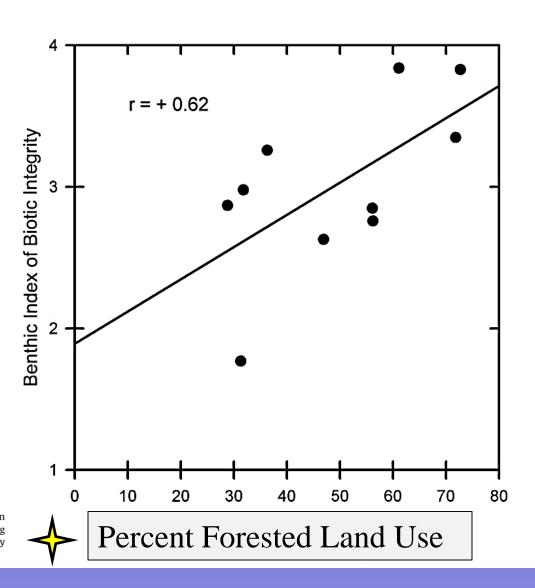
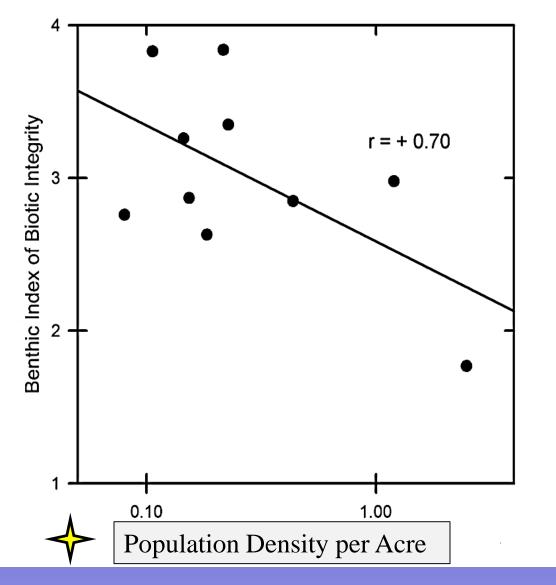
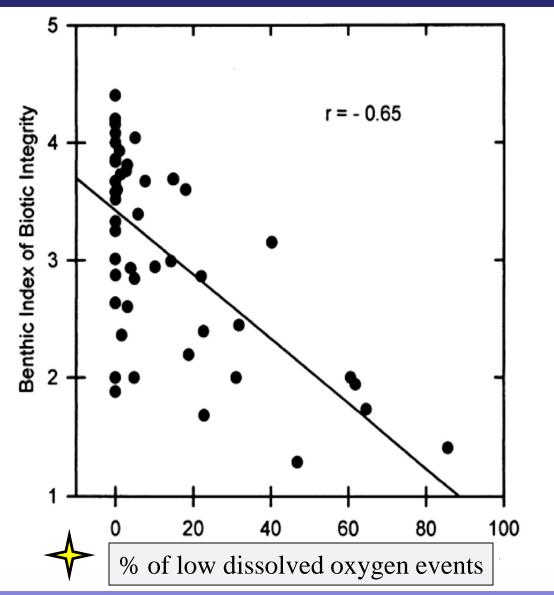
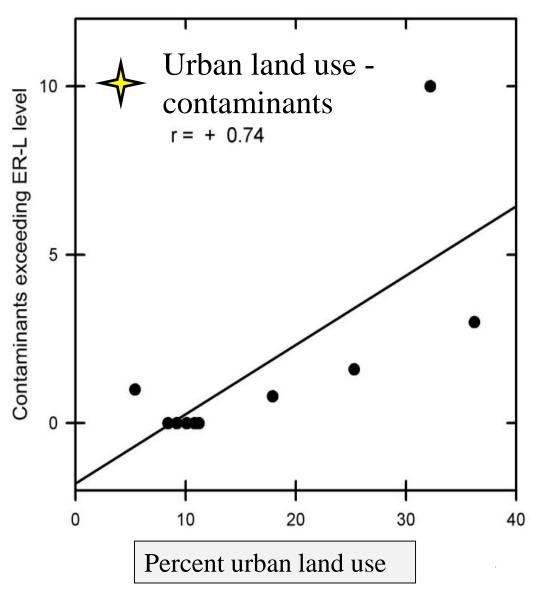
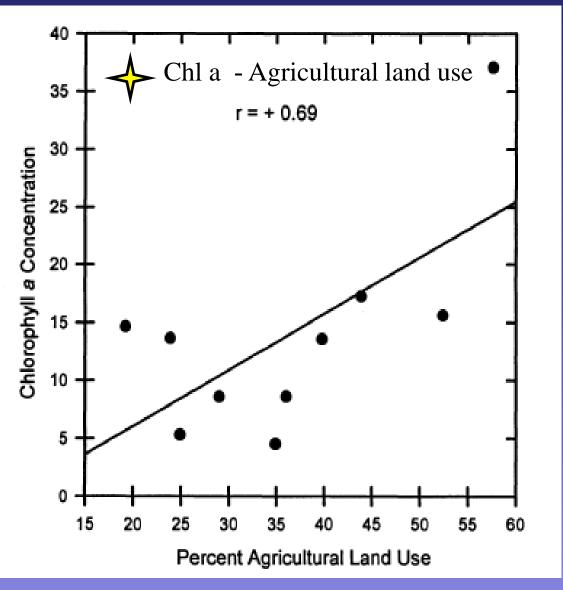




Fig. 6. The total of developed and agricultural land use (2001) (as % of total area in each reporting region) versus the mean Bay Health Index from 1985 to 2007 using all reporting regions (panel A) and without the James, York and SW tributary regions included (panel B).





BIBI and Land Use



BIBI and Land Use

B-IBI relationships

TABLE 5. Correlation of area-weighted exposure variables with watershed variables. Pearson correlation coefficients, probability values, and number of replicates are presented for each watershed variable by exposure variable combination. DO = dissolved oxygen. ER-L = effects range-low of Long et al. (1995). TN, TP = total nitrogen, total phosphorus concentration in water column.

Watershed Variables	% Bottom DO obs <2 ppm	No. of Contaminants >ER-L	Mean TN (mg l ⁻¹)	Mean TP (mg l ⁻¹)	Mean Active Chlorophyll <i>a</i> (μg l ⁻¹)
Population density per	0.679	0.977	-0.473	-0.593	-0.381
unit land area	0.031	0.001	0.167	0.071	0.278
	10	9	10	10	10
% Area under	-0.059	-0.219	0.757	0.446	0.686
agriculture	0.871	0.572	0.011	0.196	0.029
8	10	9	10	10	10
6 Forested area	-0.440	-0.385	-0.328	-0.023	-0.341
	0.204	0.307	0.355	0.949	0.366
	10	9	10	10	10
% Urban area	0.685	0.742	-0.424	-0.517	-0.353
	0.029	0.022	0.222	0.126	0.317
	10	9	10	10	10
otal nitrogen loadings	0.127	0.479	0.302	-0.278	-0.025
per unit land area	0.726	0.192	0.397	0.437	0.946
	10	9	10	10	10
oint source nitrogen	0.529	0.970	-0.360	-0.466	-0.255
loadings per unit	0.116	0.001	0.307	0.174	0.477
land area	10	9	10	10	10
Nonpoint-source nitrogen	-0.240	-0.212	0.663	0.032	0.187
loadings per unit land area	0.451	0.583	0.037	0.929	0.603
6 1	10	9	10	10	10
Total phosphorus loadings	-0.133	0.052	0.546	-0.076	0.116
per unit land area	0.713	0.894	0.103	0.835	0.750
	10	9	10	10	10
Point source phosphorus	0.488	0.963	-0.343	-0.460	-0.254
loadings per unit land area	0.152	0.001	0.331	0.181	0.479
	10	9	10	10	10
Nonpoint-source phosphorus	-0.223	-0.216	0.650	0.049	0.322
loadings per unit land area	0.535	0.577	0.042	0.892	0.365
0.	10	9	10	10	10

B-IBI relationships

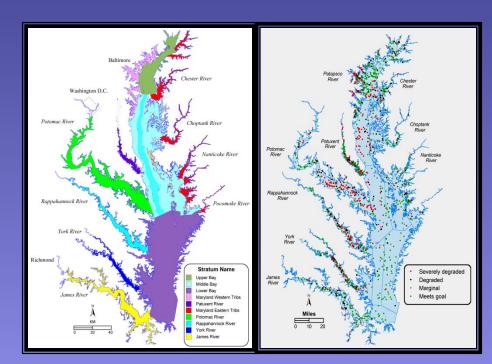
Summary Relationships

1. Exposure variables

Low dissolved oxygen events Sediment contaminants

2. Negative with anthropogenic inputs & activities

Population density


Point source loads

Total nitrogen loads

3. Positive with forested land use

- (1) Benthic Index of Biotic Integrity (BIBI). (Weisberg et al. 1997. Estuaries; Alden et al. 2002. Environmetrics)
- (2) Establishing relationships between the BIBI and land use patterns, nutrient loads, low dissolved oxygen events, and sediment contaminants at watershed levels. (Dauer et al. 2000. Estuaries)
- (3) Implementation of probability-based sampling to generate areal estimates of levels of degraded benthos.

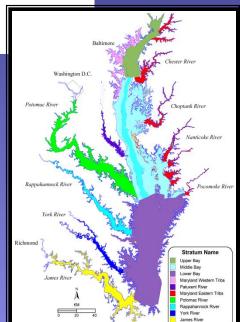
(Llansó et al. 2003. Environmental Monitoring and Assessment; Dauer and Llansó. 2003. Ibid; Alden et al. 1997)

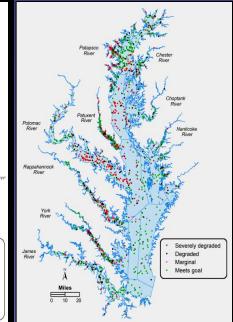
PII: S0025-326X(97)00049-0

Marine Pollution Bulletin, Vol. 34, No. 11, pp. 913–922, 1997

© 1997 Elsevier Science Ltd

All rights reserved. Printed in Great Britain


0025–326X/97 \$17.00+0.00


Optimizing Temporal Sampling Strategies for Benthic Environmental Monitoring Programs

RAYMOND W. ALDEN III*, STEPHEN B. WEISBERG†, J. ANANDA RANASINGHE† and DANIEL M. DAUER‡

*Applied Marine Research Laboratory, Old Dominion University, Norfolk, VA 23529, USA †Versar, Inc., 9200 Rumsey Road, Columbia, MD 21045, USA

Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA

(Llansó et al. 2003. Environmental Monitoring and Assessment; Dauer and Llansó. 2003. Ibid; Alden et al. 1997)

PII: S0025-326X(97)00049-0

Marine Pollution Bulletin, Vol. 34, No. 11, pp. 913–922, 1997

© 1997 Elsevier Science Ltd

All rights reserved. Printed in Great Britain

0025-326Xy97 \$17.00+0.00

Optimizing Temporal Sampling Strategies for Benthic Environmental Monitoring Programs

RAYMOND W. ALDEN III*, STEPHEN B. WEISBERG†, J. ANANDA RANASINGHE† and

The Chesapeake Bay Benthic Monitoring Team:

- (1) Evaluated the sampling design of the EMAP-VA program.
- (2) Recognized the essential importance of **areal based estimates of benthic community condition** with known confidence intervals unavailable with a fixed-point station design.
- (3) Adding probability-based sampling would require reduction in intra-annual seasonal sampling (zero sum budgeting).
- (4) An effort to **optimize spatial interpretation** and **minimize reduction in statistical power** to detect long-term trends in benthic community condition.

(Llansó et al. 2003. Environmental Monitoring and Assessment; Dauer and Llansó. 2003. Ibid; Alden et al. 1997)

PII: S0025-326X(97)00049-0

Marine Pollution Bulletin, Vol. 34, No. 11, pp. 913-922, 1997

© 1997 Elsevier Science Ltd

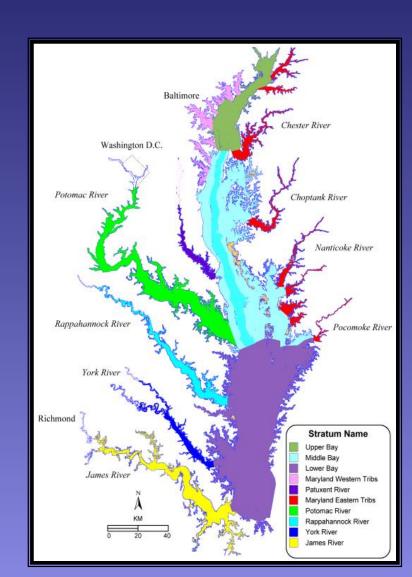
All rights reserved. Printed in Great Britain

0025-326X/97 \$17.00+0.00

Optimizing Temporal Sampling Strategies for Benthic Environmental Monitoring Programs

RAYMOND W. ALDEN III*, STEPHEN B. WEISBERG†, J. ANANDA RANASINGHE† and

Tested

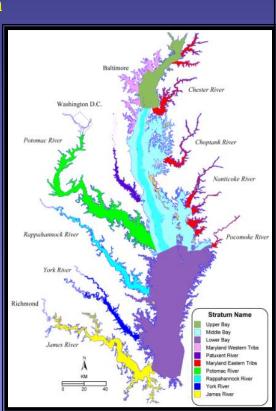

- (1) Homogeneity among seasons.
- (2) Power to detect trends in (a) abundance, (b) biomass, (c) diversity and (d) proportional abundance of opportunistic taxa.
- (3) Magnitude of differences between reference and degraded sites.
- (4) Summer was the optimal season to sample for both power and magnitude of difference between reference and degraded sites.

(Llansó et al. 2003. Environmental Monitoring and Assessment; Dauer and Llansó. 2003. Ibid)

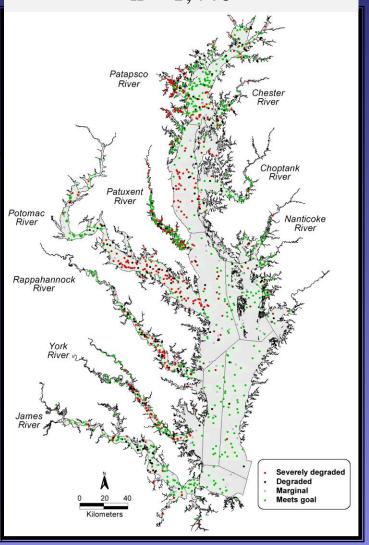
Samples allocated among 10 strata
25 random sites per stratum

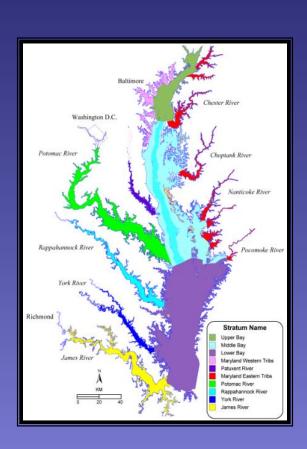
Data can be summarized

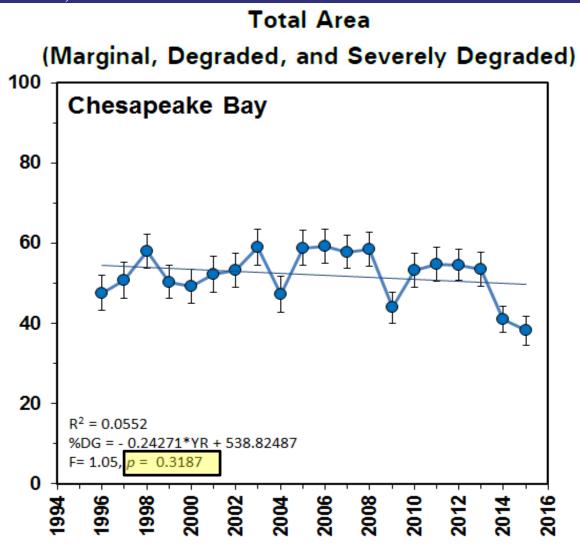
- A. Bay-wide
- **B.** State-wide
- C. Tributary
- D. Segment

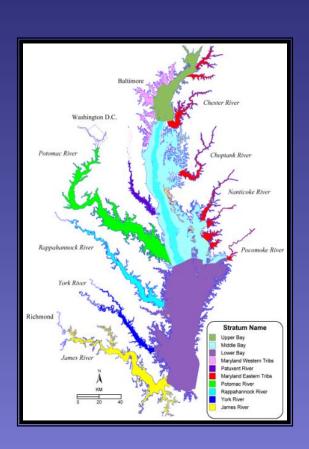

(Llansó et al. 2003. Environmental Monitoring and Assessment; Dauer and Llansó. 2003. Ibid)

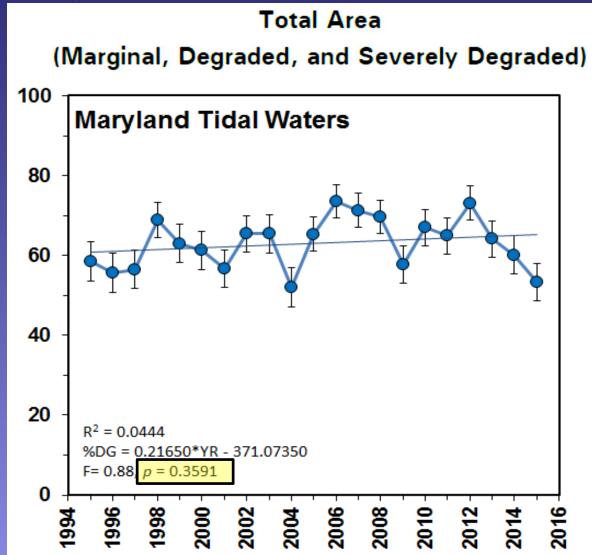
Samples allocated among 10 strata

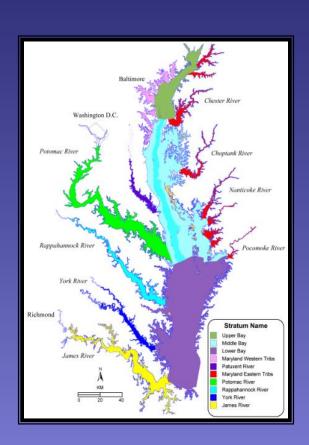

25 random sites per stratum

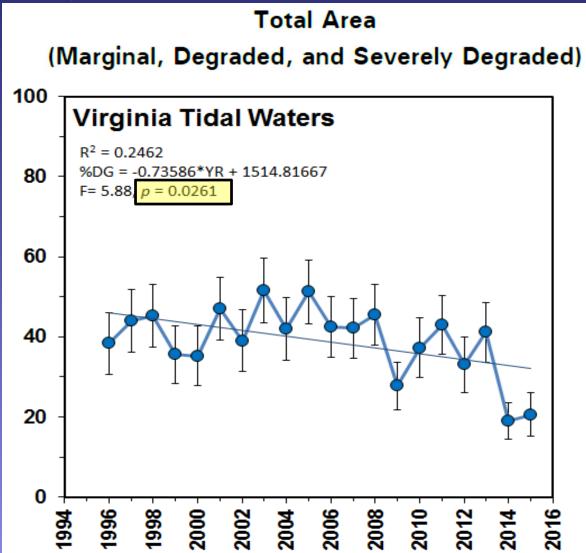

Data can be summarized

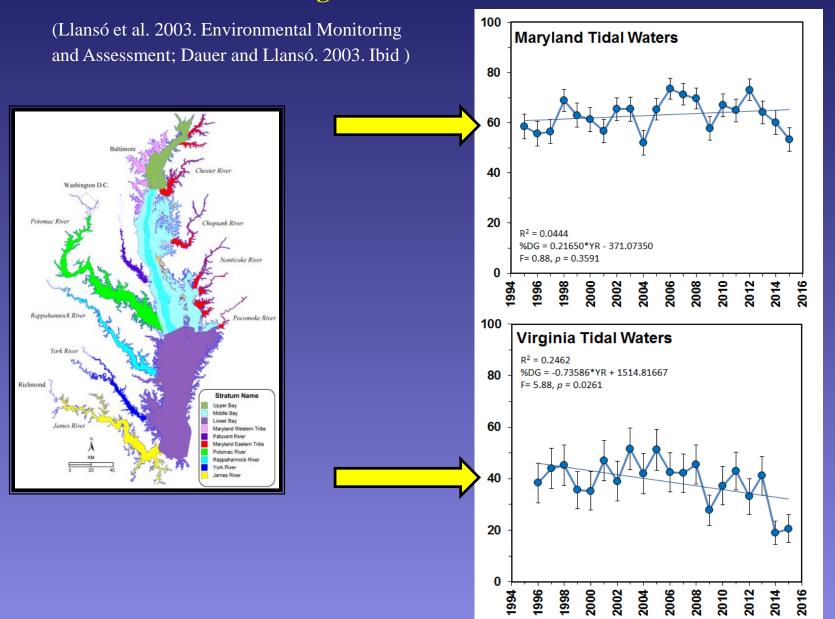

- A. Bay-wide
- **B.** State-wide
- C. Tributary
- D. Segment

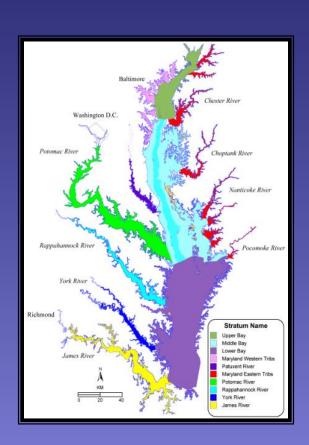


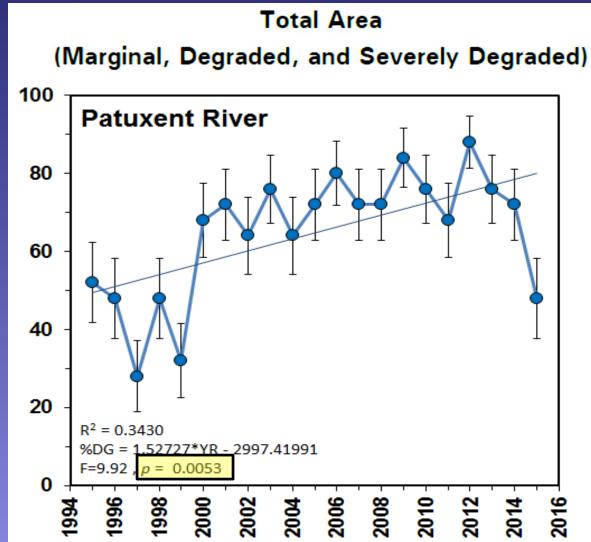

Samples from 1994 - 2000n = 1,446

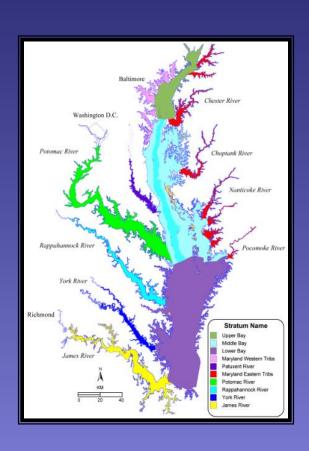


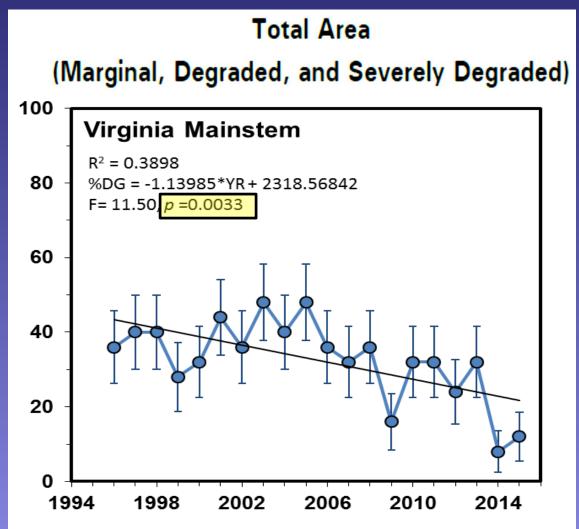


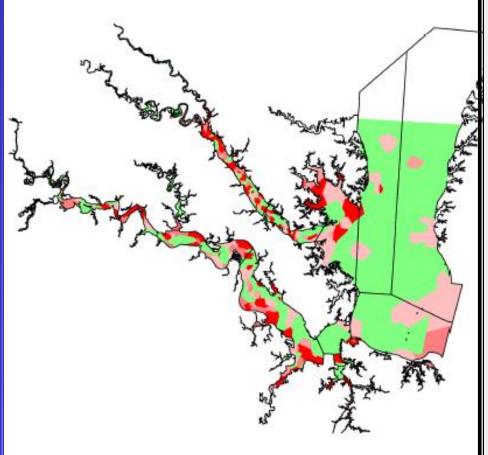


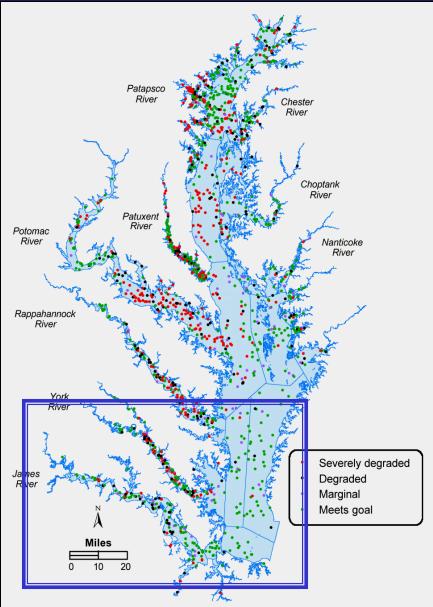






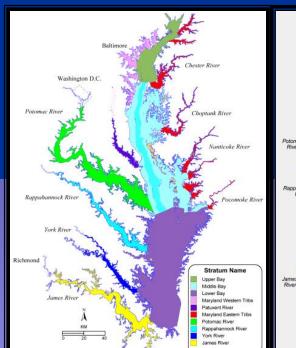


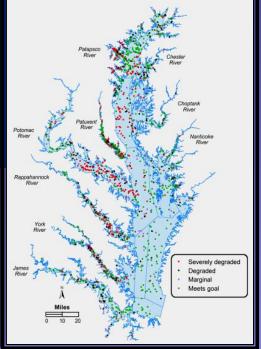




Probability (Random) Sampling

Isoplething of condition is possible





Probability (Random) Sampling

Summary Advantages

- 1. Areal estimates of strata with known CIs
- 2. Data can be post-hoc stratified
- 3. Strata can be combined by areal weighting

- (1) Benthic Index of Biotic Integrity (BIBI). (Weisberg et al. 1997. Estuaries; Alden et al. 2002. Environmetrics)
- (2) Establishing relationships between the BIBI and land use patterns, nutrient loads, low dissolved oxygen events, and sediment contaminants at watershed levels. (Dauer et al. 2000. Estuaries)
- (3) Implementation of probability-based sampling to generate areal estimates of levels of degraded benthos.

(Alden et al. 1997. Marine Pollution Bulletin; Llansó et al. 2003. Environmental Monitoring and Assessment; Dauer and Llansó. 2003. Ibid)

(4) Quantifying the relationship between benthic biotic integrity and benthic habitat quality.

(Diaz et al. 2003. Journal of Experimental Marine Biology and Ecology)

(4) Quantifying the relationship between benthic biotic integrity and benthic habitat quality.

(Diaz et al. 2003. Journal of Experimental Marine Biology and Ecology)

Journal of Experimental Marine Biology and Ecology 285-286 (2003) 371-381 Journal of
EXPERIMENTAL
MARINE BIOLOGY
AND ECOLOGY

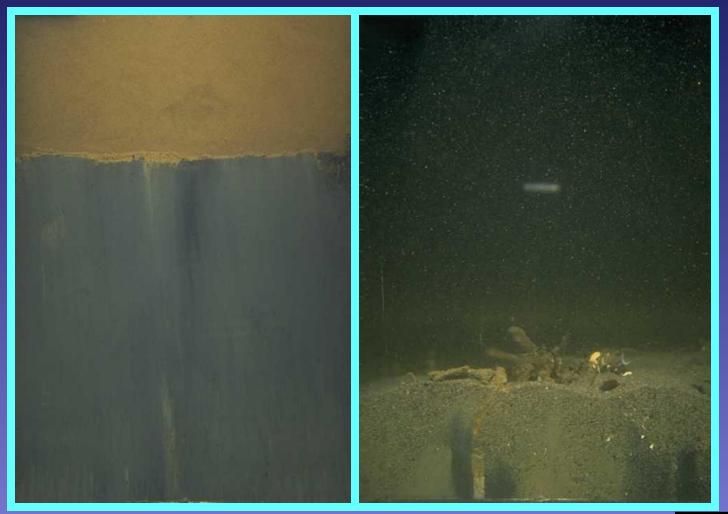
www.elsevier.com/locate/jembe

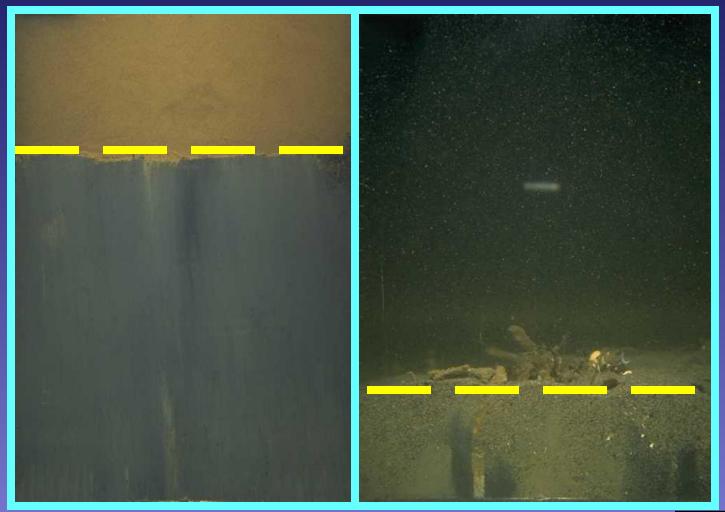
A comparison of two methods for estimating the status of benthic habitat quality in the Virginia Chesapeake Bay

Robert J. Diaza,*, G. Randy Cutter Jr.b, Daniel M. Dauerc

Received 7 June 2002; received in revised form 31 August 2002; accepted 13 September 2002

Abstract


Macrobenthic communities in Chesapeake Bay, USA, have been intensively monitored since 1985. In 1996, the monitoring was expanded to include summertime stratified random sampling to produce unbiased estimators of community metrics that could be used to assess system wide trends


^a Virginia Institute of Marine Science, College of William and Mary, P.O. Box 1346, Gloucester Pt. VA 23062, USA

^bCenter for Coastal and Ocean Mapping, University of New Hampshire, 24 Colovos Rd., Durham, NH 03824, USA

^cDepartment of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA

BIBI	OSI
Species diversity H'	Depth of apparent color RPD layer:
	Scored 0 for
	0 RPD to 6 for >3.8 cm
Total abundance	Estimated successional stage:
	Scored -4 for azoic conditions to 6 for Stage II
Total biomass	Presence of gas voids in sediment:
	Scored -2
% Abundance of pollution-indicative taxa	Apparent presence of low dissolved oxygen:
•	Scored -4
% Abundance of pollution-sensitive taxa	
% Biomass of pollution-sensitive taxa	
% Biomass >5 cm below sediment-water interface	
Each metric gets a score of:	
5: >50th percentile of reference sites	
3: 5th to 50th percentile	
1: <5th percentile	

Table 5 Association between indices of biotic integrity and habitat quality

Biotic integrity	Habitat quality OSI			
(BIBI)	Low	High		
Low	Strong relationship, 24% (56 stations)	May occur due to biotic factors, 39% (89)		
High	Not likely, 10% (23)	Strong relationship, 27% (62)		

Table 5
Association between indices of biotic integrity and habitat quality

Biotic integrity (BIBI)	Habitat quality OSI			
	Low		High	
Low High	Strong	relationship, 24% (56 stations)		

Table 5
Association between indices of biotic integrity and habitat quality

Biotic integrity (BIBI)	Habitat quality OSI		
	Low	High	
Low	•		
High -	Not likely, 10% (23)		

Table 5 Association between indices of biotic integrity and habitat quality

Biotic integrity	Habitat quality OSI		
(BIBI)	Low	High	
Low		May o	ccur due to biotic factors, 39% (89)
High			

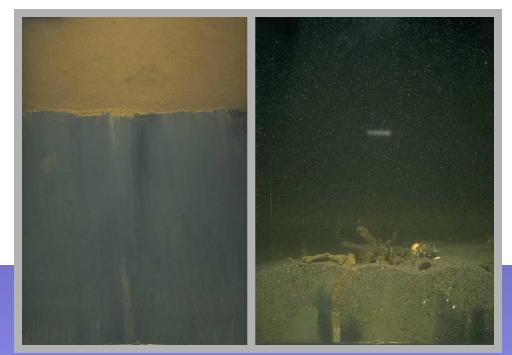


Table 5
Association between indices of biotic integrity and habitat quality

Biotic integrity	Habitat quality OSI			
(BIBI)	Low	High		
Low High		Strong relationship, 27% (62)		



Habitat Quality and Biotic Integrity

Summary Relationships

- 1. Independent estimates of habitat quality and biotic integrity
- 2. Logical relationships confirmed

(5) Diagnostic approaches to causes of degradation of benthic communities.

Low dissolved oxygen Eutrophication Sediment Contamination

(Dauer et al. 2002. EPA Technical Report)

Anoxia or Hypoxia Exposure Insufficient Variables Abundance **Contaminants Eutrophication** without low DO Linear **Excessive Discriminant** function **Abundance**

Causes of

benthic community degradation

I. Sediment contamination

Discriminant function

II. Organic enrichment (absent low DO)

Excessive abundance metric

III. Low dissolved oxygen

Insufficient abundance metric

Causes of

benthic community degradation

I. Sediment contamination

Discriminant function

OLD DOMINION UNIVERSITY

Department of Biological Sciences College of Sciences Norfolk, VA 23529-0456

DEVELOPMENT OF DIAGNOSTIC APPROACHES TO DETERMINE SOURCES OF ANTHROPOGENIC STRESS AFFECTING BENTHIC COMMUNITY CONDITION IN THE CHESAPEAKE BAY

Final Report

Prepared by

Principal Investigators: Daniel M. Dauer 1

Michael F. Lane ¹ Roberto J. Llansó ²

 Department of Biological Sciences Old Dominion University

Causes of benthic community degradation

I. Sediment contamination

Linear discriminant function

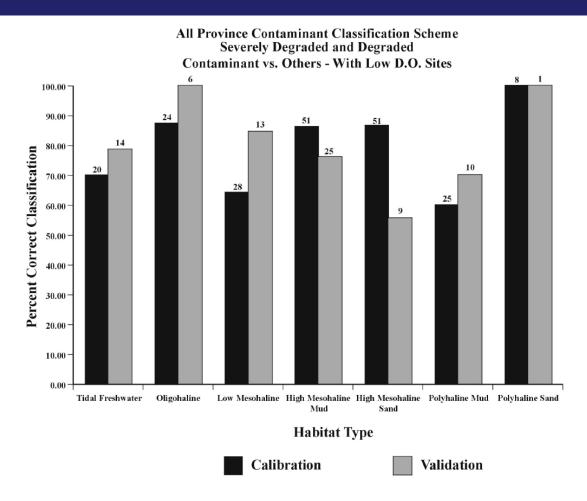
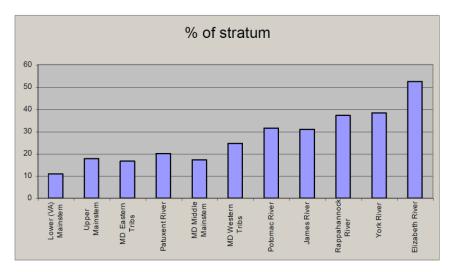
63 benthic metrics

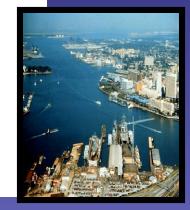
Two stress groups

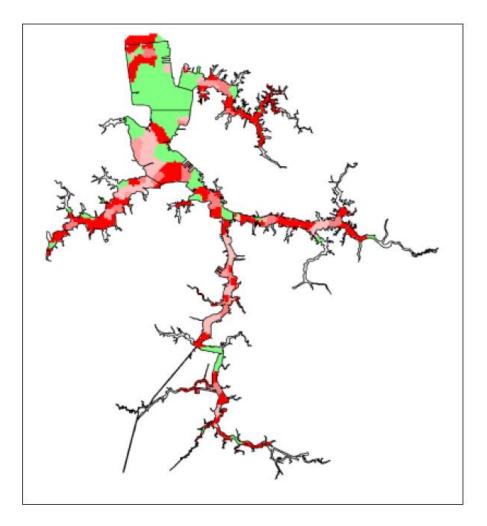
Contaminant

Others

Validation rate – 85%


Figure 2. Discriminant function classification efficiencies for individual habitat types for the Baywide discriminant function for classifying severely degraded and degraded sites (including Low D.O. sites) into the Contaminant and Other stress groups. Numbers above the bars indicate the number of observations within each habitat type.


Table 3. Percent of the stratum placed into the sediment contaminant effect group using the contaminant discriminant function of Dauer et al. 2002 (posterior probability > 0.5). Data from 1996-2002. Elizabeth River data includes the intensive 1999 event and 25 random samples of the watershed from 2000-2002.

Stratum	N	Percentage of stratum in Contaminant Group
Lower (VA) Mainstem	175	10.9
Upper Bay Mainstem	175	17.7
MD Eastern Tributaries	175	16.6
Patuxent River	175	20.0
MD Middle Mainstem	175	17.1
MD Western Tributaries	175	24.6
Potomac River	175	31.4
James River	175	30.9
Rappahannock River	175	37.1
York River	175	38.3
Elizabeth River	275	52.4

Figure 2. Percentage of stratum with a B-IBI value < 2.7 and placed into the Contaminant Group with a posterior probability > 0.5.

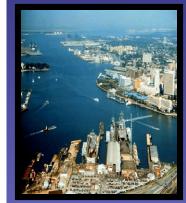


Figure 5. Diagnostic discriminant tool results and an interpolation fitting algorithm used here to classify the Elizabeth River watershed benthic communities into categories distinguished by the type of stress experienced by those communities. Red shading indicates degraded benthic communities stressed by toxic contamination (posterior probability in Contaminant Group > 0.5), with higher color intensity indicating higher probabilities of contaminant effects (>0.5 to <0.7; >=0.7 to <0.9; >=0.9). Salmon shading indicates degraded benthic communities stressed by other sources (posterior probability in Contaminant Group <=0.5). Green indicates good benthic community condition.

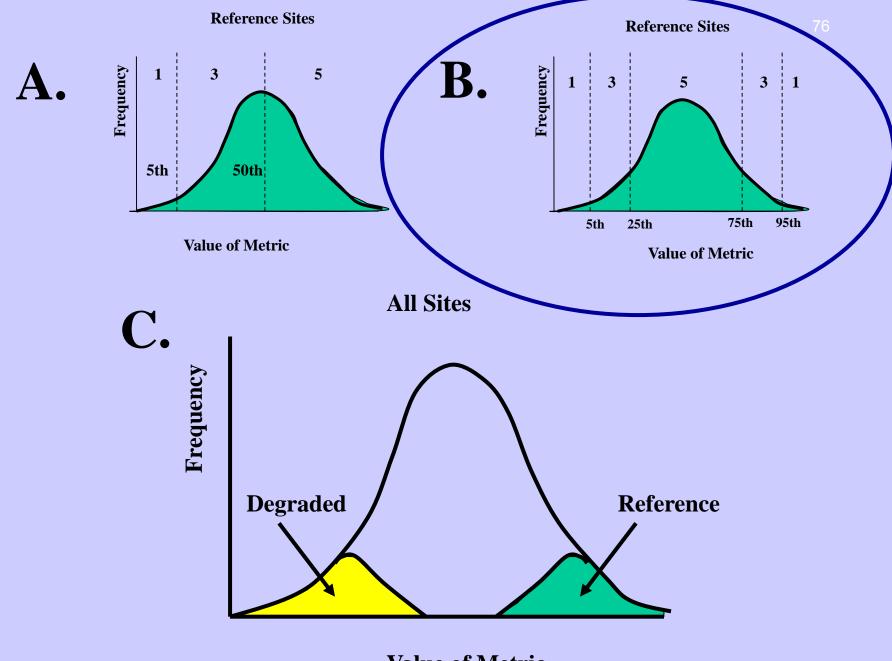
Causes of

benthic community degradation

I. Sediment contamination

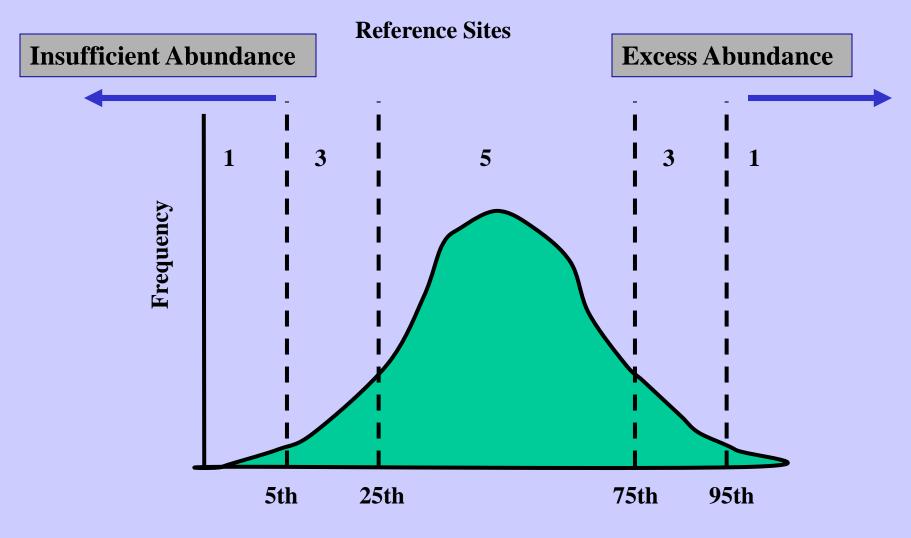
Discriminant function

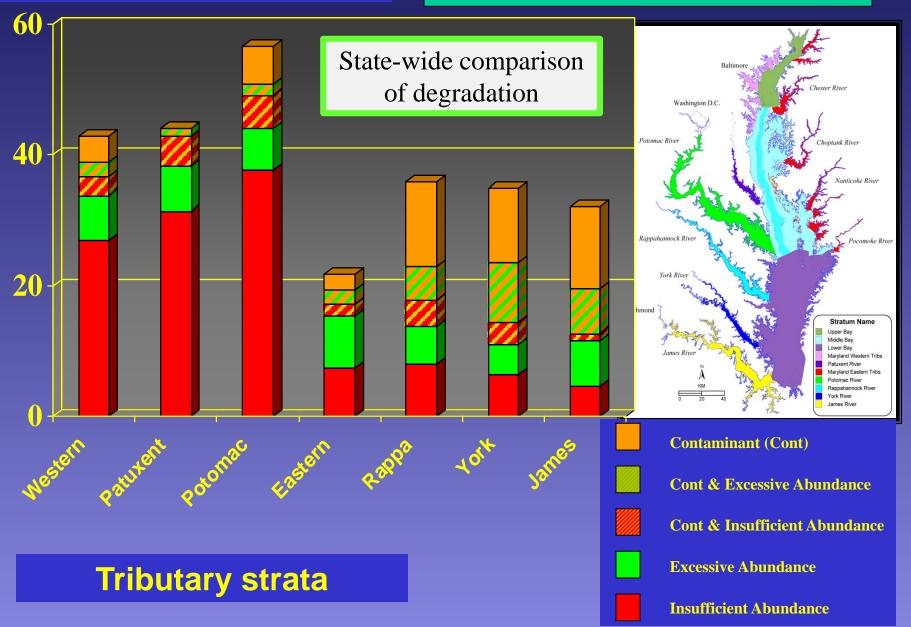
II. Organic enrichment (absent low DO)

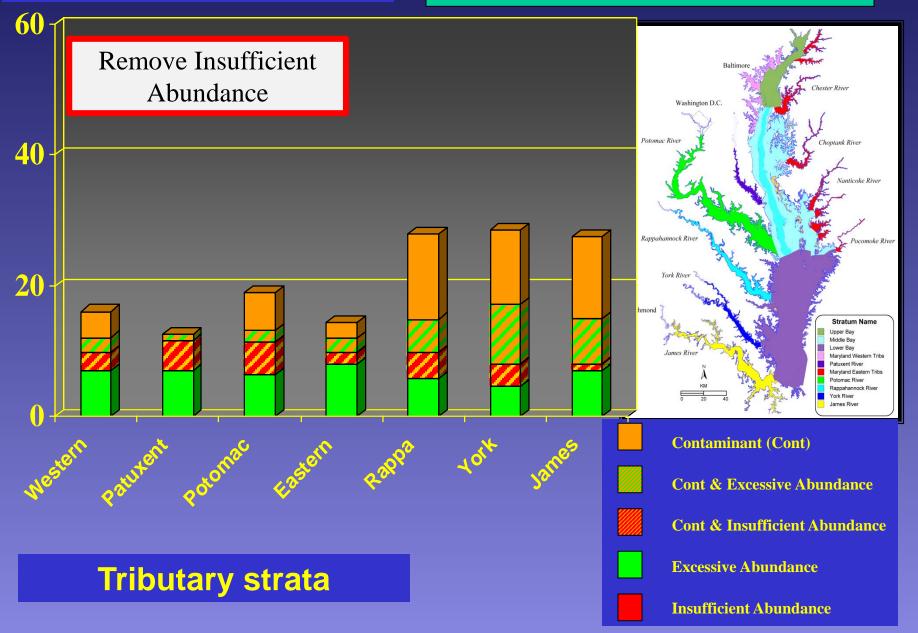

Excessive abundance metric

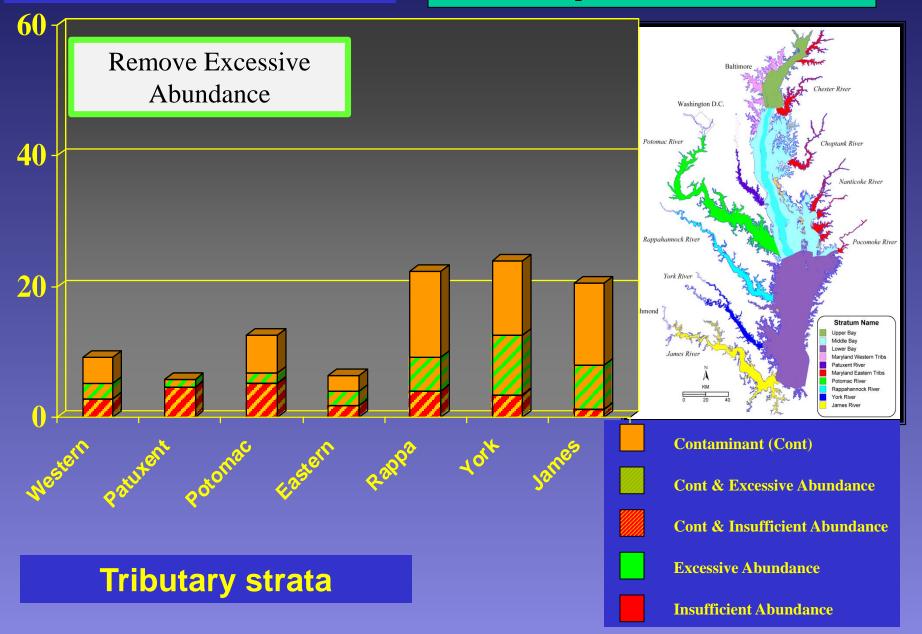
III. Low dissolved oxygen

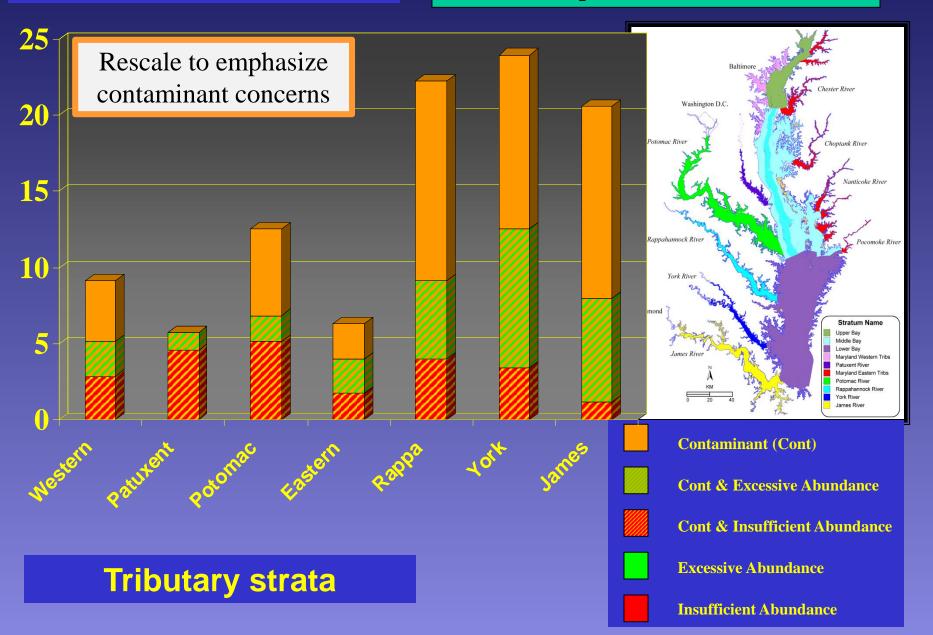
Insufficient abundance metric



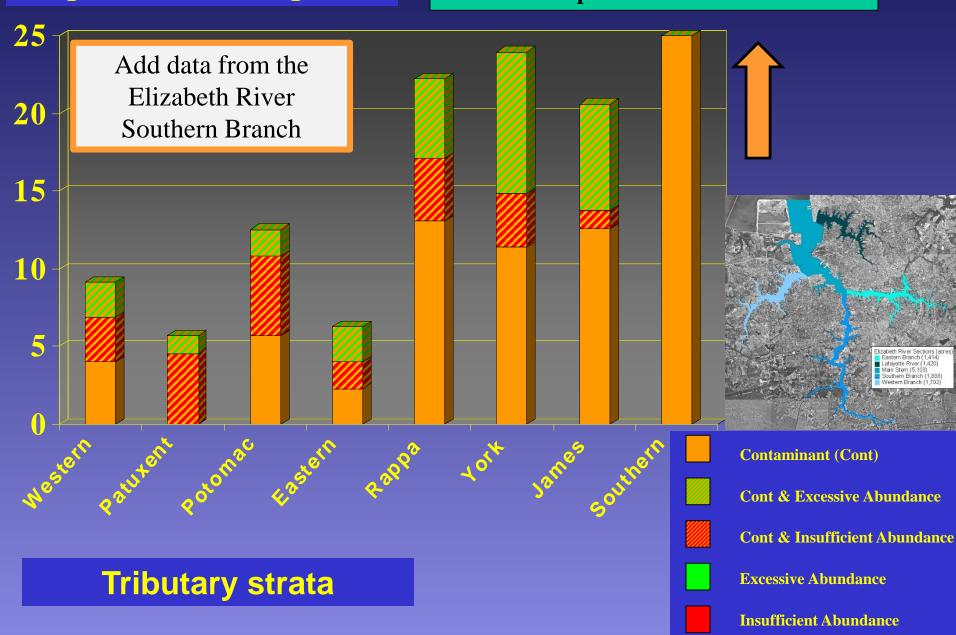


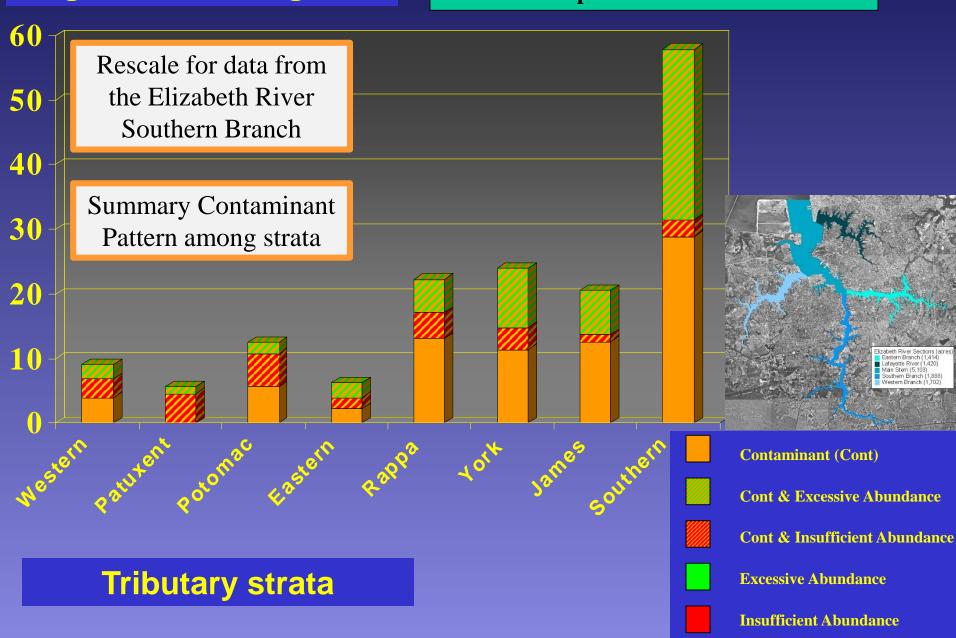

Value of Metric

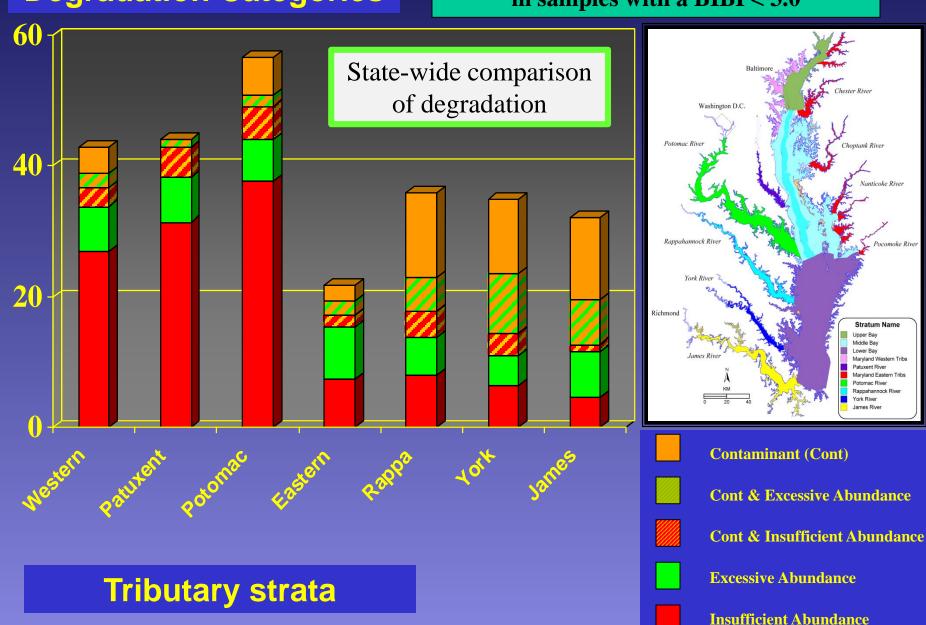

Index of Biotic Integrity (IBI)

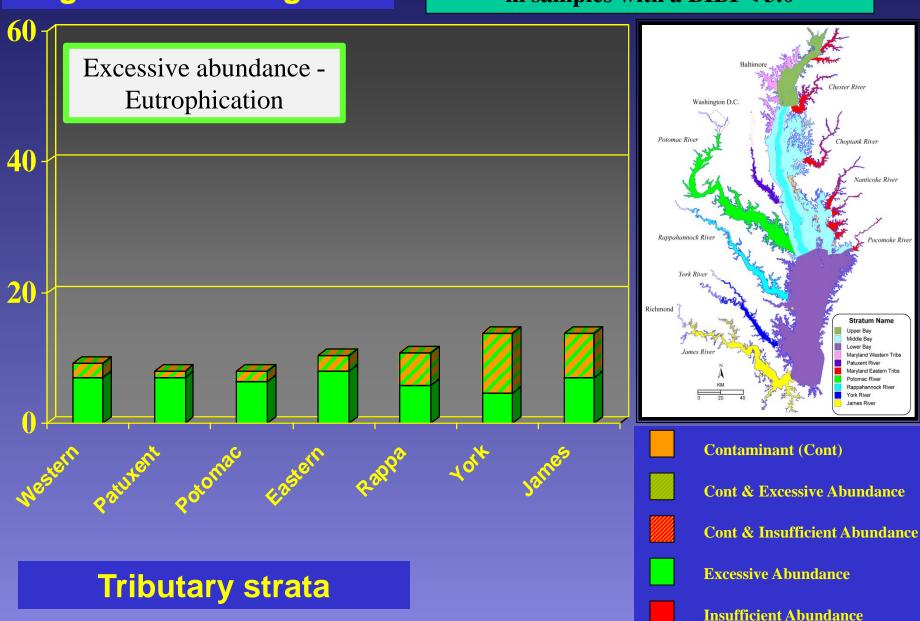


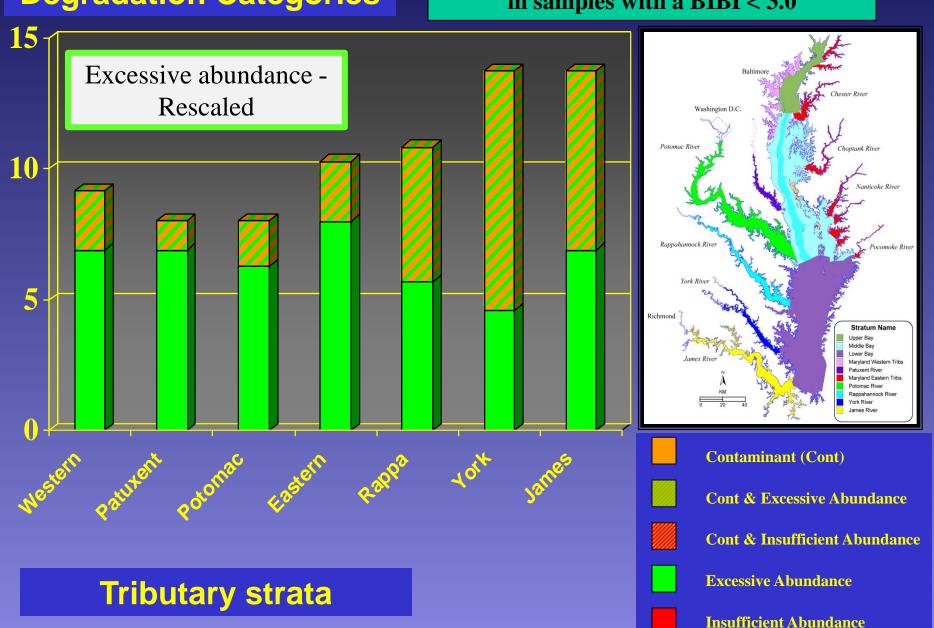
Value of Metric

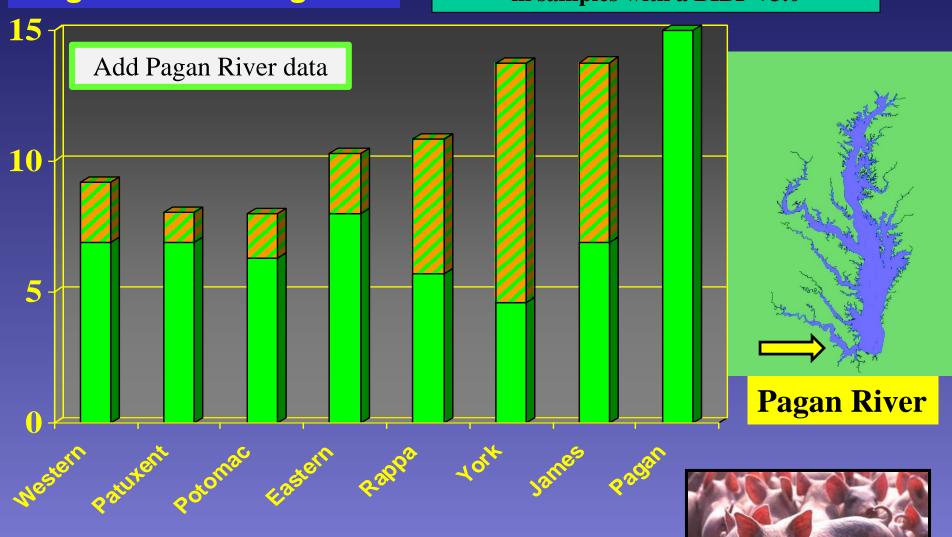


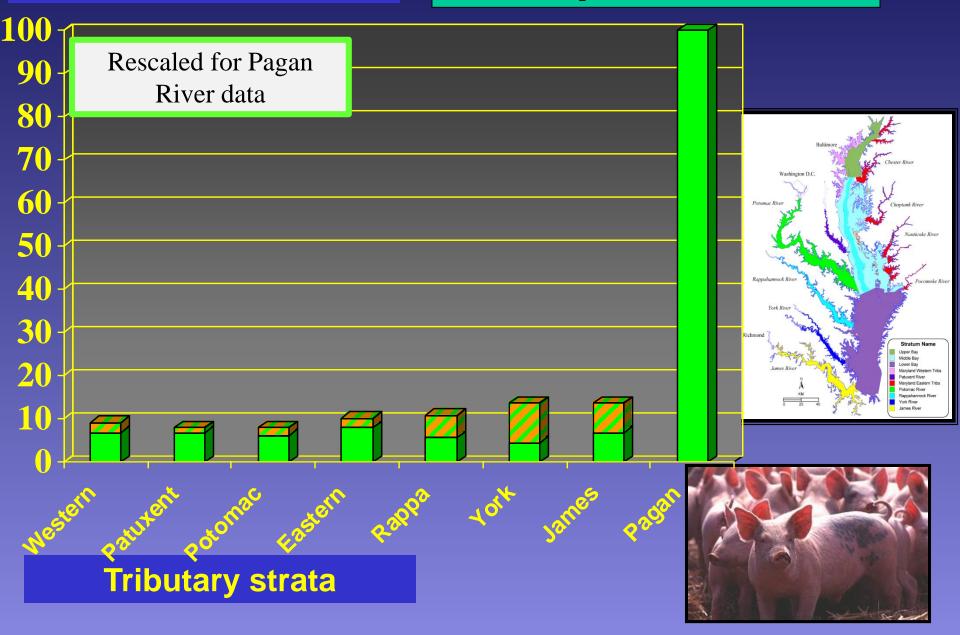


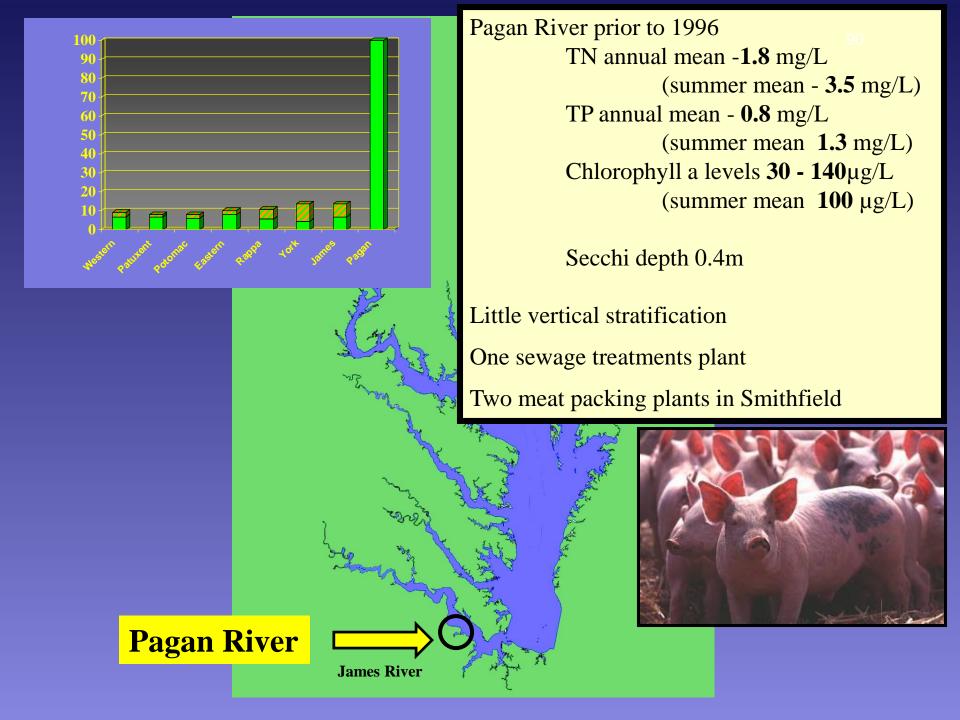




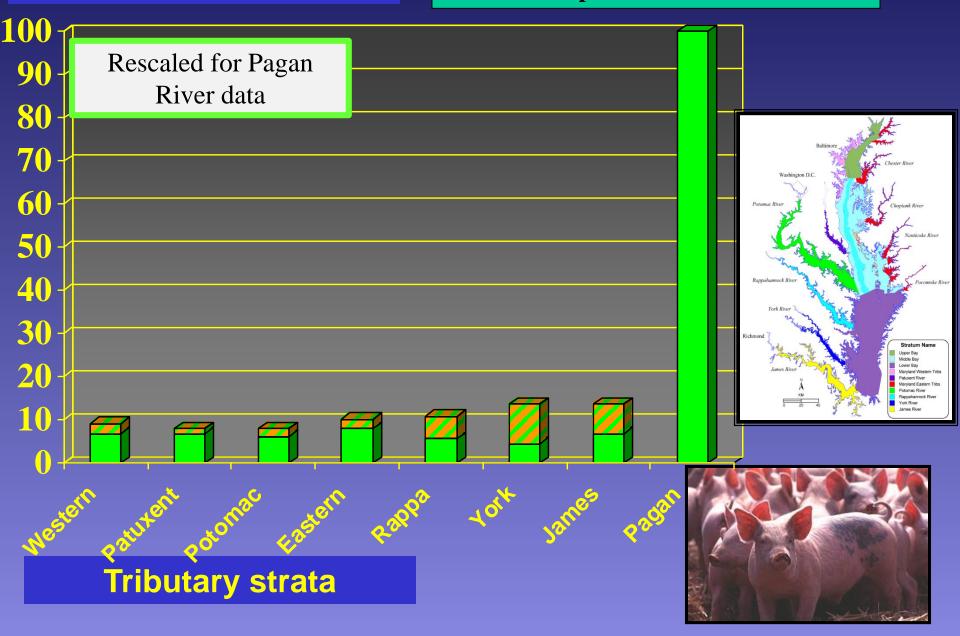





Contaminant effect (p > 0.9) in samples with a BIBI < 3.0



Tributary strata



Diagnostic approaches to causes of degradation

Summary

- 1. Sediment contamination
 - Linear discriminant function
- 2. Moderate eutrophication

Single metric (excessive abundance)

3. Low dissolved oxygen

Single metric (insufficient abundance)

(5) Diagnostic approaches to causes of degradation of benthic communities.

Low dissolved oxygen Eutrophication Sediment Contamination

(Dauer et al. 2002. EPA Technical Report)

(6) Impaired waters designations of Maryland DNR and Virginia DEQ 303d

(Llansó et al. 2009)

(6) Impaired waters designations of Maryland DNR and Virginia DEQ 303d

(Llansó et al. 2009)

Marine Pollution Bulletin 59 (2009) 48-53

Contents lists available at ScienceDirect

Marine Pollution Bulletin

journal homepage: www.elsevier.com/locate/marpolbul

Assessing ecological integrity for impaired waters decisions in Chesapeake Bay, USA

Roberto J. Llansó^{a,*}, Daniel M. Dauer^b, Jon H. Vølstad^{a,c}

- ^a Versar Inc., Ecological Sciences and Applications, 9200 Rumsey Road, Columbia, Maryland 21045, USA
- b Department of Biological Sciences, Old Dominion University, Norfolk, Virginia 23529, USA
- c Institute of Marine Research, P.O. Box 1870 Nordnes, 5817 Bergen, Norway

ARTICLE INFO

Keywords: Ecological integrity Benthic community condition Impaired waters assessment Biological criteria Chesapeake Bay

ABSTRACT

To meet the requirements of the Clean Water Act, the States of Maryland and biological criteria for identifying impaired waters in Chesapeake Bay and rept tion. The Chesapeake Bay benthic index of biotic integrity (B-IBI) is the basis for Working together with the states and the US Environmental Protection Agency for impairment decisions based on the B-IBI. The impaired waters decision appenthic habitat-dependent indices in a Bay segment (equivalent to water bodi Framework Directive) with a statistical test of impairment. The method takes tainty in reference conditions, sampling variability, multiple habitats, and san method to 1430 probability-based benthic samples in 85 Chesapeake Bay segments were considered impaired for benthic community condition. The final of considers benthic condition in combination with key stressors such as discontaminants.

© 2008 Elsevie

Years 2000-2004 1,430 samples 85 segments

(6) Impaired waters designations of Maryland DNR and Virginia DEQ 303d

(Llansó et al. 2009)

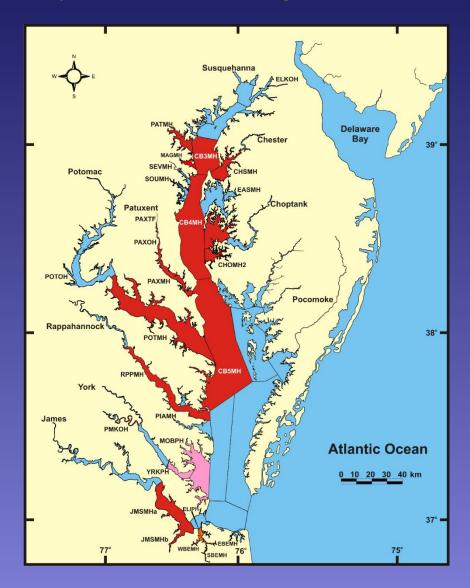
Keywords: Ecological integri Benthic commun Impaired waters Biological criteria Chesapeake Bay

To meet the requirements of the Clean Water Act, the States of Maryland and Virginia are using benthic biological criteria for identifying impaired waters in Chesapeake Bay and reporting their overall condition.

- 1. The impaired waters decision approach combines multiple benthic habitatdependent indices in a Bay segment (equivalent to water bodies) with a statistical test of impairment.
- 2. The method takes into consideration uncertainty in reference conditions, sampling variability, multiple habitats, and sample size.
- Twenty-two segments were considered impaired for benthic community condition.

(6) Impaired waters designations of Maryland DNR and Virginia DEQ

303d (Llansó et al. 2009)

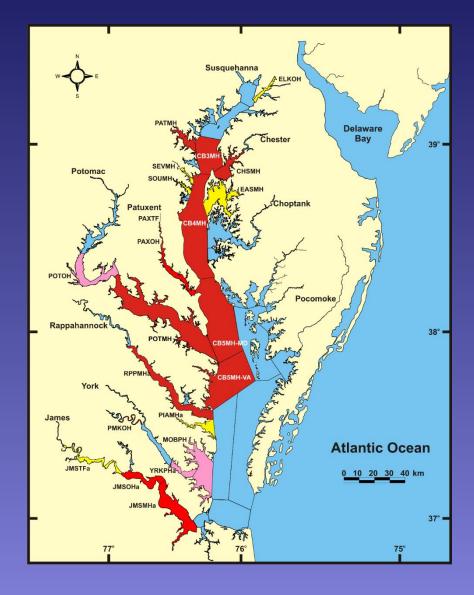

303D Assessment 2000-2004

Impaired Segment

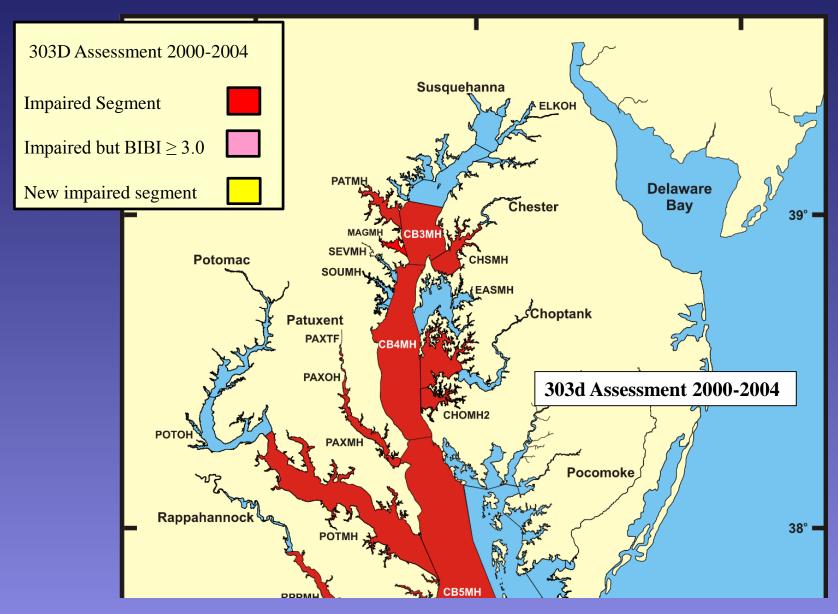
Impaired but BIBI ≥ 3.0

(6) Impaired waters designations of Maryland DNR and Virginia DEQ

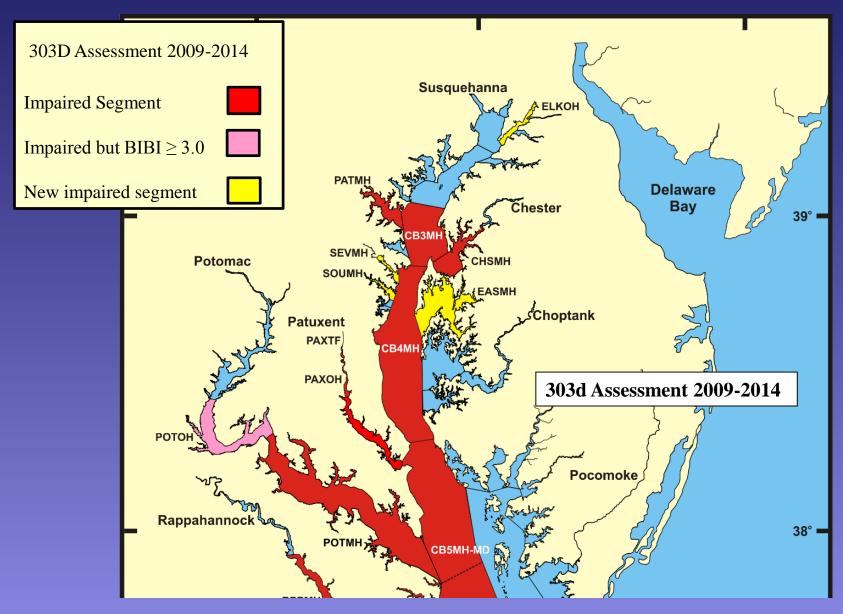
303d (Llansó et al. 2009)

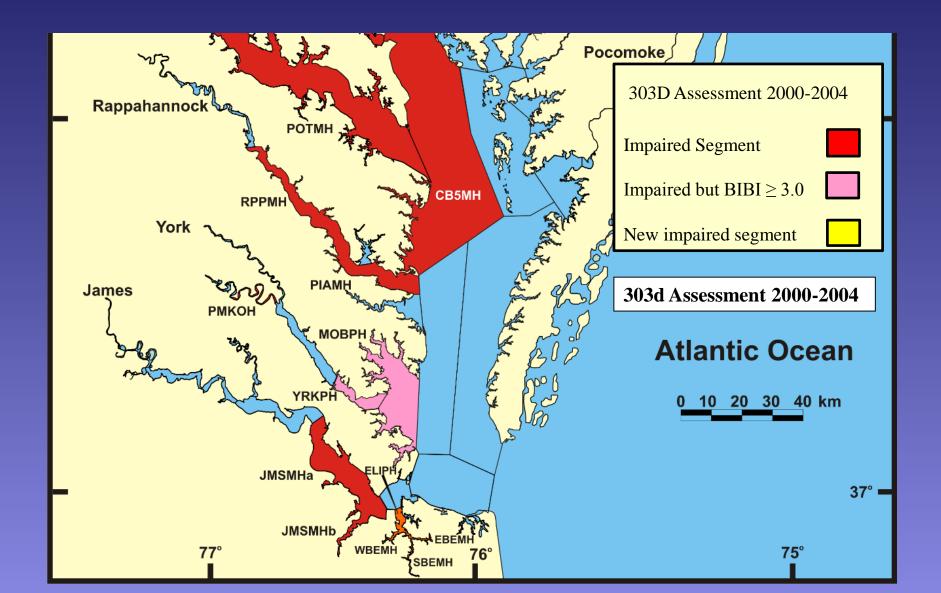

303D Assessment 2009-2014

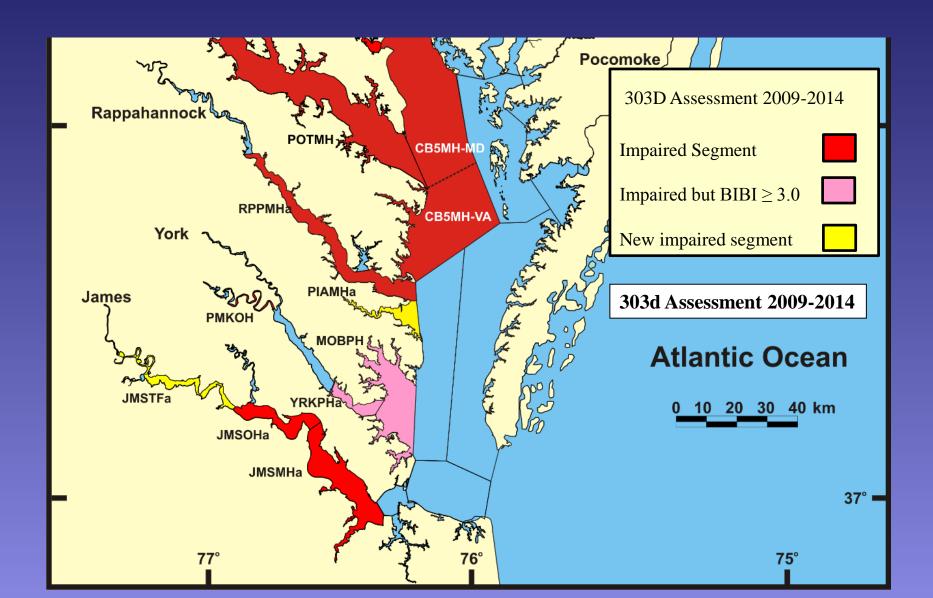
Impaired Segment


_

Impaired but BIBI ≥ 3.0


New impaired segment ____


(6) Impaired waters designations of Maryland DNR and Virginia DEQ 303d (Llansó et al. 2009)


(6) Impaired waters designations of Maryland DNR and Virginia DEQ 303d (Llansó et al. 2009)

(6) Impaired waters designations of Maryland DNR and Virginia DEQ 100 303d (Llansó et al. 2009)

(6) Impaired waters designations of Maryland DNR and Virginia DEQ 303d (Llansó et al. 2009)

(6) Impaired waters designations of Maryland DNR and Virginia DEQ 303d (Llansó et al. 2009)

23 impaired segments in 2009-2014 22 segments in 2000-2004

15 impaired segments in common

The previous five impaired segments of the Elizabeth River watershed are not listed – inadequate sample size.

Marine Pollution Bulletin 59 (2009) 48-53

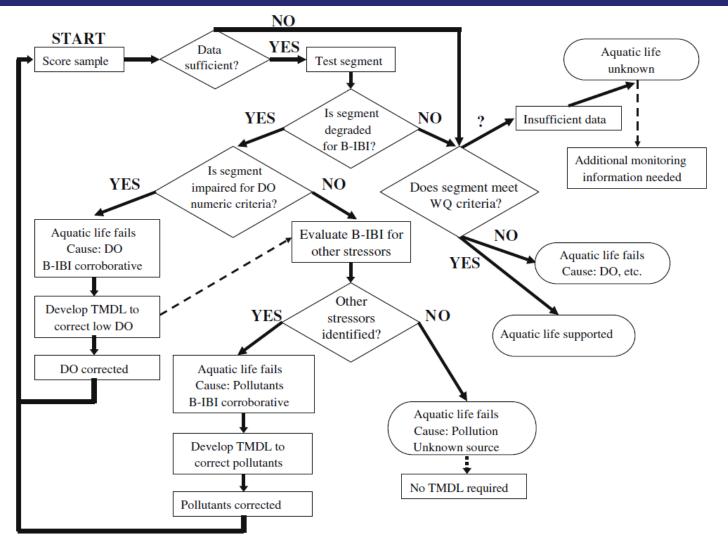


Fig. 1. Proposed decision process for assessing impaired waters in Chesapeake Bay.

Marine Pollution Bulletin 59 (2009) 48-53

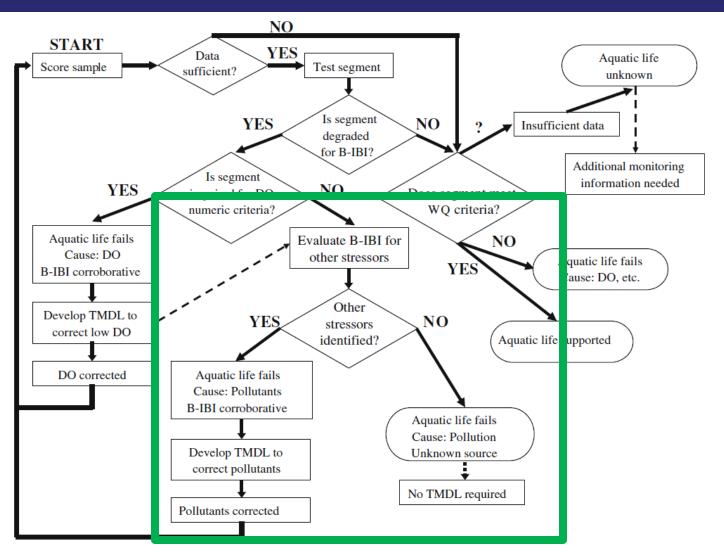


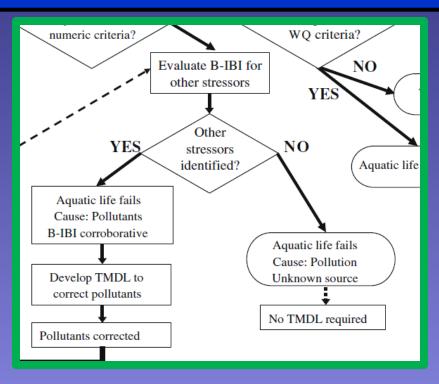
Fig. 1. Proposed decision process for assessing impaired waters in Chesapeake Bay.

Assessing ecological integrity for impaired waters decisions in Chesapeake Bay, USA Roberto J. Llansó ^{a,*}, Daniel M. Dauer ^b, Jon H. Vølstad ^{a,c}

Causes of

benthic community degradation

I. Sediment contamination


Discriminant function

II. Organic enrichment (absent low DO)

Excessive abundance metric

III. Low dissolved oxygen

Insufficient abundance metric

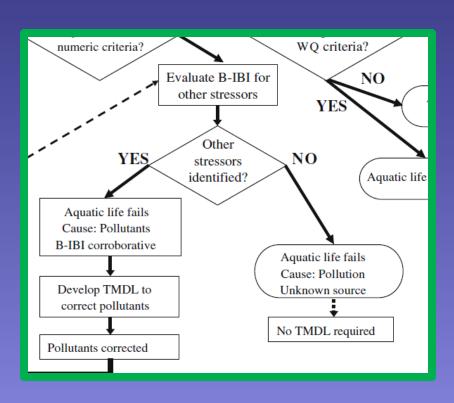
Causes of

benthic community degradation

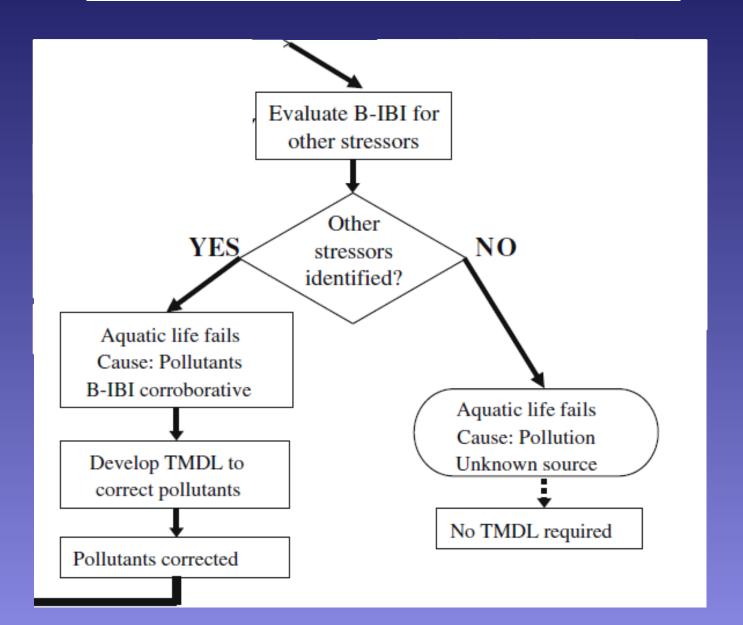
I. Sediment contamination

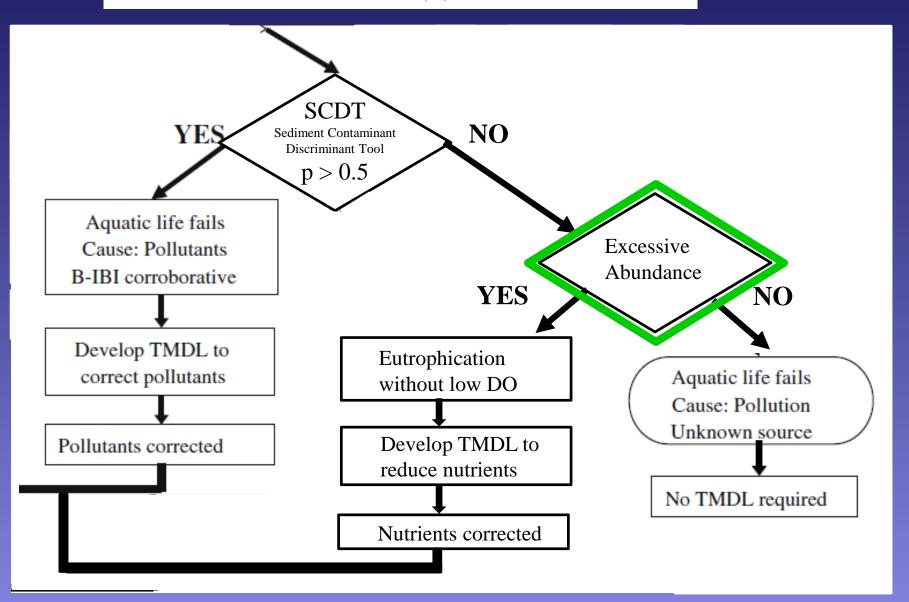
Discriminant function

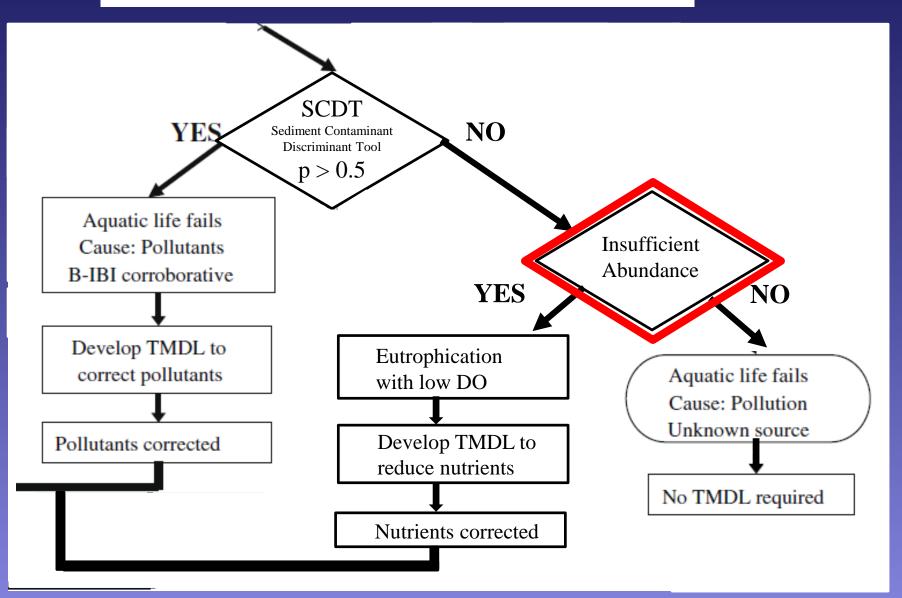
II. Organic enrichment (absent low DO)


Excessive abundance metric

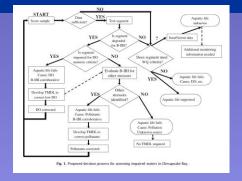
III. Low dissolved oxygen


Insufficient abundance metric


Marine Pollution Bulletin 59 (2009) 48-53


Marine Pollution Bulletin 59 (2009) 48-53

Marine Pollution Bulletin 59 (2009) 48-53

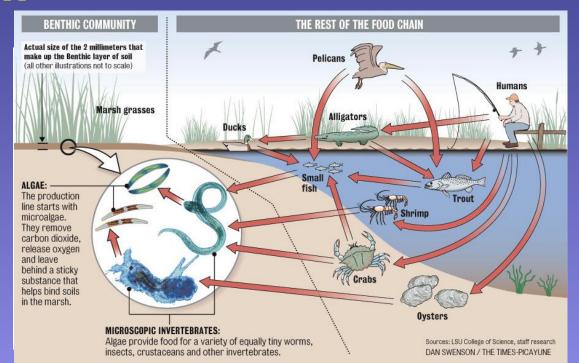

Marine Pollution Bulletin 59 (2009) 48-53

(6) Impaired waters designations of Maryland DNR and Virginia DEQ 303d (Llansó et al. 2003)

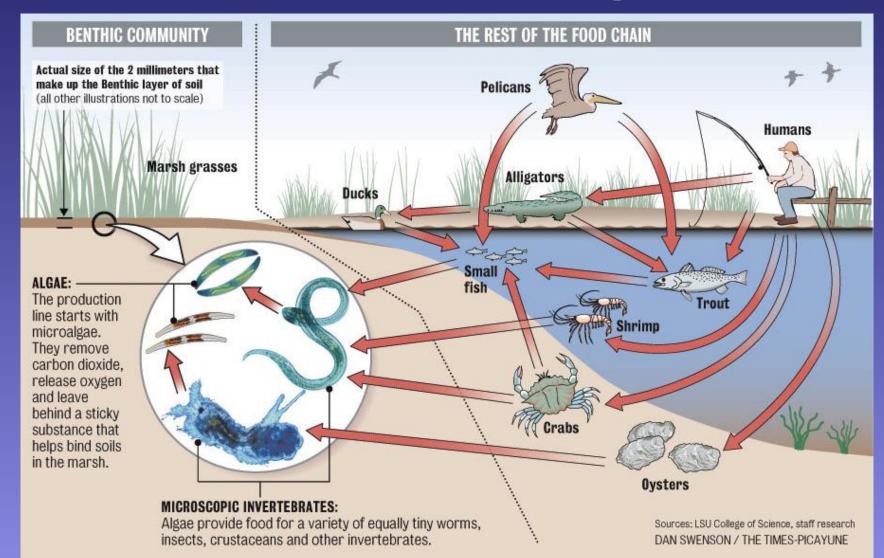
Summary

- 1. Water body test developed
- 2. Compares recent benthic samples with original reference sample
- 3. Combines different habitats
- 4. Diagnostic approaches can be applied

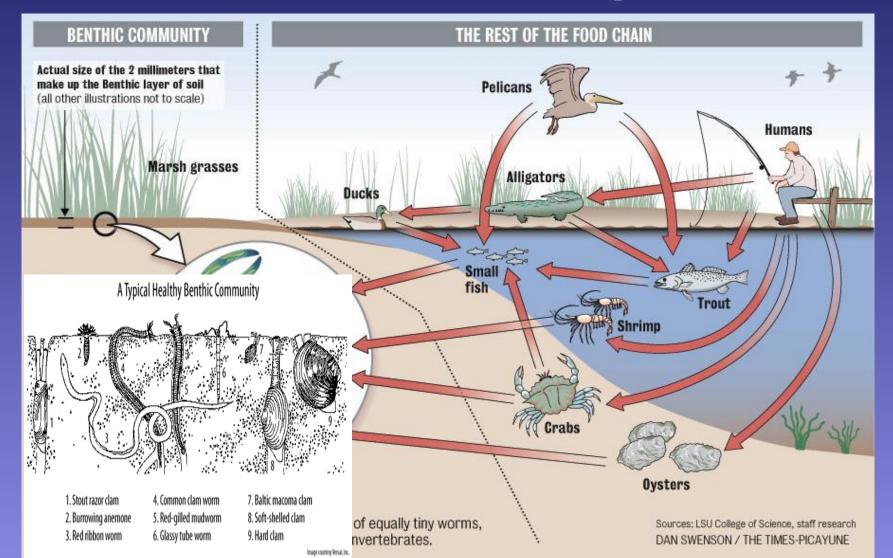
(5) Diagnostic approaches to causes of degradation of benthic communities.

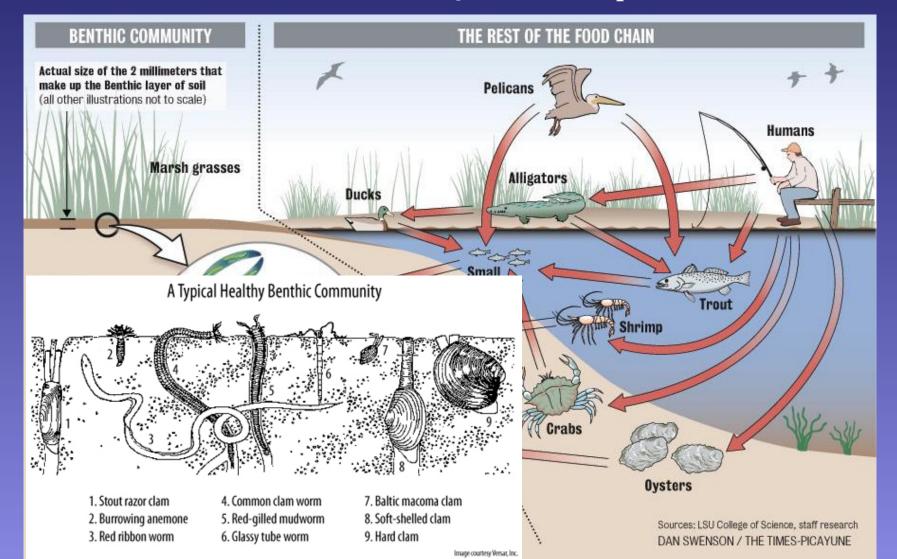

Low dissolved oxygen

Eutrophication


(Dauer et al. 2002. EPA Technical Report)

Sediment Contamination


- (6) Impaired waters designations of Maryland DNR and Virginia DEQ 303d (Llansó et al. 2003)
- (7) Functional metric/index approach


Benthic secondary productivity Dauer et al. 2011. VADEQ Technical Report.

Benthic secondary productivity Dauer et al. 2011. VADEQ Technical Report.

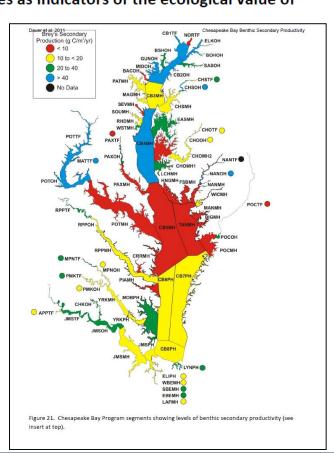
Benthic secondary productivity Dauer et al. 2011. VADEQ Technical Report.

Benthic secondary productivity Dauer et al. 2011. VADEQ Technical Report.

Preliminary evaluations of secondary productivity estimates as indicators of the ecological value of

the benthos to higher trophic levels in Chesapeake Bay

Prepared by

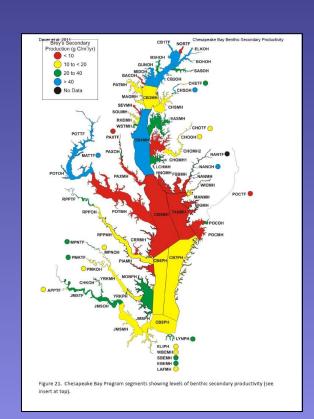

Principal Investigators:

Daniel M. Dauer¹ Michael F. Lane¹ Roberto J. Llansó² Robert Diaz³

Submitted to:

Virginia Department of Environmental Quality 629 East Main Street Richmond, Virginia 23230

December, 2011



Estuarine pattern of benthic secondary production Low dissolved oxygen effects

Contaminant effects

Trophic transfer challenges
Susceptibility to predation
Microbial sinks

Production equation matters

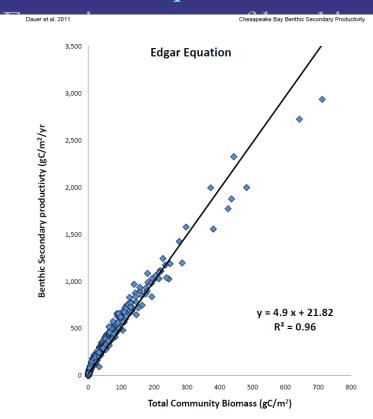
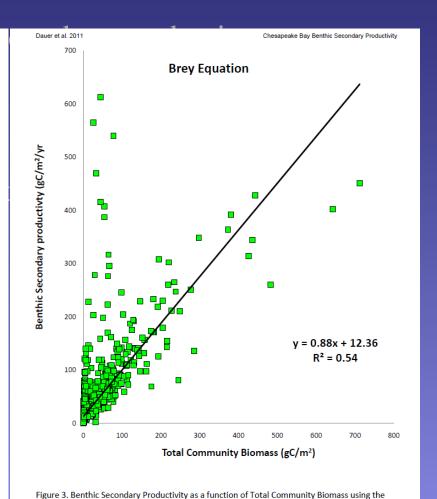



Figure 2. Benthic Secondary Productivity as a function of Total Community Biomass using the Edgar equation. Equation applied for each species and summed.

Brey equation. Equation applied for each species and summed.

Production equation matters

Edgar (1990)

$$P = 0.0049 \times B 0.80 7 0.89$$

P - per sample daily macrobenthic production

B - per sample standing crop biomass (mg AFDW)

T - water temperature in C

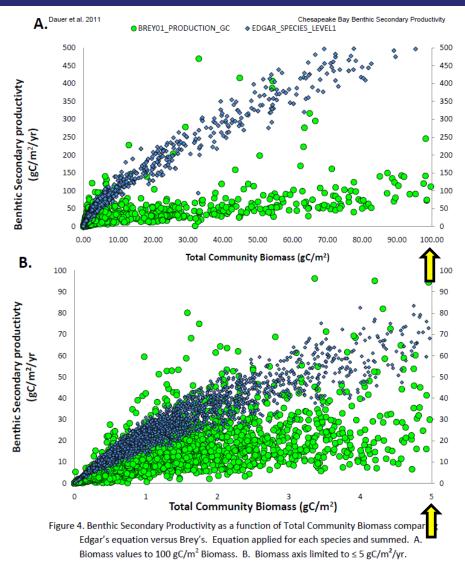
Production equation matters

Brey's (2001)

$$log_{10}(P/B) = 7.947 - 2.294 \times log_{10}(w) - (2409.856 \times 1/T) + (0.168 \times 1/D) + (0.194 \times Subtid) + (0.180 \times InfEpi) + (0.174 \times Tax1) - (0.188 \times Tax2) + (0.330 \times Tax3) + (582.851 \times log_{10}(w) \times 1/T)$$

w - mean body mass per individual expressed in kJ

D sample depth in meters


T - temperature in K and several discrete (dummy) variables which took the following form:

Dummy variables

Subtid increases the P/B ratio with a a depth of > 1 meter

InfEpi is set to 1 if the organism is infaunal also resulting in an increase in the P/B ratio Tax1, Tax2 and Tax3 are dummy variables that identify specific taxon effects - (1) annelid or crustacean; (2) echinoderm or (3) an insect, respectively, and 0 if otherwise.

Production equation matters
Estuarine pattern of benthic
Low dissolved oxygen effect
Contaminant effects
Trophic transfer challenges
Susceptibility to prec
Microbial sinks

Production equation matters

Estuarine pattern of benthic secondary production

Low dissolved oxygen effects

Contaminant effects

Trophic transfer challenges

Susceptibility to predation

Microbial sinks

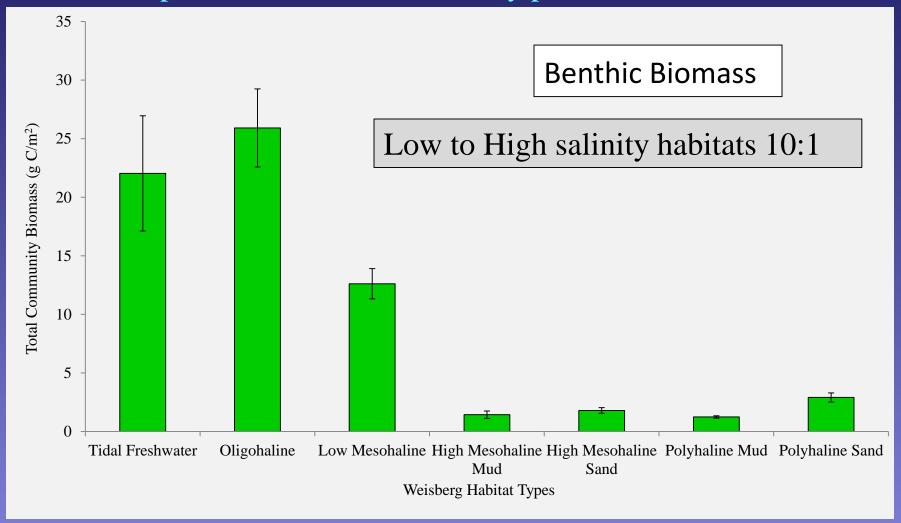


Figure 6. Mean standing stock biomass (gC/m^2) by the habitat types of Weisberg et al. (1997). Bar indicates one standard error. All random data from 1996 -2009 n = 3,919.

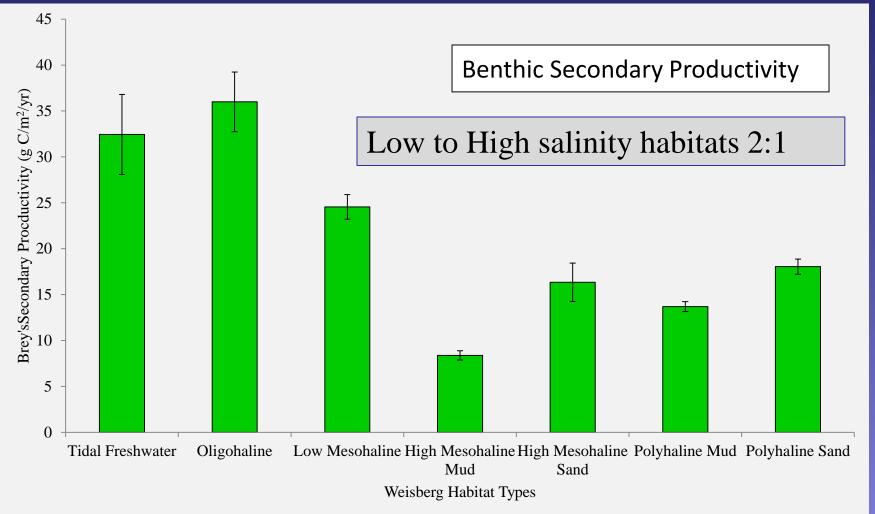
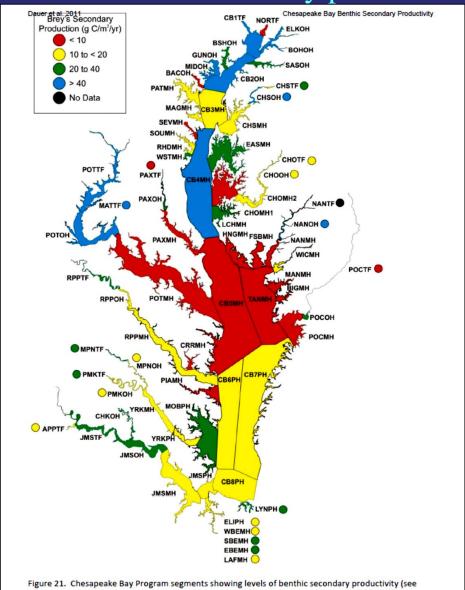
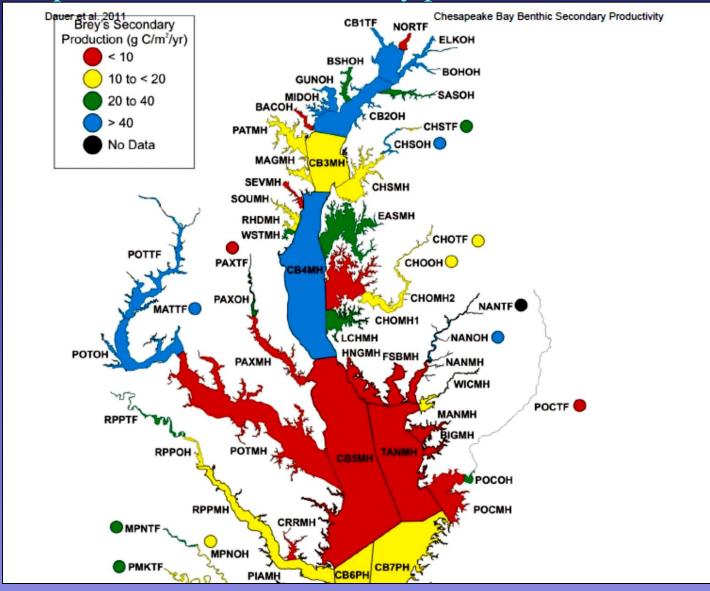
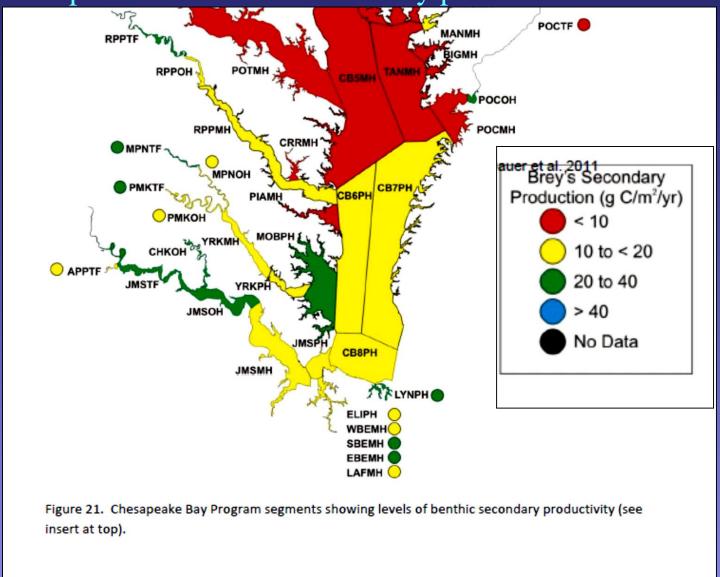





Figure 5. Mean secondary production ($gC/m^2/yr$) by the habitat types of Weisberg et al. (1997). Bar indicates one standard error. All random data from 1996 -2009 n = 3,919.

Production equation matters
Estuarine pattern of benthic secondary production

Contaminant effects
Trophic transfer challenges
Susceptibility to predation

Microbial sinks

Low dissolved oxygen effects

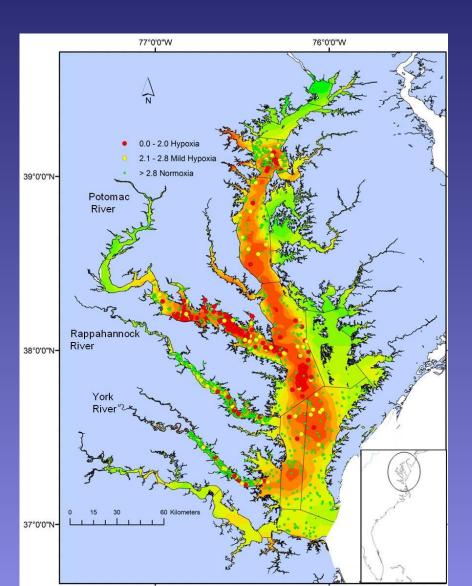


Figure 16. Mean species per

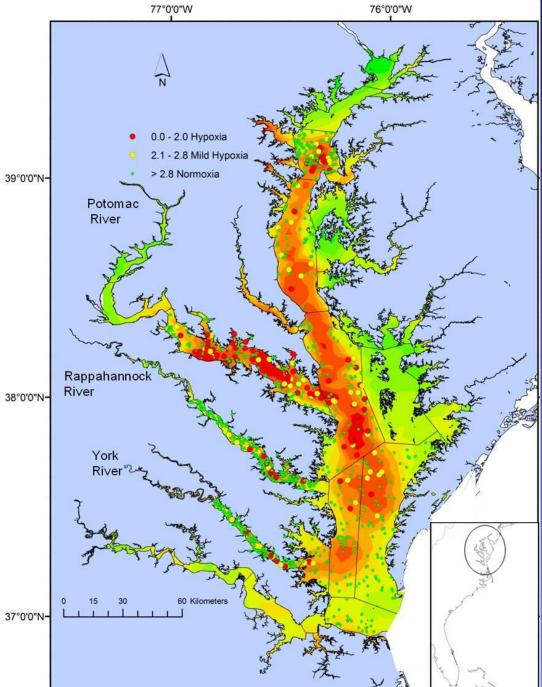
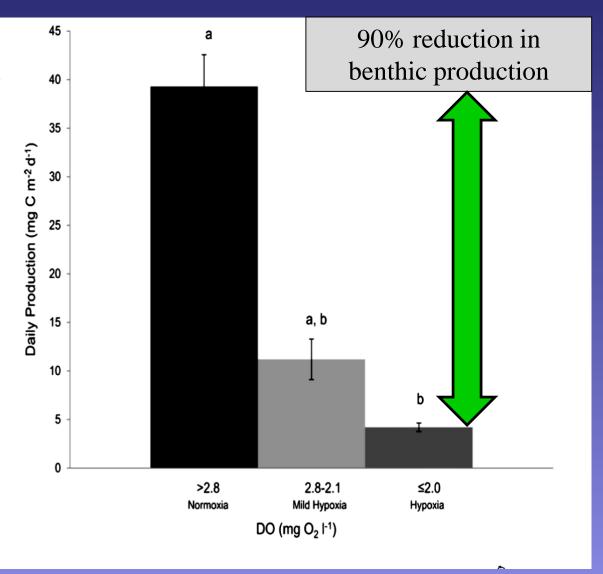



Fig. 3 Relationship between mean daily macrobenthic production and dissolved oxygen concentration in Chesapeake Bay. Letter differences represent significance (*df*=26, *F*=27.97, *p*<0.0005). Normoxic areas have significantly higher daily macrobenthic production than hypoxic areas. Error bars represent ±1 SE

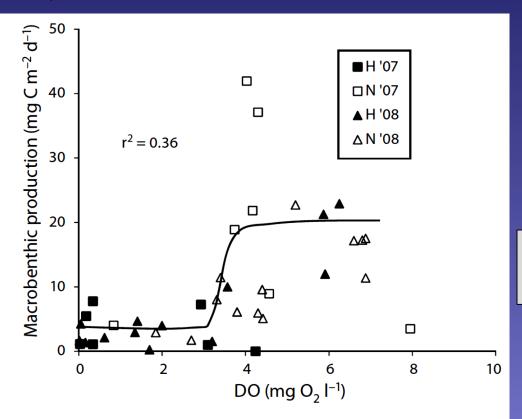


Fig. 4. Dissolved oxygen concentration and daily macrobenthic production for the continuously monitored hypoxic and normoxic sites in 2007 and 2008. There was a sigmoid relationship between DO and daily macrobenthic production (df = 39, F = 10.31, p = 0.0003). Squares represent 2007 data; triangles represent 2008 data. Solid symbols indicate the hypoxic (H) sites, and hollow symbols the normoxic (N) sites

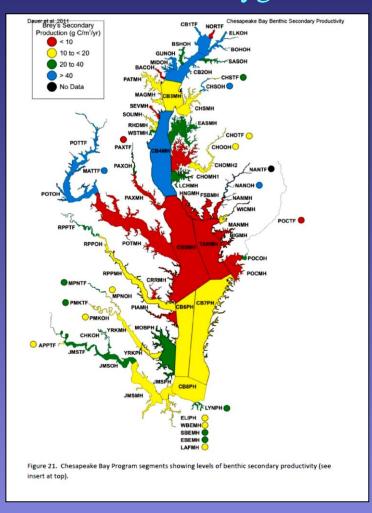
Sigmoid DO – benthic production relationship

Low dissolved oxygen effects

Table 3 Comparison of oxygen condition and mean daily macrobenthic production

(a) By phylum (±1	SE)						
	n	Mollusca $p=0.002$	Annelida p <0.0005	Arthropoda p<0.0005	Taxocene patterns (Used Edgar's equation)		
Normoxia	924	40.8 (4.4) a	9.6 (0.4) a	3.2 (0.3) a			
Mild hypoxia	64	6.5 (3.1) a,b	3.7 (0.4) b	0.7 (0.2) b			
Hypoxia	101	3.0 (2.5) b	2.5 (0.4) b	0.2 (0.1) b			
(b) By class (±1SE	3)						
	n	Bivalvia	Gastropoda	Polychaetea	Oligochaetea	Amphipoda	Isopoda
		p=0.003	ns	p<0.0005	p=0.027	p=0.013	p<0.0003
Normoxia	924	39.9 (4.4) a	0.8 (0.3)	7.7 (0.3) a	1.8 (0.3) a	1.5 (0.2) a	0.5 (0.1)
Mild hypoxia	64	6.2 (3.1) a,b	0.3 (0.1)	3.4 (0.4) b	0.3 (0.1) a,b	0.5 (0.2) a,b	0.1 (0.0)
Hypoxia	101	2.9 (2.5) b	0.1 (0.0)	2.4 (0.4) b	0.1 (0.0) b	0.1 (0.0) b	0.0(0.0)

Letter differences denote significance



Low dissolved oxygen effects

Table 6. Compilation of the major hypoxia resistant species collected at the 4 continuously monitored sites: in 2007, hypoxic Site 18 (hyp) and normoxic Site 25 (norm); in 2008, hypoxic Site 11 (hyp) and normoxic Site 12 (norm). Values in the table represent the percentage of macrobenthic production contributed by each species by site; abundances are in parentheses and dash denotes no data. For taxon group: A = annelid, B = bivalve

Taxon (group)	Hypoxia LT ₅₀ (h)	Site 18 (hyp)	Site 25 (norm)	Site 11 (hyp)	Site 12 (norm)	Polychaete tolerance
Heteromastus filiformis (A)	168-312	-	0.1 (32)	3.3 (12)	0.1 (1)	Rosenberg (1972), Warren (1976), Kravitz (1983)
Loimia medusa (A)	72-113	0.8 (2)	1.8 (3)	_	1.2 (1)	Breitburg et al. (2003)
Macoma balthica (B)	212–1658	2.1 (2)	-	-	-	Aller et al. (1983), Brafield & Newell (1961), Hines & Comtois (1985)
Nereis succinea (A)	62-84	0.8 (1)	0.1 (1)	27.5 (20)	28.7 (17)	Fauchald & Jumars (1979), Kravitz (1983), Hines & Comtois (1985), Fong (1991), Sagasti et al. (2001)
Paraprionospio pinnata (A)	-	77.5 (48)	47 (79)	52.2 (52)	33.6 (50)	Dauer et al. (1981), Kravitz (1983), Schaffner (1987)
Streblospio benedicti (A)	43	1.3 (2)	1.4 (11)	3.6 (12)	3.5 (19)	Dauer et al. (1981), Hines & Comtois (1985), Kravitz (1983), Llansó (1991)
Tubificoides spp. (A)	720	1.3 (3)	-	_	0.3 (3)	Tevesz et al. (1980), Hines & Comtois (1985), Giere et al. (1999)

Low dissolved oxygen effects

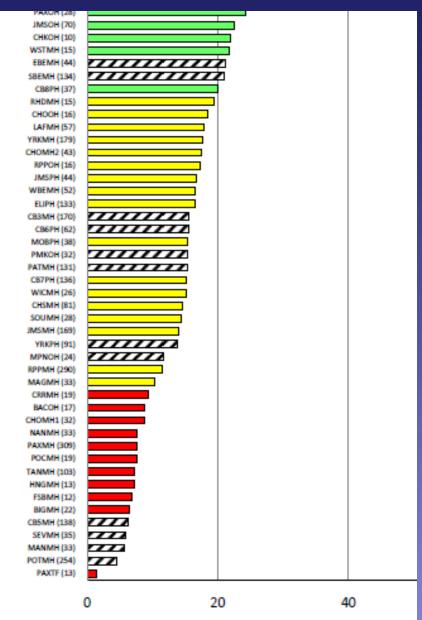
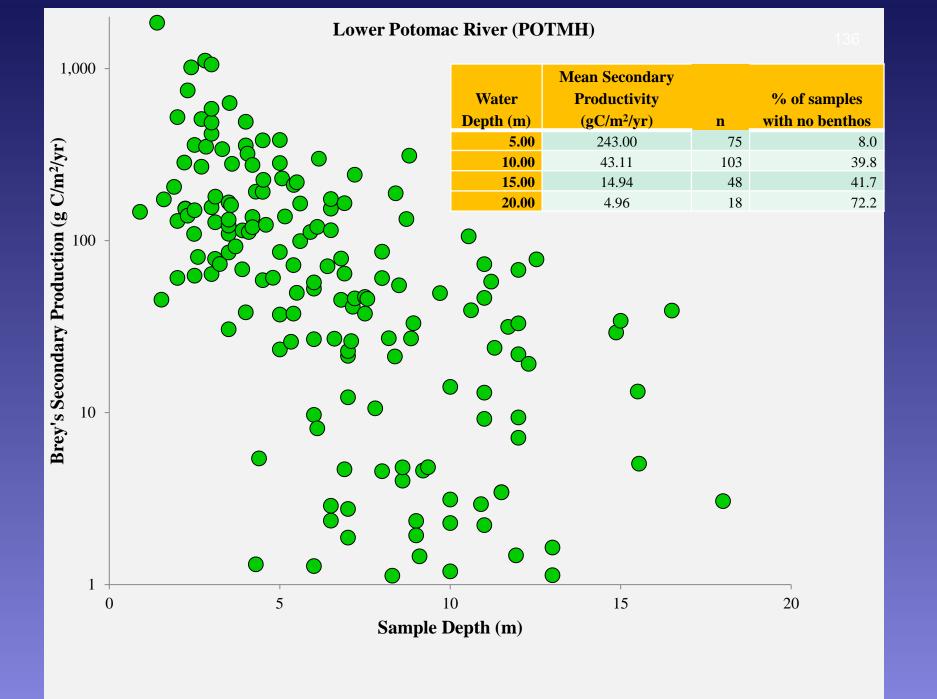



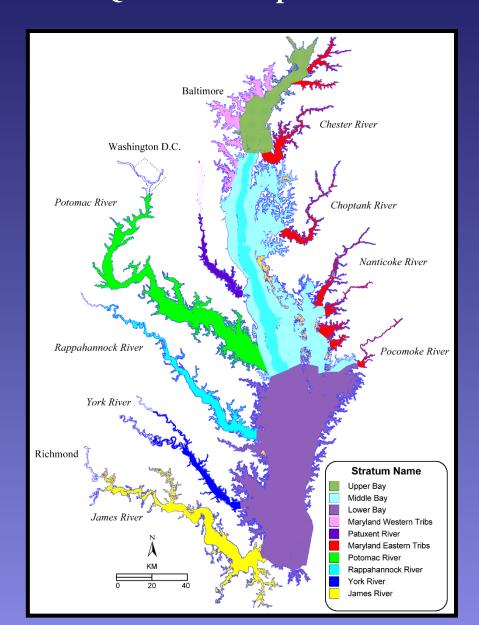
Figure 27. CBP segments and low dissolved oxygen. SI

Production equation matters
Estuarine pattern of benthic secondary production
Low dissolved oxygen effects

Trophic transfer challenges
Susceptibility to predation
Microbial sinks

(7) Functional metric/index approach - Benthic secondary productivity Dauer et al. 2011. VADEQ Technical Report

Contaminant effects



(7) Functional metric/index approach - Benthic secondary productivity Dauer et al. 2011. VADEQ Technical Report

Contaminant effects

10 benthic strata
BIBI
Biomass
Benthic Productivity

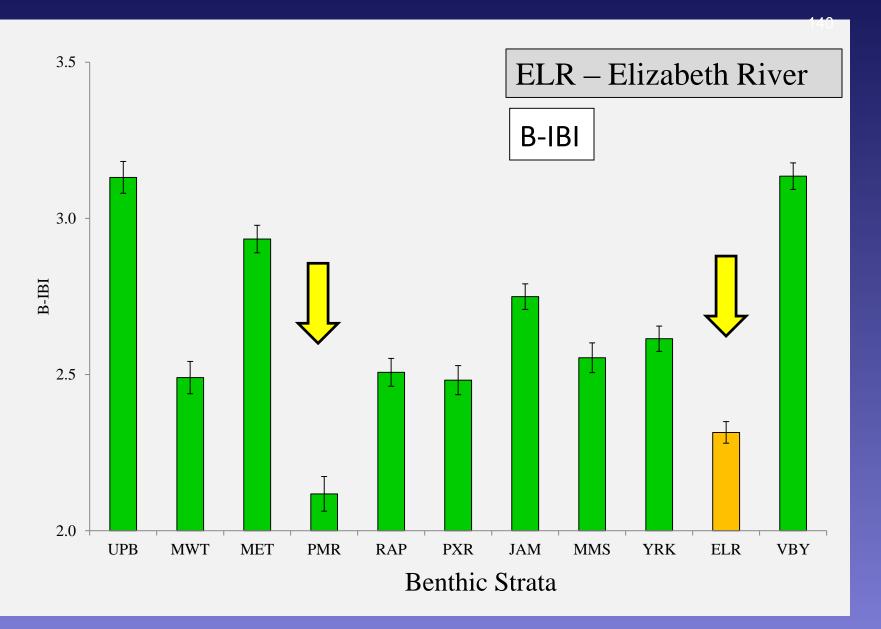


Figure 15. Mean B-IBI by the habitat types by the CBP benthic strata. Bar indicates one standard error.

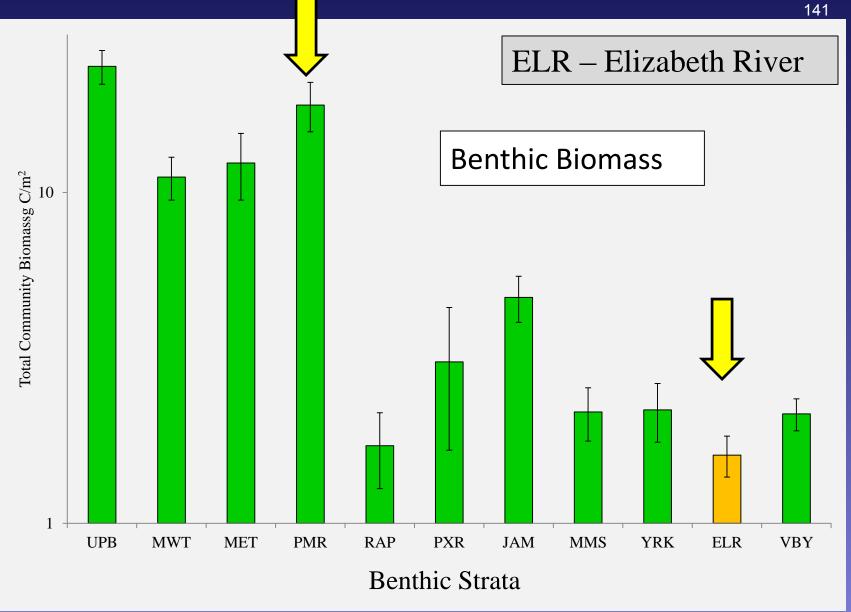


Figure 13. Mean standing stock biomass (gC/m²) by the CBP benthic strata. Bar indicates one standard error.

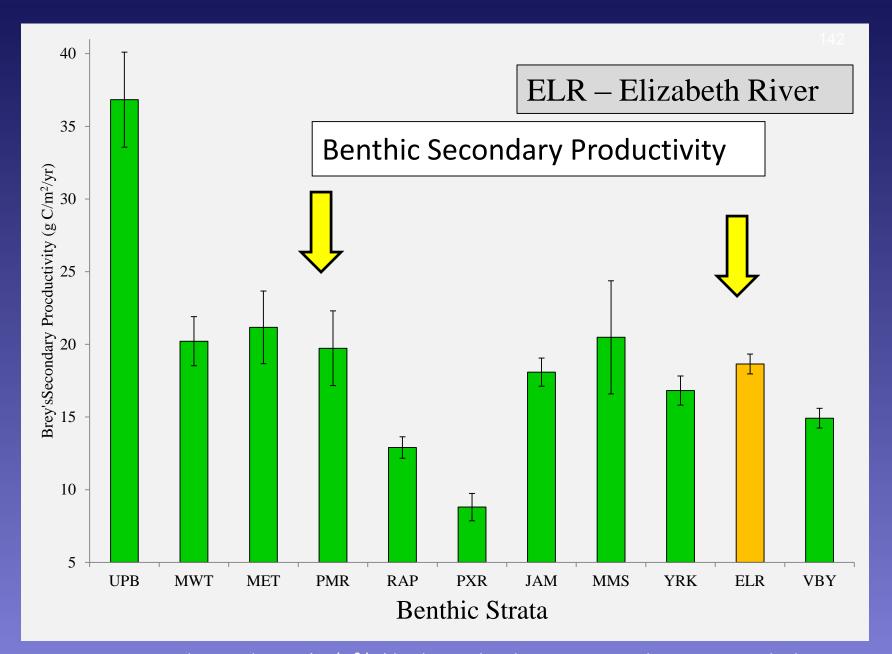
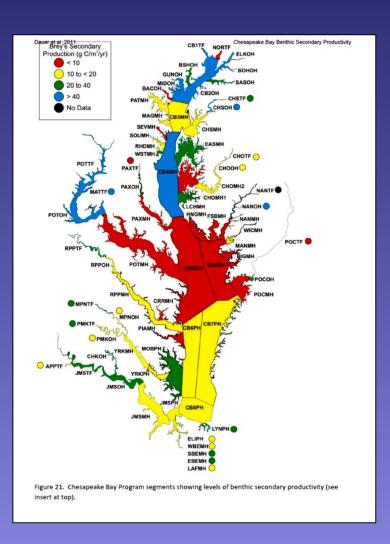



Figure 12. Mean secondary production (gC/m²/yr) by the CBP benthic strata. Bar indicates one standard error.

UPB – Upper Mainstem, MWT – Maryland Western Tributaries, MET – Maryland Eastern Tributaries, PMR – Potomac River, RAP – Rappahannock River, PXR – Patuxent River, JAM – James River, MMS – Middle Mainstem, YRK – York River, ELR – Elizabeth River, VBY – Virginia Mainstem.

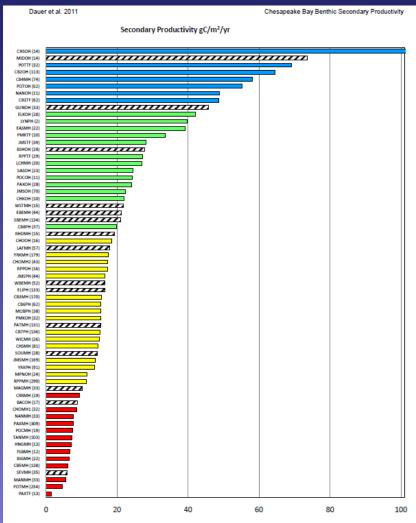


Figure 28. CBP segments and high urban land-use. Shown are secondary productivity values in $gC/m^2/yr$. Colors correspond to the intervals of Figure 21. Segments with no color and cross hatching are located in either the Maryland Western Tributaries benthic stratum or the Elizabeth River watershed.

(7) Functional metric/index approach - Benthic secondary productivity Dauer et al. 2011. VADEQ Technical Report

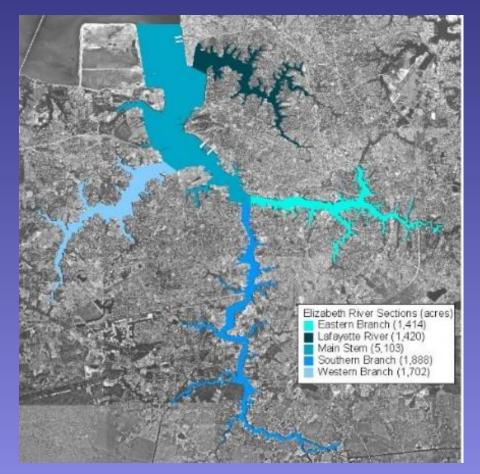
Production equation matters
Estuarine pattern of benthic secondary production
Low dissolved oxygen effects
Contaminant effects

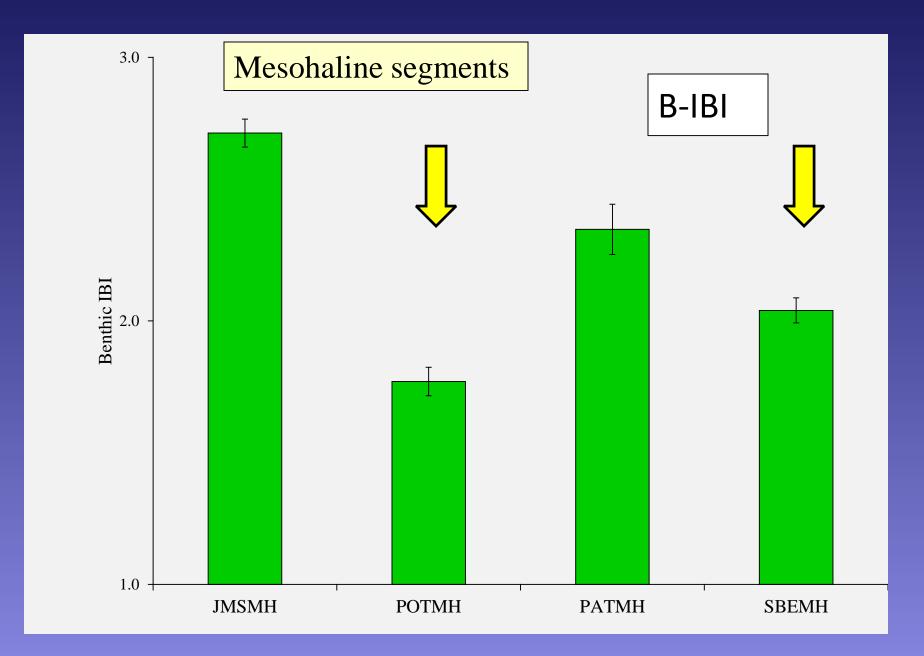
Trophic transfer challenges
Susceptibility to predation
Microbial sinks

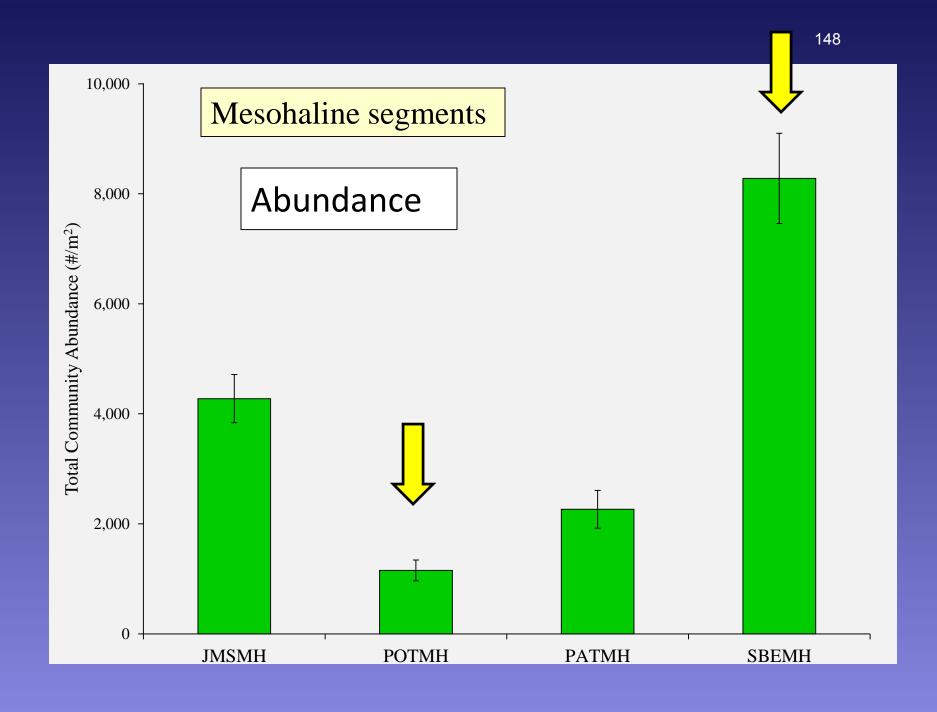
(7) Functional metric/index approach - Benthic secondary productivity Dauer et al. 2011. VADEQ Technical Report

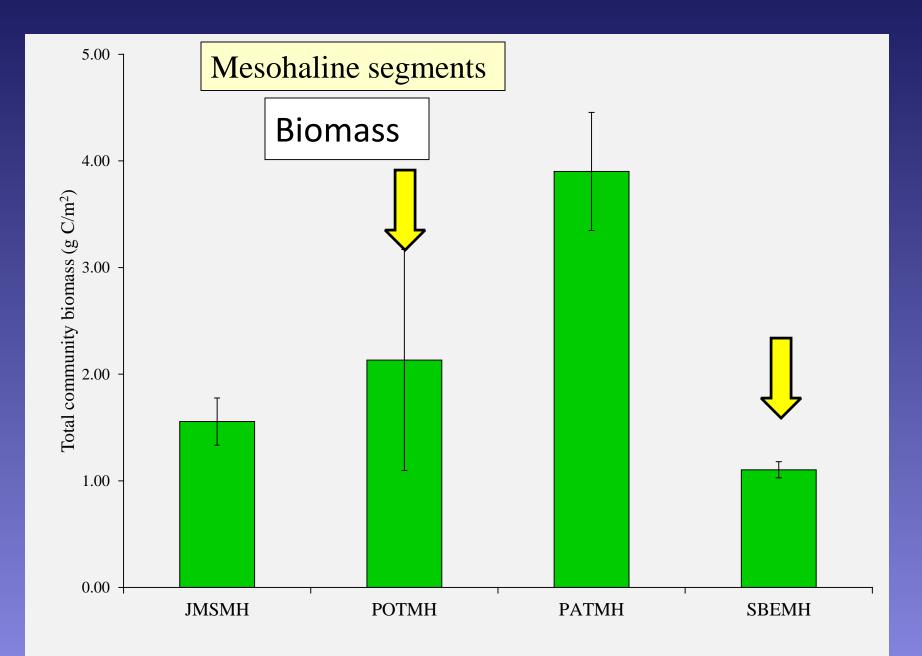
Trophic transfer challenges Susceptibility to predation Microbial sinks

Develop species specific estimates of **potential availability** of the benthic production to higher trophic levels.

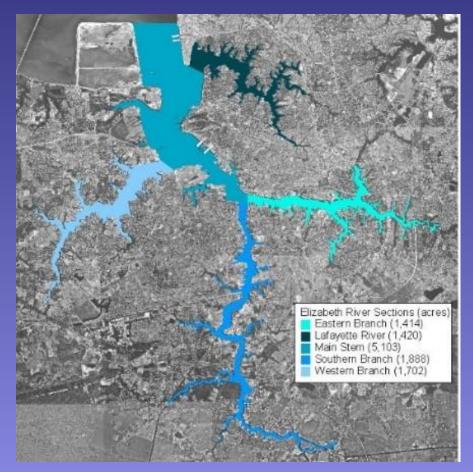

Important ecological factors are


- (1) protective coverings such has molluscan shells and crustacean exoskeletons that reduce predation,
- (2) depth of dwelling within the sediment that might provide a refuge from predation,
- (3) body size factors that affect strength of protective coverings and/or age-related sediment depth dwelling location, and
- (4) general **behaviors** that can modify susceptibility to predation, e.g. rapid motility.


(7) Functional metric/index approach - Benthic secondary productivity Dauer et al. 2011. VADEQ Technical Report


Trophic transfer challenges
Susceptibility to predation
Microbial sinks

Anoxia
Contaminants



(7) Functional metric/index approach - Benthic secondary productivity Dauer et al. 2011. VADEQ Technical Report

Trophic transfer challenges
Susceptibility to predation
Microbial sinks

Anoxia
Contaminants

(8) BIBI recalibration

(Llansó, et al. 2016. VADEQ Technical Report; de-la-Ossa et al. 2016. Ecological Indicators)

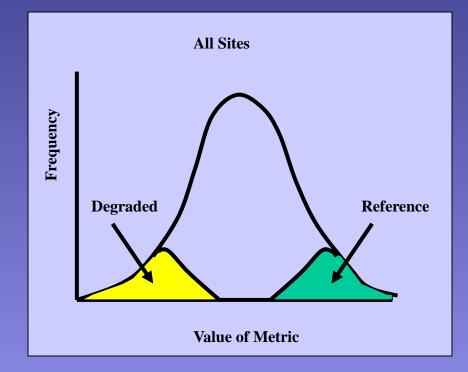
VERSAR, INC.*

Ecological Sciences and Applications 9200 Rumsey Road, Columbia, Maryland 21045

OLD DOMINION UNIVERSITY

Department of Biological Sciences Old Dominion University, Norfolk, Virginia 23529

CHESAPEAKE BAY B-IBI RECALIBRATION

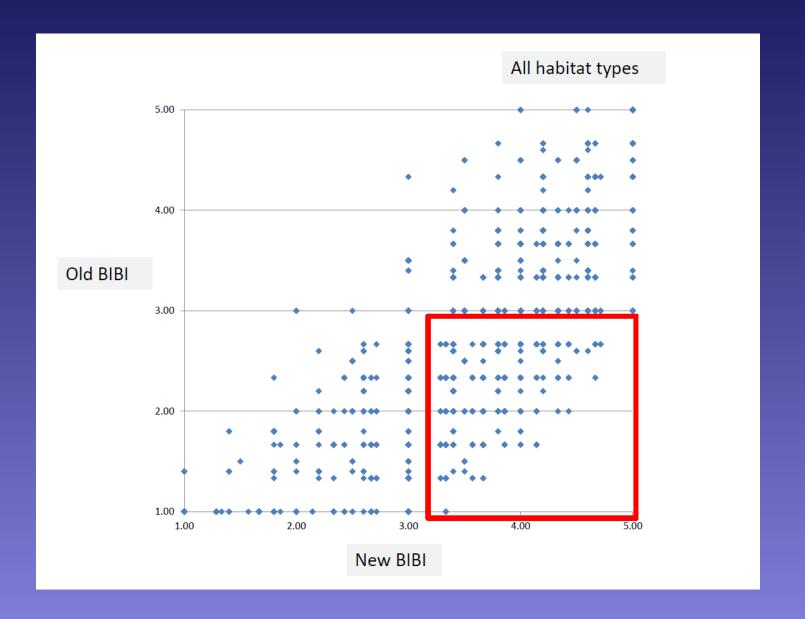

Prepared by

Principal Investigators:

Roberto J. Llansó* Daniel M. Dauer Michael F. Lane

Submitted to:

Cindy S. Johnson Chesapeake Bay Monitoring Manager Virginia Department of Environmental Quality 629 East Main Street Richmond, Virginia 23219



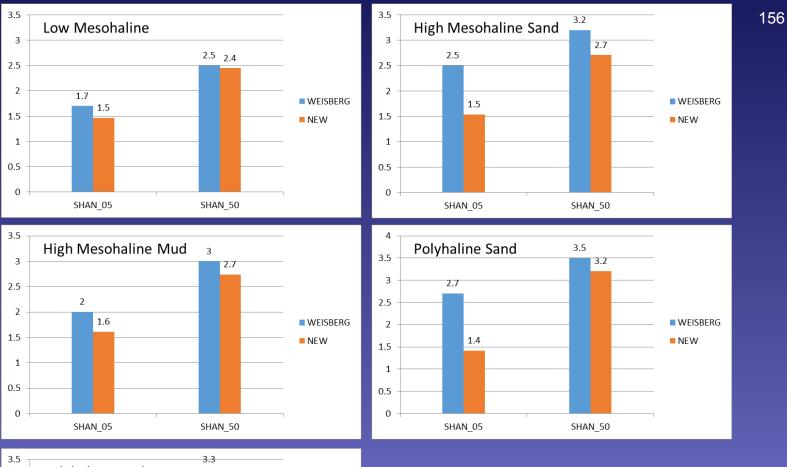
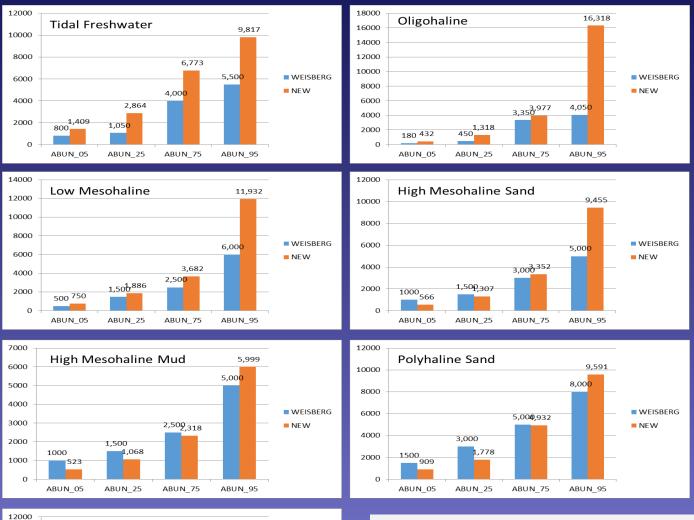

			Correctly Classified		
Habitat	a priori Classification	Sample #	Number	Percentage	
	Reference	55	40	72.7	
Tidal Freshwater	Degraded	161	58	36.0	
	Total	216	98	45.4	
			Correctly	Classified	
Habitat	a priori Classification	Sample #	Number	Percentage	
	Reference	24	17	70.8	
Oligohaline	Degraded	111	70	63.1	
	Total	135	87	64.4	
			Correctly	Classified	
Habitat	a priori Classification	Sample #	Number	Percentage	
	Reference	92	51	55.4	
Low Mesohaline	Degraded	214	156	72.9	
	Total	306	207	67.6	
			Correctly	Classified	
Habitat	a priori Classification	Sample #	Number	Percentage	
	Reference	189	91	48.2	
High Mesohaline Sand	Degraded	58	32	55.2	
	Total	247	123	49.8	
			Correctly Classified		
Habitat	a priori Classification	Sample #	Number	Percentage	
	Reference	106	30	28.3	
High Mesohaline Mud	Degraded	309	241	78.0	
	Total	415	271	65.3	
			Correctly	Classified	
Habitat	a priori Classification	Sample #	Number	Percentage	
	Reference	240	163	67.9	
Polyhaline Sand	Degraded	46	23	50.0	
	Total	286	186	65.0	
			Correctly Classified		
Habitat	a priori Classification	Sample #	Number	Percentage	
	Reference	47	18	38.3	
Polyhaline Mud	Degraded	179	164	91.6	
	Total	226	182	80.5	
	Overall	1831	1154	63.0	

Table 5. Classification efficiencies within habitat type and across all habitat types for both Reference and Degraded sites based on B-IBI values scored using thresholds defined in Weisberg et al. (1997) and Alden et al. (2002) and the entire calibration and validation datasets assembled for this project.

			Correctly	Classified
Habitat	a priori Classification	Sample #	Number	Percentage
	Reference	22	15	68.2
Tidal Freshwater	Degraded	161	49	30.4
	Total	183	64	35.0
			Correctly	Classified
Habitat	a priori Classification	Sample #	Number	Percentage
	Reference	9	5	55.6
Oligohaline	Degraded	111	32	28.8
	Total	120	37	30.8
			Correctly	Classified
Habitat	a priori Classification	Sample #	Number	Percentage
	Reference	33	25	75.8
Low Mesohaline	Degraded	214	101	47.2
	Total	247	126	51.0
			Correctly	Classified
Habitat	a priori Classification	Sample #	Number	Percentage
	Reference	65	53	81.5
High Mesohaline Sand	Degraded	58	18	31.0
anga nassaman sans	Total	123	71	57.7
			Correctly	Classified
Habitat	a priori Classification	Sample #	Number	Percentage
	Reference	39	32	82.1
High Mesohaline Mud	Degraded	309	159	51.5
	Total	348	191	54.9
			Correctly	Classified
Habitat	a priori Classification	Sample #	Number	Percentage
	Reference	81	77	95.1
Polyhaline Sand	Degraded	46	9	19.6
·	Total	127	86	67.7
			Correctly	Classified
Habitat	a priori Classification	Sample #	Number	Percentage
	Reference	15	15	100
Polyhaline Mud	Degraded	179	70	39.1
·	Total	194	85	43.8
	Overall	1342	660	49.2

Table 6. Classification efficiencies within habitat type and across all habitat types for both Reference and Degraded sites based on B-IBI values scored **using new thresholds** and the validation dataset assembled for this project.

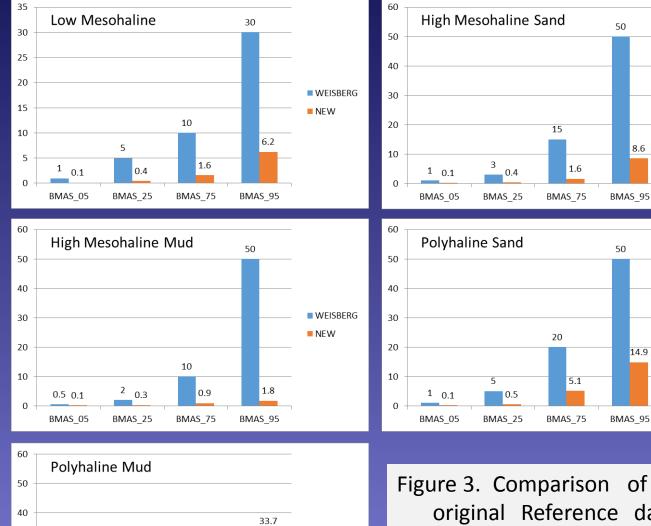


3.5 Polyhaline Mud
3.0
2.5 2.4
1.6
1.5 NEW

SHAN_05 SHAN_50

Figure 1. Comparison of thresholds between the original Reference dataset of Weisberg et al. (1997) and the new Reference dataset assembled for this project for **Shannon index (H').**

Polyhaline Mud 9,636 10000 8,000 8000 6,175 ■ WEISBERG 6000 NEW 4000 3,000 1,500,776 2000 1000682 ABUN_25 ABUN_05 ABUN_75 ABUN_95


Figure 2. Comparison of thresholds between the original Reference dataset of Weisberg et al. (1997) and the new Reference dataset assembled for this project for **abundance** (#/m²)

WEISBERG

WEISBERG

NEW

NEW

30

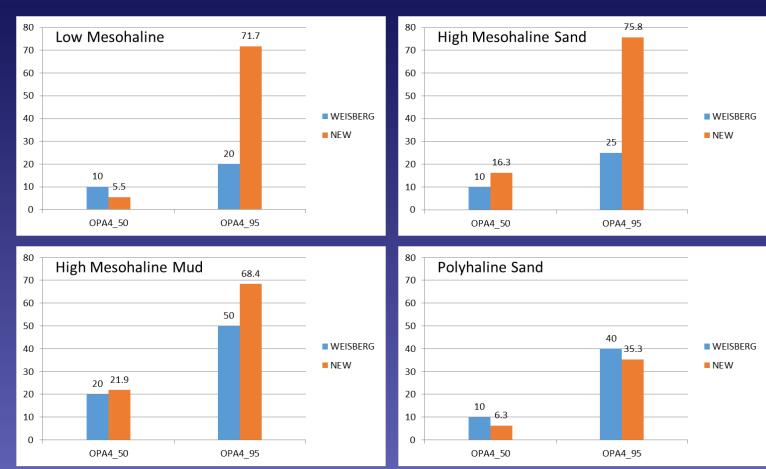
20

10

0.5 0.2 BMAS 05 10

2.3

BMAS_95


BMAS_75

3

0.5

BMAS_25

Figure 3. Comparison of thresholds between the original Reference dataset of Weisberg et al. (1997) and the new Reference dataset assembled for this project for biomass (g AFDW/m²)

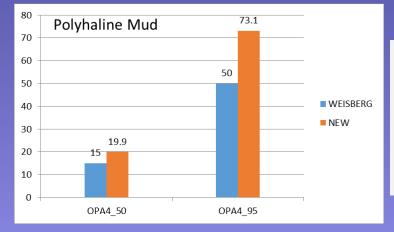
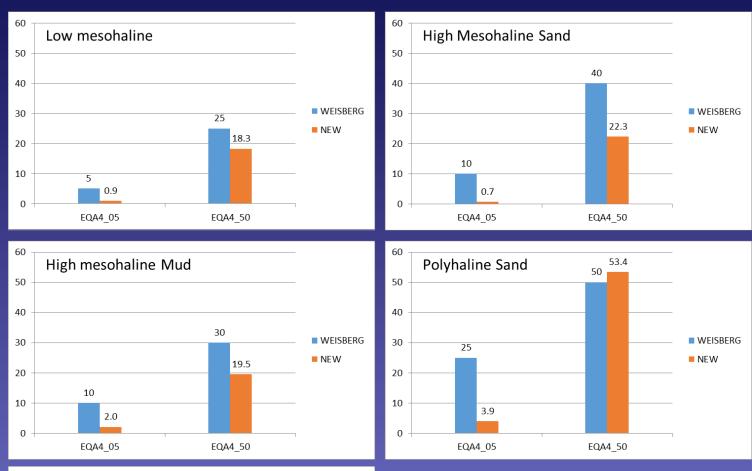



Figure 4. Comparison of thresholds between the original Reference dataset of Weisberg et al. (1997) and the new Reference dataset assembled for this project for abundance of pollution indicative taxa (%)

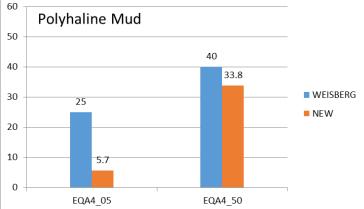


Figure 5. Comparison of thresholds between the original Reference dataset of Weisberg et al. (1997) and the new Reference dataset assembled for this project for abundance of pollution sensitive taxa (%)

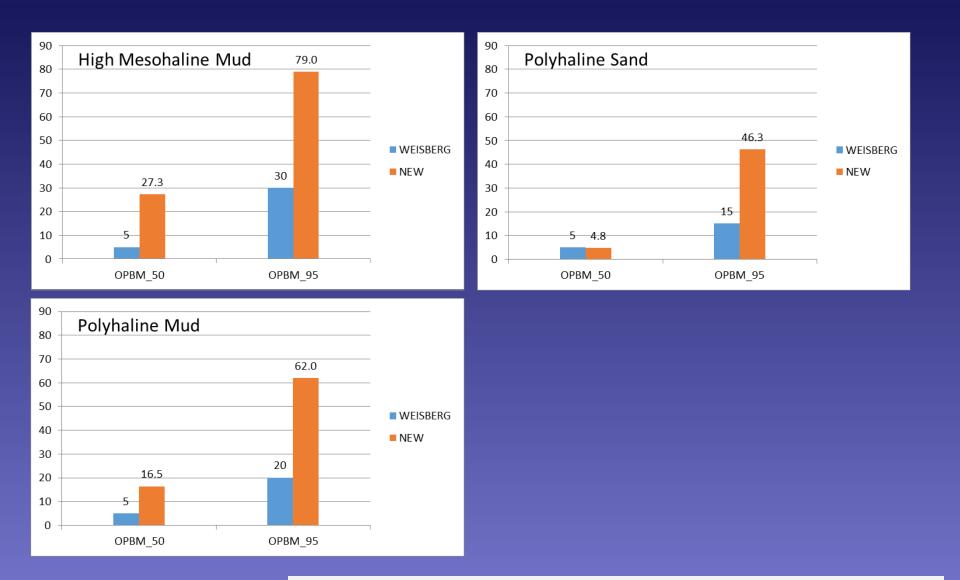


Figure 6. Comparison of thresholds between the original Reference dataset of Weisberg et al. (1997) and the new Reference dataset assembled for this project for **biomass of pollution indicative taxa (%)**

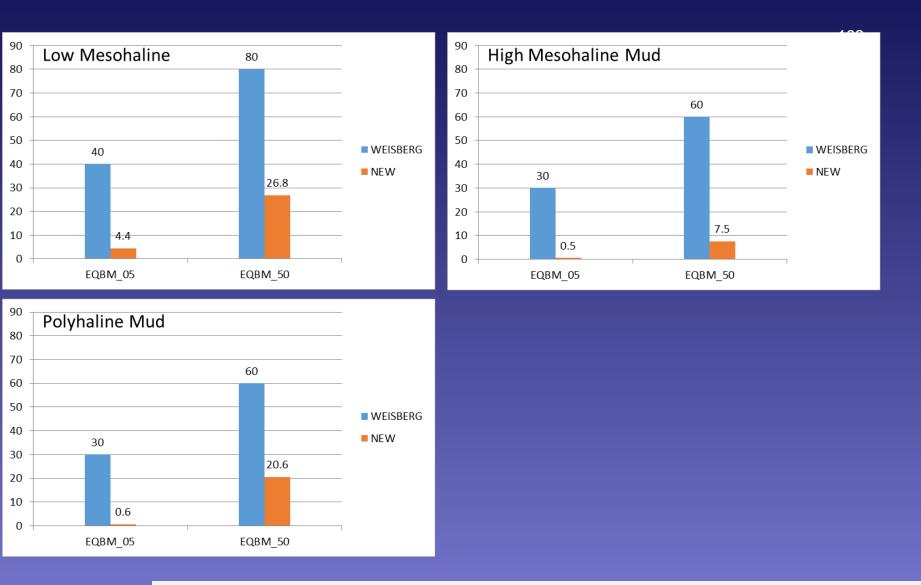


Figure 7. Comparison of thresholds between the original Reference dataset of Weisberg et al. (1997) and the new Reference dataset assembled for this project for biomass of pollution sensitive taxa (%)

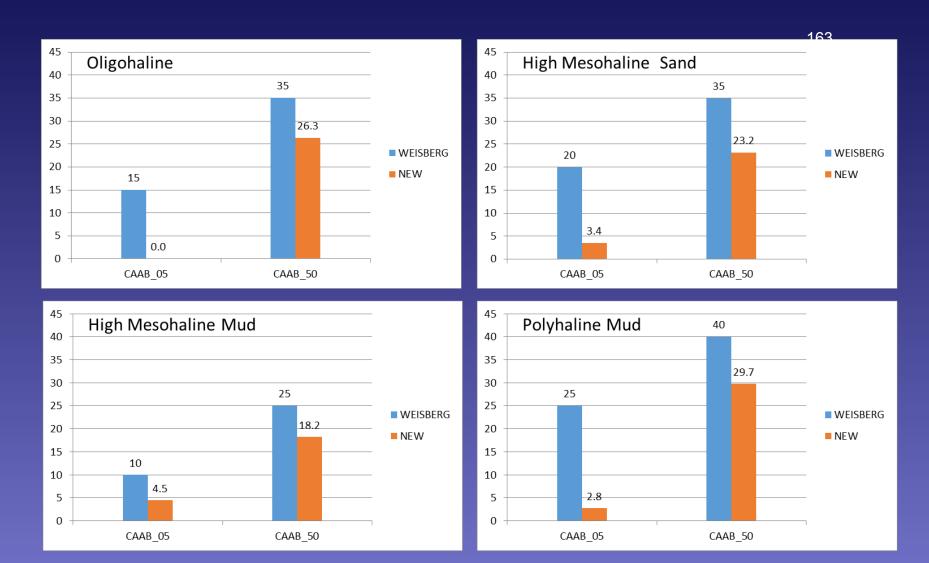
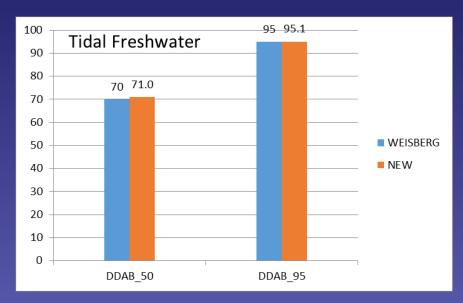



Figure 8. Comparison of thresholds between the original Reference dataset of Weisberg et al. (1997) and the new Reference dataset assembled for this project for abundance of carnivore and omnivores (%)

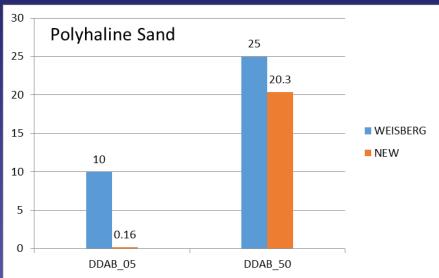
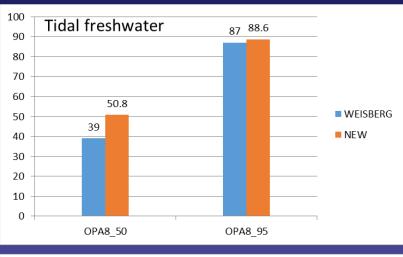
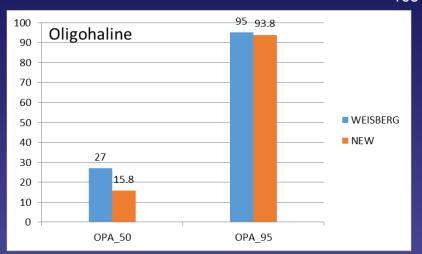




Figure 9. Comparison of thresholds between the original Reference dataset of Weisberg et al. (1997) and the new Reference dataset assembled for this project for abundance of **deep-deposit feeders (%)**

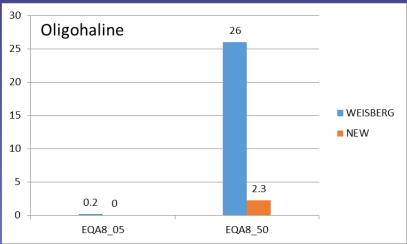
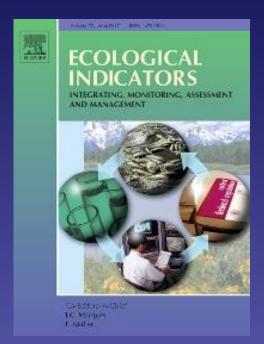
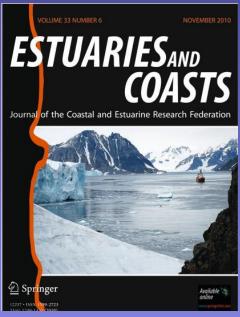


Figure 10. Comparison of thresholds between the original Reference dataset of Weisberg et al. (1997) and the new Reference dataset assembled for this project for abundance of pollution indicative freshwater and oligohaline taxa (%, upper panel), and abundance of pollution sensitive oligohaline taxa (%, lower panel)

(7) Functional metric/index approach Benthic Secondary Productivity


Dauer et al. 2011. VADEQ Technical Report Sturdivant et al. 2014. Estuaries and Coasts


(8) BIBI recalibration

(Llansó, et al. 2016. **VADEQ Technical Report** de-la-Ossa et al. 2016. Ecological Indicators)

(9) International collaboration

(Borja and Dauer. 2008. Ecological Indicators; Borja et al. 2010. Estuaries and Coasts; Borja et al. 2012. Ecological Indicators)

(9) International collaboration

(Borja and Dauer. 2008. Ecological Indicators; Borja et al. 2010. Estuaries and Coasts; Borja et al. 2012. Ecological Indicators)

ECOLOGICAL INDICATORS 8 (2008) 331-337

available at www.sciencedirect.com

journal homepage: www.elsevier.com/locate/ecolind

Assessing the environmental quality status in estuarine and coastal systems: Comparing methodologies and indices

A. Borja a,*, D.M. Dauer b

ARTICLE INFO

Article history: Received 9 February 2007 Accepted 25 February 2007

Keywords:
Ecological integrity
Biotic indices
Comparison of methods
Aquatic systems
Benthic communities
Indicator development
Indicator application
Indicator interpretation

ABSTRACT

Increasingly on a worldwide scale, legislation has been adopted to determine the ecological integrity of surface waters including streams, rivers, lakes, estuaries and coastal waters. An integral part of determining ecological integrity is the measurement of biological integrity, typically emphasizing analyses of plankton, benthos, macroalgae and fish. In the development of protocols for evaluating biological integrity, benthic macroinvertebrate communities are the most consistently emphasized biotic component of aquatic ecosystems. A plethora of methodologies with hundreds of indices, metrics and evaluation tools are presently available. An ecologically parsimonious approach dictates that investigators should place greater emphasis on evaluating the suitability of indices that already exist prior to developing new ones. Hence, the authors organized within the American Society of Limnology and Oceanography 2006 Summer Meeting, 4–9 June 2006, in Victoria, BC, Canada, a special session with the objective to compare methodologies, applications and interpretations existing in various countries and attempting to contribute to an improved understanding of the suitability of such approaches when using benthic communities. From the 25 contributions was expected to be included in

Index Characteristics

Adaptive Monitoring

Table 1 - Environmental indicators

Purpose

Summarizes and simplifies complex data
Conveys information—easily understood by the public, media,
resource users, and decision-makers

Characteristics

Ecological relevance—based upon a conceptual model (theoretically, empirically or heuristically well founded)
Feasible—data to calculate index can be reliably and cost-effectively collected

Threshold or reference value—users are able to assess significance of indicator value

Representative—able to measure status and trends that are relevant to policy decisions

Sensitivity—reflects response to management actions

Note: an index that is representative and sensitive captures information relevant to anthropogenic actions—degradative and restorative.

^a AZTI-Tecnalia, Marine Research Division, Herrera Kaia, Portualdea s/n, 20110 Pasaia, Spain

^bDepartment of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA

(9) International collaboration

(Borja and Dauer. 2008. Ecological Indicators; Borja et al. 2010. Estuaries and Coasts; Borja et al. 2012. Ecological Indicators)

Table 1 – Environmental indicators

Purpose

Summarizes and simplifies complex data

Conveys information—easily understood by the public, media, resource users, and decision-makers

Characteristics

Ecological relevance—based upon a conceptual model (theoretically, empirically or heuristically well founded)

Feasible—data to calculate index can be reliably and cost-effectively collected

Threshold or reference value—users are able to assess significance of indicator value

Representative—able to measure status and trends that are relevant to policy decisions

Sensitivity—reflects response to management actions

Note: an index that is representative and sensitive captures information relevant to anthropogenic actions—degradative and restorative.

Index development

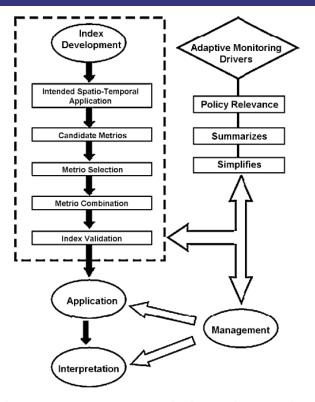


Fig. 2 – Index development, application and interpretation. Dashed rectangle encloses the primary steps in index development. Adaptive monitoring feedback loops and adaptive change decision drivers are indicted by open arrows.

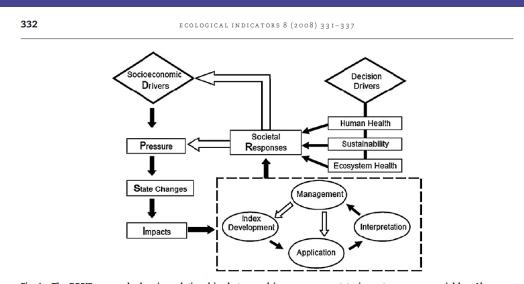


Fig. 1 – The DPSIR approach showing relationships between drivers-pressure-state-impact-responses variables. Also indicated are the primary drivers of management decisions. Societal responses meant to halt, ameliorate, mitigate or reverse unacceptable conditions are shown by open arrows. Dashed inset shows the impact assessment components with open arrows indicating adaptive monitoring feedback loops.

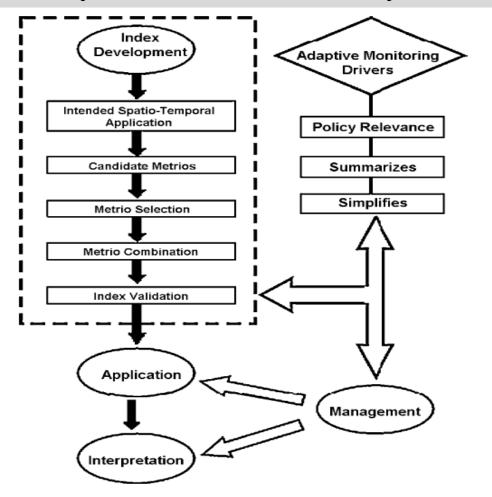


Fig. 2 – Index development, application and interpretation. Dashed rectangle encloses the primary steps in index development. Adaptive monitoring feedback loops and adaptive change decision drivers are indicted by open arrows.

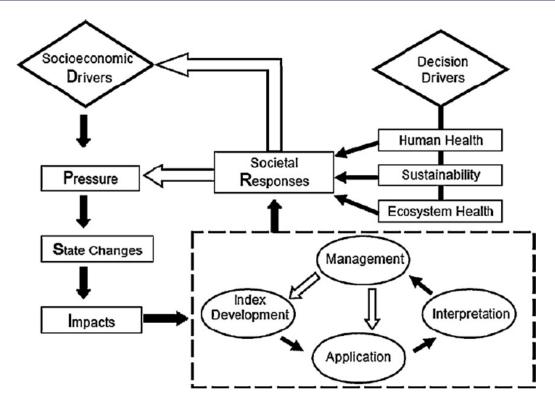


Fig. 1 – The DPSIR approach showing relationships between drivers–pressure–state–impact–responses variables. Also indicated are the primary drivers of management decisions. Societal responses meant to halt, ameliorate, mitigate or reverse unacceptable conditions are shown by open arrows. Dashed inset shows the impact assessment components with open arrows indicating adaptive monitoring feedback loops.

Benthic recovery rates

Estuaries and Coasts (2010) 33:1249–1260 DOI 10.1007/s12237-010-9347-5

Author's personal copy

Medium- and Long-term Recovery of Estuarine and Coastal Ecosystems: Patterns, Rates and Restoration Effectiveness

Ángel Borja · Daniel M. Dauer · Michael Elliott · Charles A. Simenstad

Received: 4 March 2010 / Revised: 26 June 2010 / Accepted: 8 September 2010 / Published online: 24 September 2010 © Coastal and Estuarine Research Federation 2010

Abstract Many estuarine and coastal marine ecosystems have increasingly experienced degradation caused by multiple stressors. Anthropogenic pressures alter natural ecosystems and the ecosystems are not considered to have

which includes all aspects of dredging and disposal; (2) recovery by complete removal of stressors limiting natural ecosystem processes, which includes tidal marsh and inundation restoration; (3) recovery by speed of organic

1252		Auth	or's pe	ersonal copy	Estuaries and Co	asts (2010) 33:1249-12		
Table 1 Long-term monitoring of different authopogenic pressures, worldwide, in different substrata and tidal levels, using different biological elements, showing the time span of recovery after restoration or removing pressure								
Pressure	Location	Substrata	Intertidal/ subtidal	Biological dements	Time for recovery	Authors		
Sewage sludge disposal	Northumberland coast (UK)	Soft	Subtidal	Macroinvertebrates	>3 years	Birchenough and Frid 20		
Sewage sludge disposal	Garroch Hend (Firth of Clyde, Scotland)		Subtidal	Macroinverte beates	Incomplete after 14 years	Moore and Rodger 1991		
Sewage sludge disposal	Liverpool Bay (UK)	Soft	Subtidal	Macroinvertebrates	Incomplete after 5 years	Whomenley et al. 2007		
Wastewater discharge	California (USA)	Soft	Subtidal	Macroinvertebrates	18 years	Stein and Cadien 2009		
Wastewater discharge	Boston harbour (USA)	Soft	Subtidal	Macroinvertebrates	10-15 years	Diaz et al. 2008		
Wastewater discharge	Basque esturios (Spain)	Soft	Subridal	Macroinvertebrates	10-15 years	Borja et al. 2006, 2009b		
Wastewater discharge	Marseille (France)	Soft	Subtidal	Macroinvertebrates	>7 years	Bellan et al. 1999		
Wastewater discharge	Busque coast (Spain)	Softhard	Subtidal	Invertebrates and algae	>6 years	Borja et al. 2009b		
Wastewater discharge	Abra of Bilbao (Spain)	Hæd	Intertidal	Macroalgae	Incomplete after 22 years	Diez et al. 2009		
Wastewater discharge	Busque esturies (Spain)	Soft	Subtidid	Fishes	3-10 years	Uriante and Borja 2009		
Wastewater discharge Eutrophication	Tagus estuary (Portugal)	Soft	Intertidal/ subtidal Subtidal	Macroinvatebrates	Incomplete after 12 years	Chainho et al. this issue Ship et al. 2008		
Eutrophication	Victoria Harbour, Hong Kong Orbetello Ingoon (Italy)	Soft	Subtridul	Macromyetchestes	>3 years >6 years	Lardicci et al. 2001		
Eutrophication	Mondego entury (Portugal)	Soft	Intertidal	Zostera noltii and macroiny er khrates	→ years → years	Dolbeth et al. 2007; Neto et al. this issue		
Eutrophication	Tampa Bay (Florida, USA)	Soft	Subridial	Sea grasses	Incomplete after 20 years	Greening and Jankki 20		
Oxygen depletion	Gullmanfjord (Sweden)	Soft	Subtidal	Macroinvertebrates	2 years	Rosenberg et al. 2002		
Oil spill	Various	Softhard	Intertidal/ subtidal	Various	2-10 years	Kingston 2002		
Oil-refinery discharge	Barbadan estuary (Spain)	Soft	Intertidal	Macroinvertebrates	2-3 years	Borja et al. 2009b		
Oil-refinery discharge	Milford Haven (UK)	Hard	Intertidal	Macroinvertebrates	2-3 years	Wake 2005		
Oil-refinery discharge	Barbadan estuary (Spain)	Soft	Subtidul	Fishes	2-3 years	Uriarte and Borja 2009		
Fish farm Fish farm	Archipelago Ses (Finland)	Soft	Subtidal Subtidal	Macmins of chains	Incomplete after 7 years	Knufvelin et al. 2001 Sanz-Lázaro and Marks		
530/150/50	Homillo Cove (Mediterranses, Spain)			STORY DOOR OF A CONTROL OF	2-3 years	2006		
Fish farm	Tamania (Australia)	Soft	Subtidal	Macroinvertebrates	>2.5 years	Macked et al. 2008		
THT	Crouch Estuary, Essex (UK)	Soft	Subtidal	Macroinvertebrates	3-5 years	Smith et al. 2008		
Mine tailings Mine tailings	Ruport Inlet, British Columbia (Canada) Affarlikassa and Quaamarujuk	Soft	Subtidal Subtidal	Macroinvotebrates Macroinvotebrates	4-15 years >15 years	Burd 2002 Josefson et al. 2008		
Since takings	(Greenland)	3011	Succian	NEACHORN ONCOURION	213 years	Assetton et al. 2006		
Pulp mill	Swedish fjord	Soft	Subtidid	Macroinvertebrates	6-8 years	Rosenberg 1972, 1976		
Physical disturbance	South Africa	Hard	Intertidal	Macroinvertebrates	3 years	Dye 1998		
Physical disturbance	Peru Basin	Softhard	Deep sea	Megafauna	Incomplete after 7 years	Bluhm 2001		
Land claim	Bidasoa estury (Spain)	Soft	Intertidal	Macroinvertebrates	2 years	Marquiegui and Aguirrezabalaga 2009		
Land claim	Nakdong River entury (Korea)	Soft	Subtidal	Zostera marina	Incomplete after 20 years	Park et al. 2009		
Marsh instoration Marsh and tidal	Delaware Bay (USA)	Soft	Subtidul Intertidul/	Fishes	1-2 years	Able et al. 2008		
restoration	Long Island Sound (USA) Tollesbury, Essex (UK)	Soft	subtidal Intertidal	Vegetation, macroinvertebrates, fishes, birds Marshes and	5-20 years >6 years	Warren et al. 2002 Garbutt et al. 2006		
defences Lagoon isolation	East Harbor, Massachusetts	Soft	Subtidal	macroinvertebrates Molluses	Incomplete after	Thelen and Thiet 2009		
Lagoon isolation	(USA) Lake Veen (Netherlands)	Soft	Intertidal/	Macroinvertebrates	3 years Incomplete alter	Wijnhoven et al. this iss		
Dyke and marina	Oria estuary (Spain)	Soft	subtidal Intertidal	Macroinvertebrates	4 years 2 years	Boria et al. 2009b		
construction Dyke and marina	Oria estuary (Spain) Oria estuary (Spain)	Soft	Subtidal	Fishes	2-3 years	Unarte and Borja 2009		
construction								
Deedging and	Basque coast and estuaries	Soft	Subtidid	Macroinvertebrates	2-3 years	Borja et al. 2009b		

Table 2 Summary of time for recovery, for different biological elements and substrata, under different pressures

Pressure	Substrata	Intertidal/subtidal	Biological elements	Time for recovery
Sediment disposal	Soft	Intertidal	Meio and macrofauna	3–18 months
Marsh restoration	Soft	Subtidal	Fishes	1–2 years
Oxygen depletion	Soft	Subtidal	Macroinvertebrates	2 years
Land claim	Soft	Intertidal	Macroinvertebrates	2 years
Oil-refinery discharge	Soft/hard	Intertidal/subtidal	Macroinvertebrates, fishes	2-3 years
Dyke and marina construction	Soft	Intertidal/subtidal	Macroinvertebrates, fishes	2-3 years
Lagoon isolation	Soft	Subtidal	Molluscs	>3 years
Aggregate dredging	Soft	Subtidal	Macroinvertebrates, epifauna	2-4 years
TBT	Soft	Subtidal	Macroinvertebrates	3–5 years
Dredging	Soft	Intertidal/subtidal	Sea grasses, macroinvertebrates, fishes	2->5 years
Sediment disposal	Soft	Subtidal	Sea grass, macroinvertebrates, fishes	>5 years
Eutrophication	Soft	Subtidal	Macroinvertebrates	>3->6 years
Realignment of coastal defences	Soft	Intertidal	Marshes and macroinvertebrates	>6 years
Fish farm	Soft	Subtidal	Macroinvertebrates	2->7 years
Physical disturbance	Soft/hard	Intertidal/deep sea	Macroinvertebrates, megafauna	3->7 years
Pulp mill	Soft	Subtidal	Macroinvertebrates	6–8 years
Oil spill	Soft/hard	Intertidal/subtidal	Various	2-10 years
Fish trawling	Sand-gravel	Subtidal	Macroinvertebrates, fishes	2.5-10 years
Wastewater discharge	Soft	Subtidal	Fishes	3-10 years
Sewage sludge disposal	Soft	Subtidal	Macroinvertebrates	3->14 years
Mine tailings	Soft	Subtidal	Macroinvertebrates	4->15 years
Marsh and tidal restoration	Soft	Intertidal/subtidal	Vegetation, fishes, birds	5-20 years
Wastewater discharge	Soft	Subtidal	Macroinvertebrates, sea grasses	7-20 years
Land claim	Soft	Subtidal	Zostera marina	>20 years
Wastewater discharge	Hard	Intertidal	Macroalgae	>6->22 years

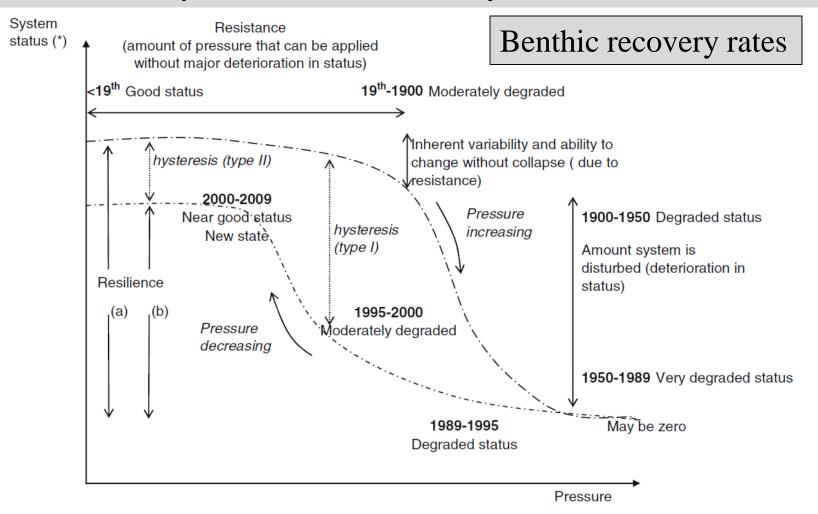


Fig. 2 A conceptual model of changes to the state of Nervión estuary (Basque Country, northern Spain) with increasing (increasing wastewater discharge volume) and decreasing (wastewater treatment

improvement) pressure (adapted from Elliott et al. (2007)). (a) Complete resilience; (b) incomplete resilience

Ecological Indicators 12 (2012) 1-7

Reference Conditions

Contents lists available at ScienceDirect

Ecological Indicators

journal homepage: www.elsevier.com/locate/ecolind

The importance of setting targets and reference conditions in assessing marine ecosystem quality

Ángel Borja a,*, Daniel M. Dauerb, Antoine Grémarec

- ^a AZTI Tecnalia, Marine Research Division, Herrera Kaia, Portualdea s/n, 20110 Pasaia, Spain
- ^b Department of Biological Sciences, Old Dominion University, Norfolk, VI 23529, USA
- c Station Marine d'Arcachon, UMR 5805, Université Bordeaux 1 CNRS, 2 rue du Professeur Jolyet, F33120 Arcachon, France

ARTICLE INFO

Article history:
Received 2 February 2011
Received in revised form 17 June 2011
Accepted 19 June 2011

Keywords: Reference conditions Targets Benthic status Ecological status Indicators M-AMBI

ABSTRACT

Assessing benthic quality status of marine and transitional water habitats requires to set up both: (i) tools (i.e. indices) to assess the relative quality of the considered habitat, and (ii) reference conditions for which such indices can be computed and used to infer the absolute ecological status (ES) of the considered habitat. The development of indices, their comparison and the assessment of the causes of their discrepancies have been largely discussed but less attention has been paid to the methods used for the setting of adequate reference conditions, although this step is clearly crucial for the sound assessment of ES. This contribution reviews the approaches available in setting both reference conditions (pristine areas, hindcasting, modelling and best professional judgment) and targets (baseline set in the past, current baseline and directional/trends). We scored the use of pristine or minimally impacted conditions as the best single method; however, the other methods were judged as adequate then combined with best professional judgment. The case of multivariate AMBI (AZTI's Marine Biotic Index) is used to highlight the importance of setting correct reference conditions. Hence, data from 29 references, including 14 countries from Europe and North America, and both coastal (15 cases) and transitional (17 cases) waters, have been used to study the response of multivariate AMBI to human pressures. Results show that the inability of this index to detect human pressure is in most cases linked with the use of inappropriate methods for setting reference conditions.

© 2011 Elsevier Ltd. All rights reserved.



Fig. 1. The DPSR approach showing relationships between Diverse Pressure-State of change-impact Reposers variables, massessing environmental quility stans in ma works. Environmental stans can be considered as a praction from privative confidence split status in above cert formulam personne) on an innoversable statu (parts and in maximum human pressure), does more confidence split status in above cert state parts design depressed and in the confidence of the

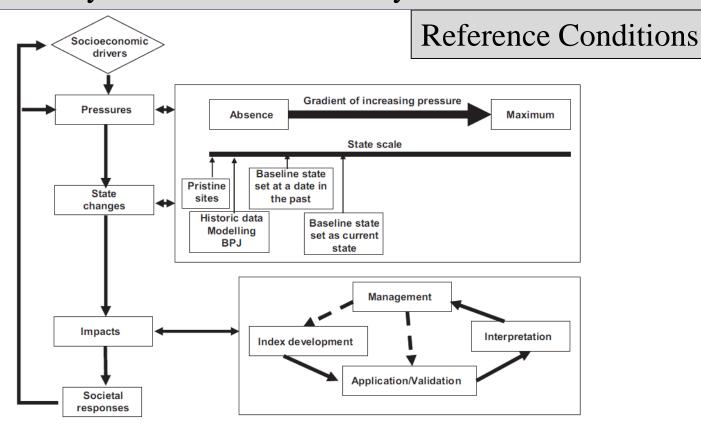


Fig. 1. The DPSIR approach showing relationships between Drivers-Pressure-State of change-Impact-Responses variables, in assessing environmental quality status in marine waters. Environmental status can be considered as a gradation from pristine conditions (high status in absence of human pressures) to an irrecoverable status (bad status, in a maximum human pressure). Assessment systems need to set reference conditions or baseline targets along the pressure (and subsequent state) gradient to assist in status assessment and for monitoring progress against time and actions. In this step the development and validation of impact assessment methods is needed.

Adapted from Borja and Dauer (2008) and Cochrane et al. (2010). BPJ—best professional judgment.

The development of indices, their comparison and the assessment of the causes of their discrepancies have been largely discussed but less attention has been paid to the methods used for the setting of adequate reference conditions, although this step is clearly crucial for the sound assessment of ES.

This contribution reviews the approaches available in setting both reference conditions:

Pristine areas

Hindcasting

Modelling and

Best Professional Judgment

and targets:

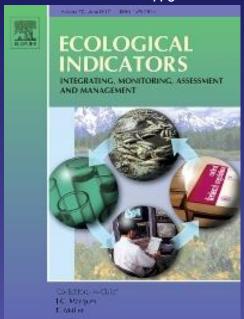
Baseline set in the past Current baseline and Directional/trends

We scored the use of pristine or minimally impacted conditions as the best single method.

Benthic Indicators, Monitoring Design and 178 Interpretation Issues

Overview

Chesapeake Bay accomplishments


- 1. Index development
- 2. Index relationship to watershed stressors
- 3. Sample allocation
- 4. Index relationship to habitat quality
- 5. Causes of degradation (diagnostics)
- 6. Impaired waters designations 303(d)
- 7. Functional metric/index (Secondary productivity)
- 8. BIBI recalibration
- 9. International collaboration

(9) International collaboration

(Borja and Dauer. 2008. Ecological Indicators; Borja et al. 2010. Estuaries and Coasts; Borja et al. 2012. Ecological Indicators)

(10) Index comparisons - Chesapeake Bay

(Ranasinghe et al. 2002. Environmetrics; Llanso et al. 2009. Environmental Monitoring and Assessment; Borja et al. 2008. Ecological Indicators)

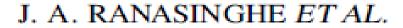
ENVIRONMETRICS

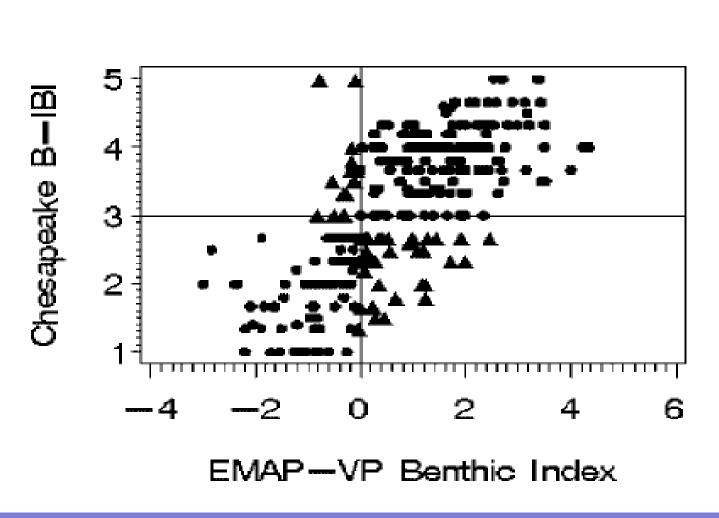
Environmetrics 2002; 13: 499-511 (DOI: 10.1002/env.529)

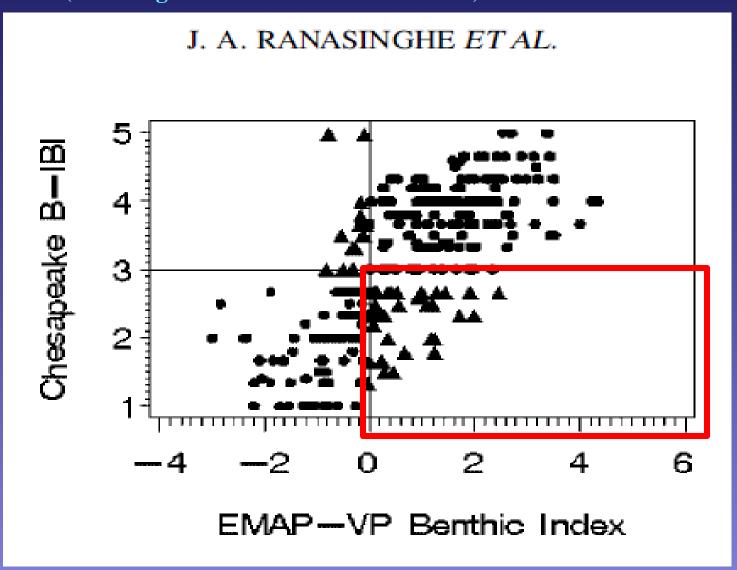
Application of two indices of benthic community condition in Chesapeake Bay

J. Ananda Ranasinghe^{1,*,†}, Jeffrey B. Frithsen², Frederick W. Kutz³, John F. Paul⁴, David E. Russell³, Richard A. Batiuk⁵, Jeffrey L. Hyland⁶, John Scott⁷ and Daniel M. Dauer⁸

¹Southern California Coastal Water Research Project, 7171 Fenwick Lane, Westminster, CA 92683-5218, U.S.A.
²National Center for Environmental Assessment, Office of Research and Development (8601), U.S. Environmental Protection Agency, 401 M Street, SW, Washington, DC 20460, U.S.A.

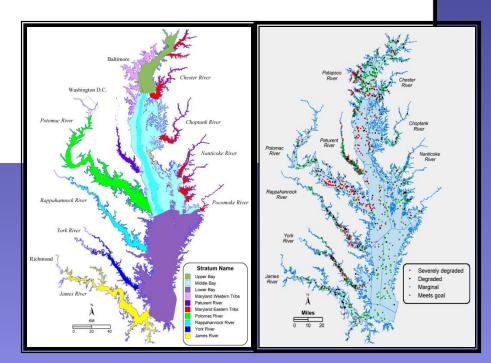

³Environmental Science Center, U.S. Environmental Protection Agency, 701 Mapes Road, Fort Meade, MD 20755-5350, U.S.A.


⁴Atlantic Ecology Division, U.S. Environmental Protection Agency, 27 Tarzwell Dr., Narragansett, RI 02882, U.S.A.


⁵Chesapeake Bay Program, U.S. Environmental Protection Agency, 410 Severn Avenue, Annapolis, MD 21403, U.S.A.

⁶NOAA, National Ocean Service, 219 Ft. Johnson Road, Charleston, SC 29412-9110, U.S.A.

⁷Science Applications International Corporation, 165 Dean Knauss Drive, Narragansett, RI 02882, U.S.A. ⁸Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, U.S.A.


- 1. **B-IBI** includes several community measures and weights them equally using a simple scoring system that compares them against values expected for undegraded sites. It includes measures of species diversity, productivity, indicator species and trophic composition.
- 2. The EMAP-VP BI uses discriminant function coefficients to weight contributions of species diversity and the abundances of two indicator families.
- **3.** The two indices agreed on degraded or undegraded classifications for benthos at 81.3% of the sites.
- 4. The **B-IBI** was **more conservative** than the EMAP-VP BI, **classifying 72.7% of the disagreements as degraded.** Many of the classification disagreements were at sites with index values close to, but on opposite sides of, the degraded–undegraded thresholds

(10) Index comparisons - Chesapeake Bay (Llanso et al. 2009. Environmental Monitoring and Assessment)

Environ Monit Assess (2009) 150:119–127 DOI 10.1007/s10661-008-0678-7

Assessing benthic community condition in Chesapeake Bay: does the use of different benthic indices matter?

Roberto J. Llansó · Jon H. Vølstad · Daniel M. Dauer · Jodi R. Dew

(Llanso et al. 2009. Environmental Monitoring and Assessment)

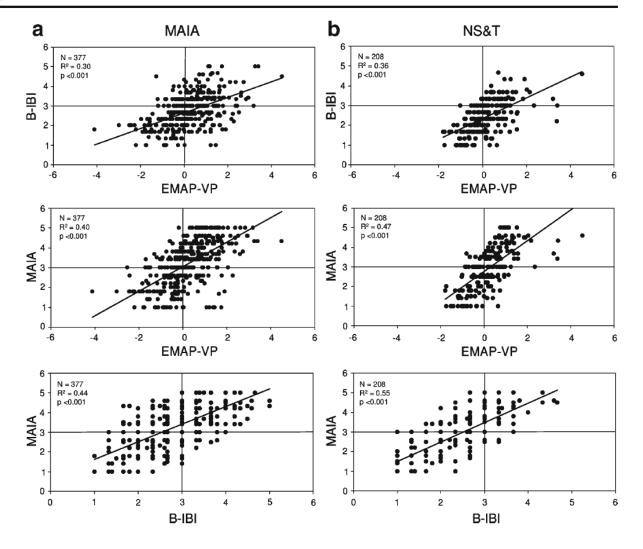
Environ Monit Assess (2009) 150:119–127 DOI 10.1007/s10661-008-0678-7

Assessing benthic community condition in Chesapeake Bay: does the use of different benthic indices matter?

Roberto J. Llansó · Jon H. Vølstad · Daniel M. Dauer · Jodi R. Dew

Compared (1) BIBI, (2) MAIA, and (3) EMAP_VP

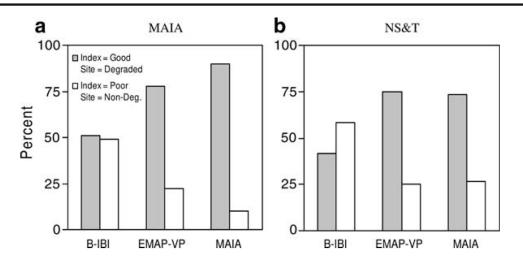
- 1. Higher level of degradation with BIBI
- 2. Other indices classified degraded samples as good at higher rate
- 3. There were sample design interactions with level of degradation.

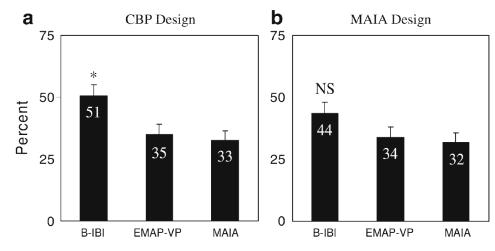

(Llanso et al. 2009. Environmental Monitoring and Assessment)

Environ Monit Assess (2009) 150:119–127

123

Fig. 1 Linear regressions between the values of three indices calculated on the Chesapeake Bay Mid-Atlantic Integrated Assessment (MAIA) (a) and National Status & Trends (NS&T) (b) survey datasets.


Reference lines indicate degraded/nondegraded thresholds



(Llanso et al. 2009. Environmental Monitoring and Assessment)

Environ Monit Assess (2009) 150:119–127

Fig. 5 Percent of Type I and Type II errors (sites misclassified) by three indices, for Mid-Atlantic Integrated Assessment (MAIA) (a) and National Status & Trends (NS&T) (b) survey datasets

Fig. 6 Percent of Chesapeake Bay (+SE) with degraded benthic condition as measured by three indices, for Chesapeake Bay Program (CBP) (a) and Mid-Atlantic

Integrated Assessment (MAIA) (**b**) survey designs. N = 250 and 244, respectively. * Significant difference by confidence interval overlap test, NS not significant

(10) Index comparisons - Chesapeake Bay (Borja et al. 2008. Ecological Indicators)

ECOLOGICAL INDICATORS 8 (2008) 395-403

available at www.sciencedirect.com

journal homepage: www.elsevier.com/locate/ecolind

Assessing estuarine benthic quality conditions in Chesapeake Bay: A comparison of three indices

A. Borja a,*, D.M. Dauerb, R. Díazc, R.J. Llansód, I. Muxika a, J.G. Rodrígueza, L. Schaffnerc

ARTICLE INFO

Article history: Received 16 October 2006 Received in revised form 15 January 2007 Accepted 21 January 2007

Keywords:

ABSTRACT

Legislation in US and Europe has been adopted to determine the ecological integrity of estuarine and coastal waters, including, as one of the most relevant elements, the benthic macroinvertebrate communities. It has been recommended that greater emphasis should be placed on evaluating the suitability of existing indices prior to developing new ones. This study compares two widely used measures of ecological integrity, the Benthic Index of Biotic Integrity (B-IBI) developed in USA and the European AZTI's Marine Biotic Index (AMBI) and its multivariate extension, the M-AMBI. Specific objectives were to identify the frequency, magnitude, and nature of differences in assessment of Chesapeake Bay sites as 'degraded' or

	M-AMBI				
	Meets goal	Marginal	Degraded	Severely degraded	
B-IBI					
Meets Goal	63 (44)	14 (11)	17 (11)	4 (1)	98 (67)
Marginal	5 (5)	8 (8)	4 (3)	2 (1)	19 (17)
Degraded	31 (26)	17 (16)	18 (16)	10 (9)	76 (67)
Very degraded	7 (7)	10 (10)	27 (24)	38 (38)	82 (79)
Total	106 (82)	49 (45)	66 (54)	54 (49)	275 (230

	Polyhaline (30)	High mesohaline (99)	Low mesohaline (102)	Oligohaline (26)	Tidal freshwater (18)
AMBI-M-AMBI	-0.887	-0.897	-0.884	-0.513	-0.472
AMBI-B-IBI	- <u>0.615</u>	- <u>0.617</u>	- <u>0.591</u>	-0.413	-0.500
M-AMBI-B-IBI	0.743	0.744	0.651	0.255	0.441
AMBI-Depth	0.562	0.517	0.233	- <u>0.522</u>	-0.469
AMBI-Salinity	-0.217	-0.058	0.130	-0.060	-0.541
AMBI-Oxygen	- <u>0.591</u>	-0.462	-0.404	0.047	-0.345
AMBI-TOC	-0.108	0.482	0.388	0.113	-0.300
AMBI-Silt/Clay	-0.016	0.281	0.369	-0.025	-0.132
AMBI-Richness	-0.634	-0.714	-0.655	-0.084	-0.021
AMBI-Diversity	- <u>0.615</u>	- <u>0.753</u>	- <u>0.759</u>	-0.154	-0.151
M-AMBI-Depth	-0.316	-0.570	-0.449	0.294	-0.188
M-AMBI-Salinity	0.265	0.110	-0.244	0.232	0.161
M-AMBI-Oxygen	0.388	0.547	0.524	-0.142	0.611
M-AMBI-TOC	0.037	-0.594	-0.499	-0.353	-0.301
M-AMBI-Silt/Clay	-0.024	-0.445	-0.483	-0.337	-0.292
M-AMBI-Richness	0.836	0.922	0.881	0.837	0.850
M-AMBI-Diversity	0.831	0.931	0.918	0.863	0.884
B-IBI-Depth	-0.116	- <u>0.557</u>	- <u>0.370</u>	0.260	0.226
B-IBI–Salinity	0.571	-0.105	-0.290	-0.347	0.165
B-IBI-Oxygen	0.328	0.624	0.359	0.217	0.064
B-IBI-TOC	-0.218	-0.381	-0.219	-0.442	0.012
B-IBI-Silt/Clay	-0.242	-0.239	-0.240	-0.204	0.116
B-IBI-Richness	0.754	0.661	0.517	-0.084	0.240
B-IBI-Diversity	0.533	0.773	0.657	0.278	0.304

a AZTI-Tecnalia, Marine Research Division, Herrera Kaia, Portualdea s/n, 20110 Pasaia, Spain

^b Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA

^cDepartment of Biological Sciences, School of Marine Science, Virginia Institute of Marine Science,

The College of William and Mary, Gloucester Point, VA 23062, USA

^d Versar Inc., 9200 Rumsey Road, Columbia, MD 21045, USA

(10) Index comparisons - Chesapeake Bay (Borja et al. 2008. Ecological Indicators)

ECOLOGICAL INDICATORS 8 (2008) 395-403

available at www.sciencedirect.com

journal homepage: www.elsevier.com/locate/ecolind

Assessing estuarine benthic quality conditions in Chesapeake Bay: A comparison of three indices

A. Borja ^{a,*}, D.M. Dauer^b, R. Díaz ^c, R.J. Llansó ^d, I. Muxika ^a, J.G. Rodríquez ^a, L. Schaffner ^c

Table 3 - Number of sites classified as meets goal, marginal, degraded, and very degraded by the B-IBI and the M-AMBI

		M-AMBI			Total
	Meets goal	Marginal	Degraded	Severely degraded	
B-IBI					
Meets Goal	63 (44)	14 (11)	17 (11)	4 (1)	98 (67)
Marginal	5 (5)	8 (8)	4 (3)	2 (1)	19 (17)
Degraded	31 (26)	17 (16)	18 (16)	10 (9)	76 (67)
Very degraded	7 (7)	10 (10)	27 (24)	38 (38)	82 (79)
Total	106 (82)	49 (45)	66 (54)	54 (49)	275 (230)

Numbers in parentheses exclude tidal freshwater and oligohaline sites.

a AZTI-Tecnalia, Marine Research Division, Herrera Kaia, Portualdea s/n, 20110 Pasaia, Spain

^b Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA

^cDepartment of Biological Sciences, School of Marine Science, Virginia Institute of Marine Science,

The College of William and Mary, Gloucester Point, VA 23062, USA

^d Versar Inc., 9200 Rumsey Road, Columbia, MD 21045, USA

(Borja et al. 2008. Ecological Indicators)

ECOLOGICAL INDICATORS 8 (2008) 395-403

journal homepage: www.elsevier.com/locate/ecolind

Assessing estuarine benthic quality conditions in Chesapeake Bay: A comparison of three indices

A. Borja a,*, D.M. Dauerb, R. Díazc, R.J. J.G. Rodrígueza, L. Schaffnerc

^a AZTI-Tecnalia, Marine Research Division, Herrera Kaia, Po ^b Department of Biological Sciences, Old Dominion University ^cDepartment of Biological Sciences, School of Marine Science The College of William and Mary, Gloucester Point, VA 2306 ^d Versar Inc., 9200 Rumsey Road, Columbia, MD 21045, US

ARTICLE INFO ABSTRA

Article history: Legislation in Received 16 October 2006 Received in revised form 15 January 2007 Accepted 21 January 2007 Keywords:

estuarine and macroinverte be placed on e study compar Integrity (B-IB its multivaria magnitude, ar

	Polyhaline (30)	High mesohaline (99)	Low mesohaline (102)	Oligohaline (26)	Tidal freshwater (18)
AMBI-M-AMBI	- <u>0.887</u>	- <u>0.897</u>	- <u>0.884</u>	- <u>0.513</u>	-0.472
AMBI-B-IBI	- <u>0.615</u>	- <u>0.617</u>	- <u>0.591</u>	-0.413	-0.500
M-AMBI-B-IBI	<u>0.743</u>	<u>0.744</u>	<u>0.651</u>	0.255	0.441
AMBI-Depth	0.562	0.517	0.233	- <u>0.522</u>	-0.469
AMBI–Salinity	-0.217	-0.058	0.130	-0.060	-0.541
AMBI–Oxygen	- <u>0.591</u>	- <u>0.462</u>	-0.404	0.047	-0.345
AMBI-TOC	-0.108	0.482	0.388	0.113	-0.300
AMBI–Silt/Clay	-0.016	0.281	0.369	-0.025	-0.132
AMBI–Richness	- <u>0.634</u>	- <u>0.714</u>	- <u>0.655</u>	-0.084	-0.021
AMBI-Diversity	- <u>0.615</u>	- <u>0.753</u>	- <u>0.759</u>	-0.154	-0.151
M-AMBI-Depth	-0.316	- <u>0.570</u>	-0.449	0.294	-0.188
M-AMBI-Salinity	0.265	0.110	-0.244	0.232	0.161
M-AMBI–Oxygen	0.388	0.547	0.524	-0.142	<u>0.611</u>
M-AMBI-TOC	0.037	- <u>0.594</u>	-0.499	-0.353	-0.301
M-AMBI–Silt/Clay	-0.024	- <u>0.445</u>	-0.483	-0.337	-0.292
M-AMBI–Richness	<u>0.836</u>	<u>0.922</u>	<u>0.881</u>	<u>0.837</u>	<u>0.850</u>
M-AMBI-Diversity	0.831	<u>0.931</u>	<u>0.918</u>	<u>0.863</u>	<u>0.884</u>
B-IBI–Depth	-0.116	- <u>0.557</u>	- <u>0.370</u>	0.260	0.226
B-IBI–Salinity	<u>0.571</u>	-0.105	-0.290	-0.347	0.165
B-IBI–Oxygen	0.328	<u>0.624</u>	<u>0.359</u>	0.217	0.064
B-IBI-TOC	-0.218	- <u>0.381</u>	-0.219	-0.442	0.012
B-IBI-Silt/Clay	-0.242	-0.239	-0.240	-0.204	0.116
B-IBI-Richness	0.754	<u>0.661</u>	<u>0.517</u>	-0.084	0.240
B-IBI-Diversity	<u>0.533</u>	<u>0.773</u>	<u>0.657</u>	0.278	0.304

Bold and underlined numbers are significant at p < 0.001; underlined numbers are significant at p < 0.01. Number of sites in parentheses.