Estimated Changes in Phosphorus Export from Developed Land Under Future Climate Hydrology

Modeling Workgroup Quarterly Review 8 October 2019

Isabella Bertani¹, Gopal Bhatt², Gary Shenk³, Lewis Linker⁴ and Modeling Team

¹ University of Maryland Center for Environmental Science

² Penn State

³ USGS

⁴ FPA

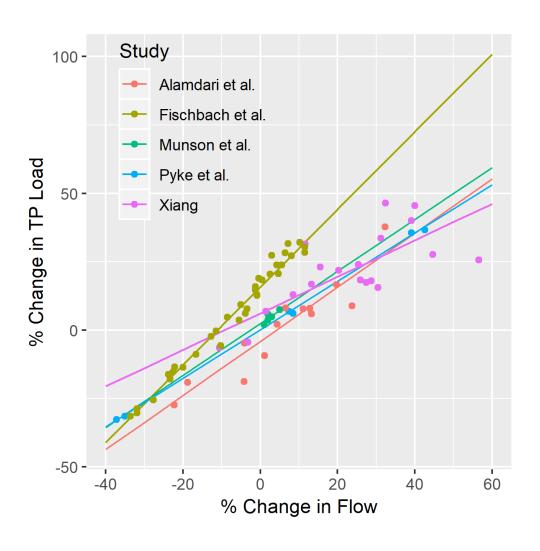
Estimated Changes in Phosphorus Export from Developed Land Under Future Climate Hydrology

2019 Climate Change Documentation:

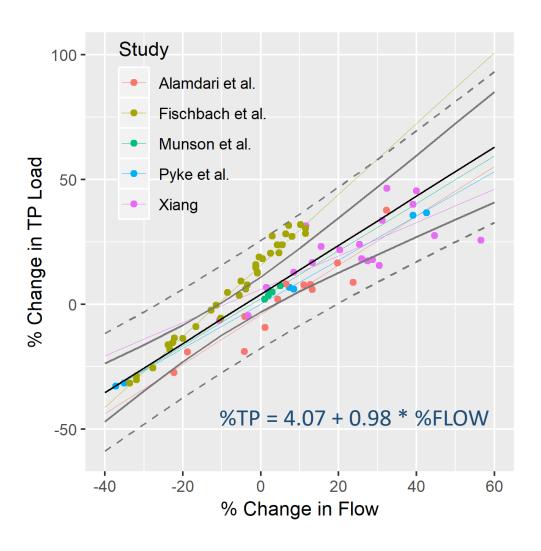
Section **4.5** - Phosphorus Loss Sensitivity to Climate Change

Section **4.5.2** – Developed Land

1. Literature review


2. Analysis of NSQD data

1. Literature review


P sensitivity to cc-driven changes in hydrology on developed land – Literature review

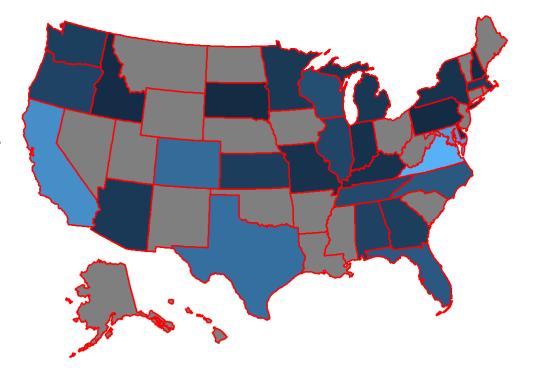
Reference	Site	Area (km²)	Land use	Model	Climate simulation approach	T change
Pyke et al. 2011	Naval Air Station, MA	5.7	Built environment with 64-71% open space	SG WATER	Delta change factor	Not assessed
Alamdari et al. 2017	Difficult Run watershed, VA	150	57% urban development; 8% commercial/industrial; 11% transportation; 24% open space		GCM	-1.2/+4.1 °C
Munson et al. 2015	Alewife Brook watershed, MA	22	61% residential; 11% commercial; 11% open land; 17% other	Multiple regression	Analysis of historical climate variability	+1/+5%
Tong et al. 2006	Lower Great Miami watershed, OH	3600	71% agricultural; 17% forest; 12% urban	BASINS	Delta change factor	+2/+4 °C
Xiang, 2017	Wilde Lake watershed, MD	4.9	Fully built out, 32% impervious	SWAT	GCM	-0.2/+7.2 °C
Fischbach et al. 2015	Patuxent River watershed, MD	2479	22% developed; 18% agricultural; 9% grassland; 50% forest	CBP 5.3.2	GCM	+0.7/+2.8 °C

P sensitivity to cc-driven changes in hydrology on developed land – Literature review

P sensitivity to cc-driven changes in hydrology on developed land – Literature review

Parameter	Mean	95% CI
Intercept	4.07	-2.95, 11.1
Slope	0.98	0.67, 1.29

2. Analysis of NSQD data


National Stormwater Quality Database

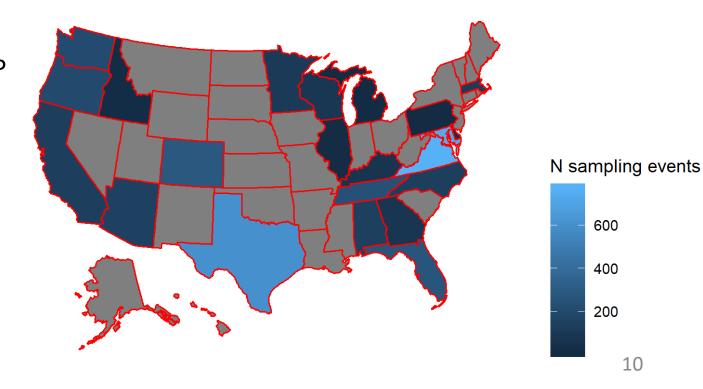
Version 4.02 - January 2015

(http://www.bmpdatabase.org/nsqd.html)

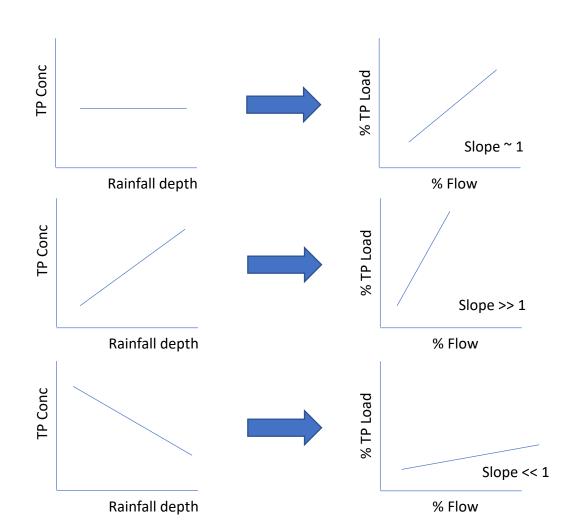
Full dataset:

9051 storm events 594 sampling sites 87 counties 30 states

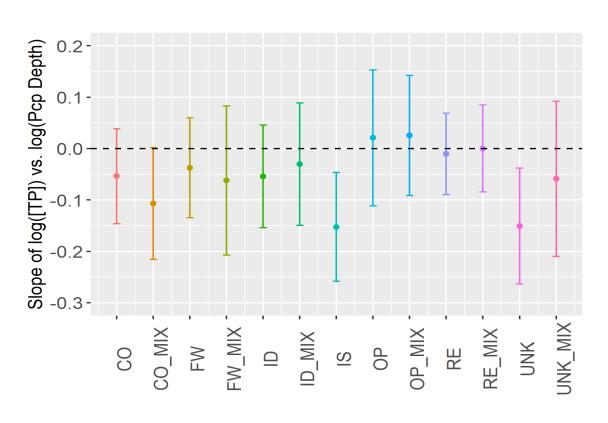
N sampling events 1,000 750 500 250


National Stormwater Quality Database

Version 4.02 - January 2015


(http://www.bmpdatabase.org/nsqd.html)

Storm events with TP and rainfall data:


4419 storm events351 sampling sites57 counties22 states

National Stormwater Quality Database

National Stormwater Quality Database

CO: Commercial

ID: Industrial

RE: Residential

IS: Institutional

FW: Highways/Freeways

OP: Open Space

UNK: Unknown

Majority of land uses exhibit a regression slope not significantly different from zero

Consistent with 1:1 relationship between %Flow and %TPLoad

Comparison with TP load sensitivities in non-developed land uses

Percent changes estimated between 2025 and 1995 climate conditions across land segments

Load Sources	% Change in TP Load per Unit % Change in Flow
Grain with Manure	1.54
Full Season Soybeans	1.72
Pasture	0.96
Forest	1.41
Crops	1.41
Pasture & Hay	1.16
Natural	1.27
Developed	1.00

Comparison with TP load sensitivities in non-developed land uses

Distribution across P6 land segments when comparing 2025 and 1995 climate conditions

Percentile	% Impervious Area	% Change in Flow	% Change in Stormflow	% Change in Stormflow / % Change in Flow
95%	55%	5.4%	7.0%	2.70
75%	39%	3.6%	5.2%	1.69
50%	32%	2.6%	4.0%	1.50
25%	27%	1.7%	2.8%	1.32
05%	22%	0.8%	1.5%	1.15

Load Sources	% Change in TP Load per Unit % Change in Stormflow	
Grain with Manure	0.86	
Full Season Soybeans	0.97	
Pasture	0.42	
Forest	0.49	
Crops	0.79	
Pasture & Hay	0.51	
Natural	0.49	
Developed	0.67 (0.37 – 0.87)*	

Estimated Changes in Phosphorus Export from Developed Land Under Future Climate Hydrology

Seeking approval of

Section 4.5.2 – Developed Land

of 2019 Climate Change Documentation

Main outcome: Introduce 1:1 relationship between % change in TP and % change in flow on developed land uses in P6 Watershed Model