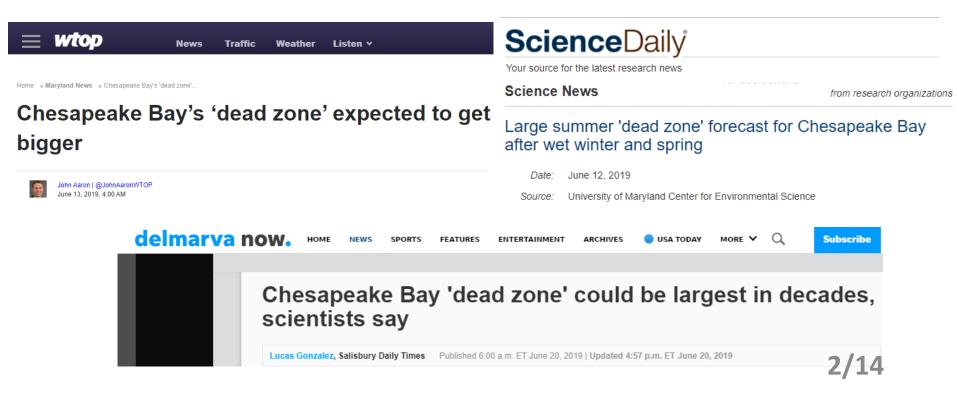
Seasonal forecasts of Chesapeake Bay hypoxia: update on model refinements

Modeling Workgroup Quarterly Review 8 April 2020

Isabella Bertani¹ & Don Scavia²


Collaborators: Aaron Bever, Joel Blomquist, Marjy Friedrichs, Lewis Linker, Bruce Michael, Rebecca Murphy, Gary Shenk, Jeremy Testa

¹ University of Maryland Center for Environmental Science ² University of Michigan

Seasonal forecasts of Chesapeake Bay hypoxia

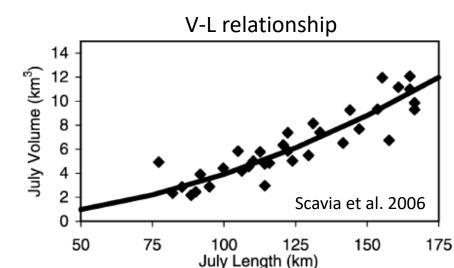
Near-record dead zones forecast for Chesapeake Bay, Gulf of Mexico

Driver:

Jan-May average
Susquehanna TN load

Calibration target:

Mean July hypoxic volume (HV) ([DO] < 2 mg/L)



Model output:

Average subpycnocline [DO] as a function of distance from TN source

Hypoxic length = sum of all segments with [DO] < 2 mg/L

Hypoxic length → hypoxic volume through empirical V-L relationship

Revisions to the UM Chesapeake Bay hypoxia forecasting model

At the January MWG Quarterly Review we proposed the following shortterm revisions:

Re-calibrate model to different sets of HV estimates, HV metrics, loading periods and load sources

- 1. HV metrics: average summer, total annual, average monthly
- **2. Load sources**: consider major load sources other than Susquehanna (e.g., other RIM loads, point sources)
- 3. Load time frames: e.g., Jan-May, Dec-May, etc.
- 4. HV estimates:
 - HV estimated through interpolation of cruise data
 - Simulated HV from 3D models (e.g., ChesROMS-ECB, ROMS-RCA)

Summary of calibration exercises so far

1. HV metrics:

Avg Jun, Avg Jul, Avg Aug, Avg Sep, Avg Summer, Tot Annual

2. Load sources:

Sus, Pot, Sus+Pot, Sus+Pot+PS, All 9 RIM rivers, All 9 RIM rivers + Point Sources

3. Load time frames:

Oct-May (all possible combinations)
Oct-Jun (all possible combinations)

4. HV estimates

Interpolated estimates from Murphy et al. 2011

3 sets of interpolated estimates: Murphy et al. 2011, Bever et
al. 2013 and Zhou et al. 2014

5/14

Total Annual HV

Lsource	Lperiod	NSE	r2	RMSE	MAE	RSTDE
All_withPS	Jan_Jun	0.52	0.52	1.23	0.96	1.30
All_noPS	Jan_Jun	0.51	0.52	1.24	0.98	1.29
Sus_Pot	Jan_Jun	0.48	0.50	1.27	1.00	1.34
All_noPS	Jan_May	0.48	0.50	1.28	1.00	1.34
All_withPS	Feb_Jun	0.48	0.48	1.28	1.06	1.33
Sus_Pot_PS	Jan_Jun	0.48	0.48	1.28	1.00	1.32
All_withPS	Jan_May	0.47	0.48	1.29	0.98	1.35
All_withPS	Mar_Jun	0.47	0.48	1.29	1.10	1.35
Sus_Pot	Jan_May	0.47	0.48	1.30	0.98	1.36
All_noPS	Feb_Jun	0.46	0.49	1.30	1.07	1.37

NSE: Nash-Sutcliffe Efficiency; r2: R² of observed vs. predicted regression; RMSE: Root Mean Square Error; MAE: Mean Absolute Error; RSTDE: Residual Standard Error

6/14

Summer Average HV

Lsource	Lperiod	NSE	r2	RMSE	MAE	RSTDE
All_withPS	Jan_Jun	0.40	0.43	1.01	0.81	1.04
Sus_Pot_PS	Jan_Jun	0.37	0.41	1.03	0.82	1.06
All_withPS	Dec_Jun	0.36	0.40	1.03	0.86	1.08
Sus_Pot_PS	Dec_Jun	0.36	0.40	1.04	0.83	1.08
All_withPS	Jan_May	0.36	0.41	1.04	0.86	1.09
Sus_Pot_PS	Jan_May	0.35	0.40	1.04	0.83	1.09
All_withPS	Dec_May	0.33	0.38	1.06	0.90	1.11
Sus_Pot_PS	Dec_May	0.32	0.37	1.07	0.87	1.12
All_withPS	Feb_Jun	0.29	0.37	1.09	0.89	1.14
All_noPS	Jan_Jun	0.29	0.42	1.09	0.90	1.13

NSE: Nash-Sutcliffe Efficiency; r2: R² of observed vs. predicted regression; RMSE: Root Mean Square Error; MAE: Mean Absolute Error; RSTDE: Residual Standard Error

7/14

June Average HV

Lsource	Lperiod	NSE	r2	RMSE	MAE	RSTDE
All_noPS	Mar_Jun	0.25	0.30	1.75	1.45	1.81
All_withPS	Apr_Jun	0.24	0.28	1.77	1.42	1.83
All_withPS	Mar_Jun	0.24	0.26	1.77	1.46	1.81
All_withPS	Apr_May	0.22	0.27	1.79	1.46	1.83
Sus_Pot	Mar_Jun	0.22	0.25	1.79	1.5	1.85
All_noPS	Apr_May	0.21	0.31	1.80	1.45	1.90
Sus_Pot	Jan_Jun	0.21	0.25	1.80	1.51	1.85
All_noPS	Mar_May	0.21	0.27	1.80	1.49	1.91
All_noPS	Jan_Jun	0.21	0.24	1.81	1.52	1.86
Sus_Pot_PS	Apr_May	0.20	0.26	1.81	1.49	1.86

July Average HV

Lsource	Lperiod	NSE	r2	RMSE	MAE	RSTDE
Sus_Pot_PS	Oct_May	0.29	0.30	2.38	1.82	2.46
Sus_Pot_PS	Nov_Jun	0.29	0.29	2.39	1.82	2.47
All_withPS	Nov_May	0.29	0.29	2.39	1.78	2.52
Sus_Pot_PS	Oct_Jun	0.28	0.28	2.40	1.86	2.44
Sus_Pot_PS	Dec_May	0.28	0.28	2.40	1.87	2.45
All_withPS	Dec_Jun	0.28	0.28	2.40	1.85	2.50
All_withPS	Oct_Jun	0.28	0.28	2.40	1.84	2.50
Sus_Pot_PS	Nov_May	0.28	0.28	2.41	1.83	2.47
Sus_Pot_PS	Dec_Jun	0.28	0.28	2.41	1.88	2.48
All_withPS	Nov_Jun	0.27	0.27	2.42	1.83	2.49

August Average HV

Lsource	Lperiod	NSE	r2	RMSE	MAE	RSTDE
All_withPS	Jan_Jun	0.22	0.24	1.63	1.30	1.69
All_withPS	Jan_May	0.20	0.22	1.65	1.32	1.69
Sus_Pot_PS	Jan_May	0.18	0.21	1.67	1.35	1.74
All_withPS	Feb_Jun	0.16	0.20	1.69	1.32	1.76
Sus_Pot_PS	Jan_Jun	0.16	0.19	1.69	1.36	1.72
All_withPS	Dec_Jun	0.15	0.18	1.70	1.43	1.77
All_noPS	Jan_Jun	0.15	0.21	1.71	1.34	1.76
All_noPS	Jan_May	0.13	0.20	1.72	1.37	1.76
All_withPS	Dec_May	0.12	0.16	1.73	1.42	1.78
All_withPS	Feb_May	0.12	0.18	1.74	1.36	1.78

September Average HV

Lsource	Lperiod	NSE	r2	RMSE	MAE	RSTDE
Pot	Jun	-0.11	0.00	1.31	1.03	2.42
All_withPS	Dec_May	-0.20	0.01	1.36	1.11	1.33
All_withPS	Dec_Jun	-0.20	0.01	1.36	1.10	1.31
Sus_Pot_PS	Dec_May	-0.20	0.01	1.36	1.11	1.32
Sus_Pot_PS	Dec_Jun	-0.21	0.01	1.37	1.12	1.32
All_withPS	Jan_Jun	-0.22	0.01	1.37	1.10	1.32
All_withPS	Jan_May	-0.22	0.01	1.37	1.11	1.32
Sus_Pot_PS	Jan_Jun	-0.25	0.00	1.39	1.13	1.34
All_withPS	Nov_Jun	-0.25	0.00	1.39	1.12	1.34
Sus_Pot_PS	Nov_May	-0.26	0.00	1.39	1.13	1.36

Preliminary Considerations

Load sources:

- Best performing models often based on "All rivers + PS", with "All rivers without PS" and "Sus + Pot + PS" showing similar performance. "Sus", "Pot" and "Sus + Pot" perform consistently worse than when combined with other sources

Preliminary Considerations

Load sources:

Best performing models often based on "All rivers + PS", with "All rivers without PS" and "Sus + Pot + PS" showing similar performance. "Sus", "Pot" and "Sus + Pot" perform consistently worse than when combined with other sources

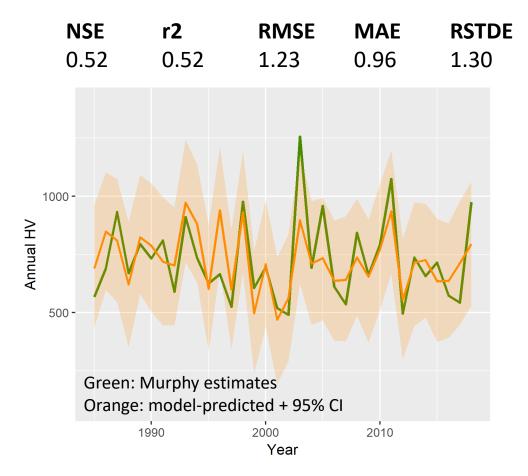
HV metrics:

- Highest model performances obtained for Summer Average HV (NSE = 0.40) and Total Annual HV (NSE = 0.52), both using Jan-Jun load and "All rivers + PS"
- Model performance progressively deteriorates for metrics later in the season (best NSE is **0.25** for Avg Jun, **0.29** for Avg Jul, **0.22** for Avg Aug and **-0.11** for Avg Sep)

Preliminary Considerations

Load sources:

Best performing models often based on "All rivers + PS", with "All rivers without PS" and "Sus + Pot + PS" showing similar performance. "Sus", "Pot" and "Sus + Pot" perform consistently worse than when combined with other sources.


HV metrics:

- Highest model performances obtained for Summer Average HV (NSE = 0.40) and Total Annual HV (NSE = 0.52), both using Jan-Jun load and "All rivers + PS"
- Model performance progressively deteriorates for metrics later in the season (best NSE is **0.25** for Avg Jun, **0.29** for Avg Jul, **0.22** for Avg Aug and **-0.11** for Avg Sep)

Load time frames:

- While adding the June load often improves model performance compared to using loads until May only, the improvement is often relatively small
- Different HV metrics best explained by different load time frames: June HV appears best correlated to loads later in spring (Mar-Jun), while other HV metrics show best correlations when also including earlier loads (Oct-May for July HV and Jan-Jun for August)

Performance of **best model OVERALL** (calibrated to 1985-2018 Murphy **Tot Annual HV** estimates and **Jan-Jun** loads from **All 9 Rivers + Point Sources**)

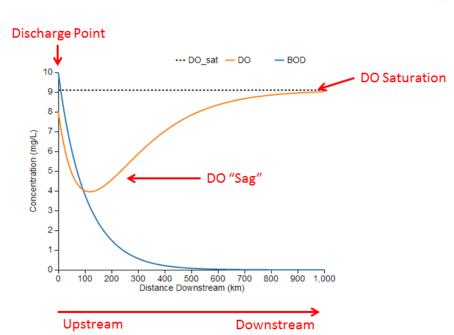
NSE: Nash-Sutcliffe Efficiency; r2: R² of observed vs. predicted regression; RMSE: Root Mean Square Error; MAE: Mean Absolute Error; RSTDE: Residual Standard Error

Next steps

- Finalize results including multiple sets of interpolated HV estimates (Murphy et al. 2011, Bever et al. 2013 and Zhou et al. 2014) and maybe 3D model-based HV estimates
- Get ready for 2020 seasonal forecast:
 - Develop a strategy to best communicate updated model results in a way that minimizes confusion while ensuring continuity with respect to past forecasts

Any questions or feedback?

Extra slides

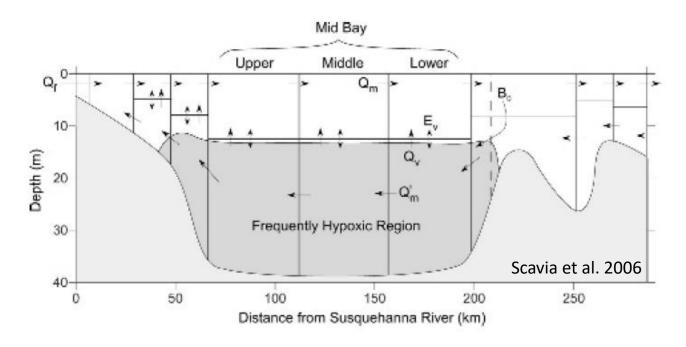

Streeter-Phelps Model

Biological Oxygen (BOD): Demand

$$\frac{dBOD}{dt} = -v * \frac{dBOD}{dx} - a * BOD$$

Dissolved Oxygen (DO):

$$\frac{dDO}{dt} = -v * \frac{dDO}{dx} + a * BOD - b * DO$$


t: time (d)

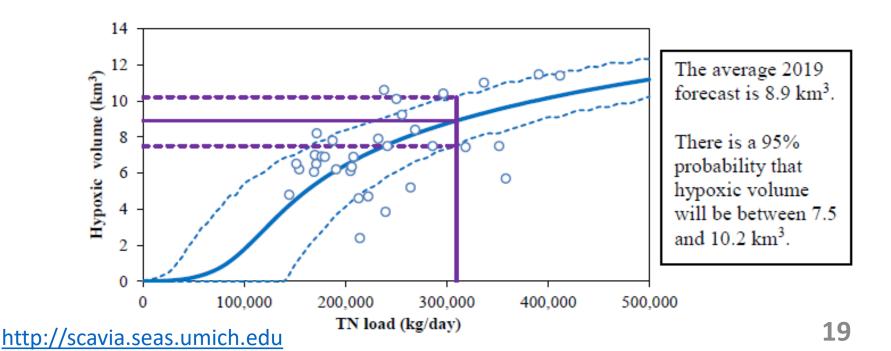
x: distance from source of *BOD* (km)

a: BOD decomposition rate (d-1)

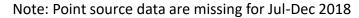
b: DO re-aeration rate (d⁻¹)

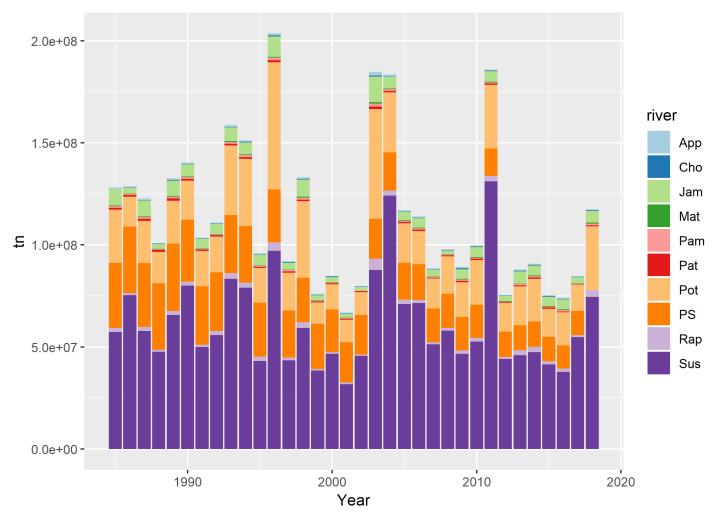
v: downstream advection (km d⁻¹)

Model driver: Jan-May average TN load from Susquehanna at Conowingo ■


TN \rightarrow **C** through Redfield Ratio (5.67 gC/gN)

F: fraction of C assumed to settle below the pycnocline


 $C \rightarrow BOD$ through respiration ratio (2.4 gO₂/gC)


Seasonal forecast

The 2019 Forecast - Given the average January-May 2019 total nitrogen load of 309,403 kg/day, this summer's hypoxia volume forecast is 8.9 km³, the 4th largest in the past 20 years.

Total annual loads by river (kg/year)

River combinations tested so far: Sus alone, Pot alone, Sus+Pot, Sus+Pot+PS, All 9
rivers, All 9 rivers + PS