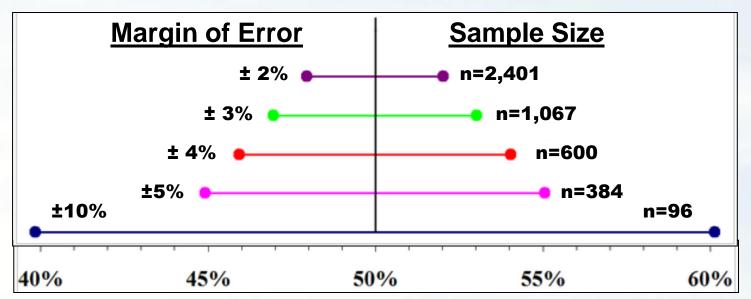


Sample Size Estimation for BMP Verification

August 14, 2014

Sample Size Estimation

- Objective/Management Goal
 - Document the percentage of BMPs that are still in place and functioning properly
 - Inform Bay model simulation updates
- ▶ Target Populations
 - BMP implemented through state costshare program
 - BMP implemented through CAFO permits
 - BMP implemented voluntarily without cost-share
 - Resource improvement practice



Binomial Distribution

- ▶ Binomial Distribution
 - Are the BMPs still there?
 - Yes/No
 - Are the BMPs still functioning properly?
 - Yes/No
- ▶ Sample Size—just like political polls

Some Common Terms

- ▶ N: total number of population units in sample population
 - County XYZ wrote 246 nutrient management plans (N=246)
- ▶ n: number of samples
 - County XYZ randomly inspected/reviewed the implementation of 30 nutrient management plans (n=30)
- ► n/N: Sampling level
 - i.e., 30/246 = 0.12 or 12%
- p: proportion of "yes" responses
 - County XYZ found that 26 of the nutrient management plans continue to be implemented as expected (26/30= 0.867 or 86.7%)
- ► Confidence level: certainty that p is within a certain range
 - e.g., 90% confidence level (significance level, $\alpha = 0.10$)
- d: allowable error (margin of error)
 - 86.7% ±9.6% (87% ±10%) with 90% confidence
 - Upper and lower 90% confidence interval is 77-97%

Binomial Distribution

Standard Sample Size Equation

$$n_o = \frac{\left(Z_{1-\alpha/2}\right)^2 pq}{d^2}$$

Political Poll Example

$$96 = \frac{(1.96)^2(0.5)(0.5)}{(0.10)^2}$$

Finite Population Correction

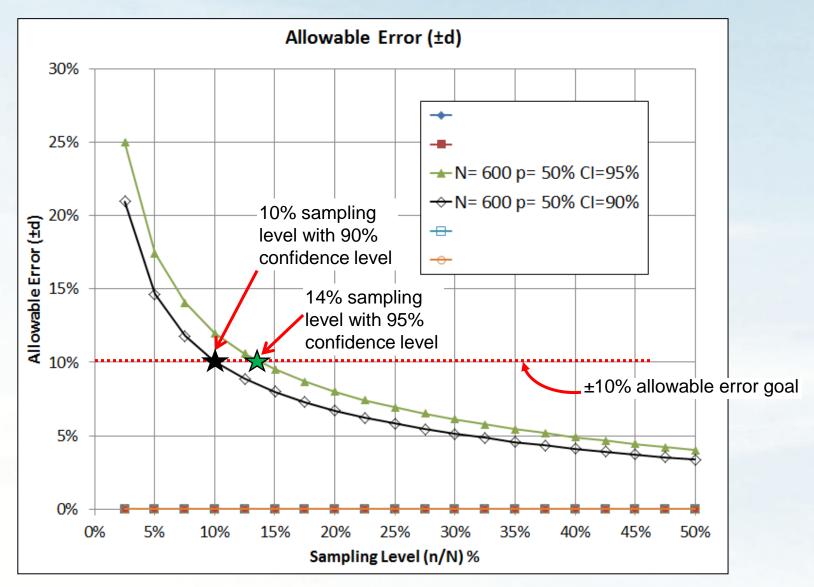
$$n = \frac{n_0}{(1+\varphi)}$$

N ► total number of population units in sample population

 n_o = preliminary estimate of sample size (sample size for large N)

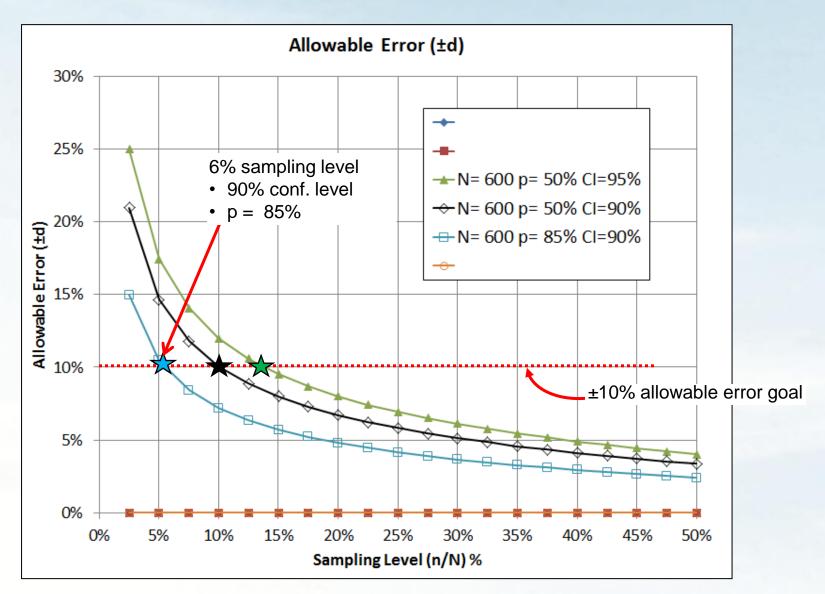
 $Z_{1-\alpha/2}$ = value corresponding to cumulative area of 1- $\alpha/2$ using the normal distribution

p = proportion of "yes" responses

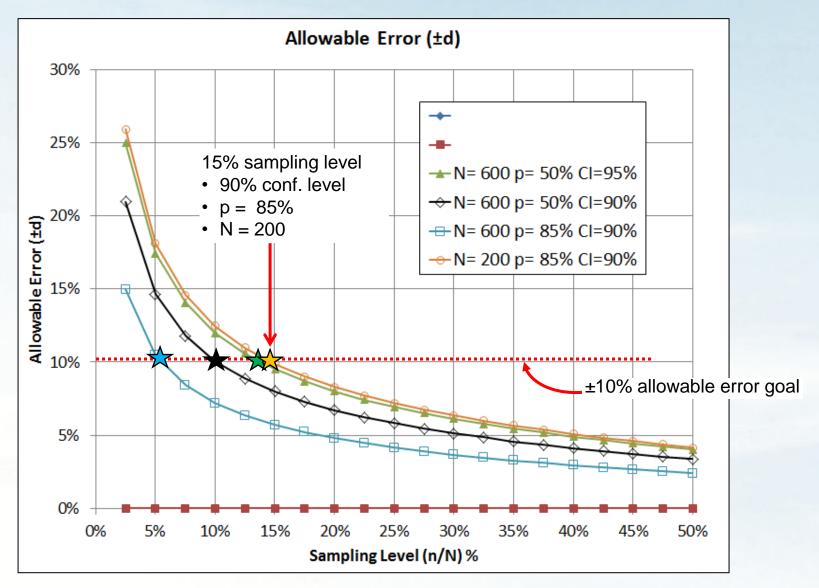

q = proportion of "no" responses (i.e., 1-p)

d = allowable error (margin of error)

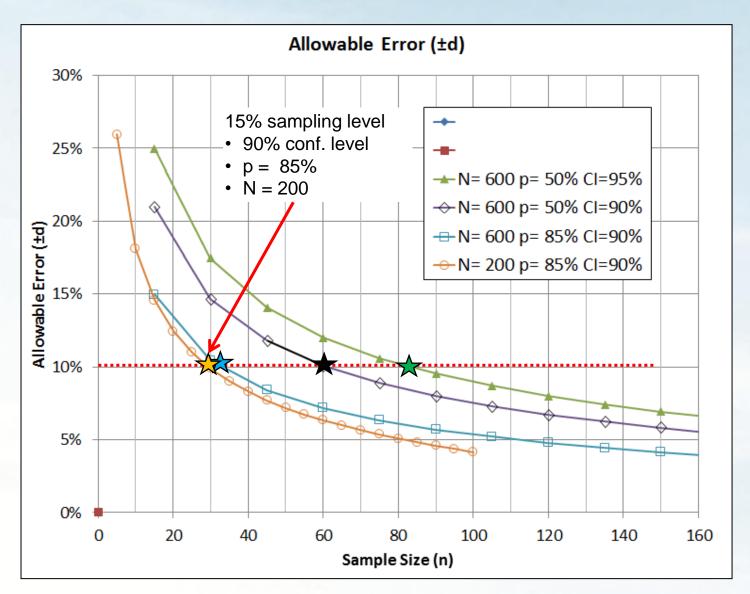
 $\varphi = n_0/N$ unless otherwise stated


n = number of samples (adjusted for finite population)

Allowable Error—Decreasing Conf. Level



Allowable Error—A Priori Knowledge



Allowable Error—Smaller Population

Allowable Error—Smaller Population

Observations

- Improved precision
 - More sampling
- Reduce sampling costs
 - Lower confidence level (e.g., 95% CI → 90% CI)
 - Increased allowable error, d, (e.g., ±10% → ±15%)
- ▶ Less sampling is needed to maintain precision if the percentage of BMPs maintained is closer to 100%
 - A priori knowledge is important
 - 50% BMP maintenance is a conservative assumption
 - But don't overestimate
- Finite Populations
 - Sampling from small populations can result in large errors.

Potential Application

- ▶ Precision Statement
 - Estimate the percentage of BMPs maintained, p, to within
 ±d% using a X% confidence level.
- ► Example:
 - The percentage of BMPs maintained is 85% ±10% with a 95% confidence level, or
 - The range of maintained BMPs is 75-95% with a 95% confidence interval.
- ▶ Worked Example
 - ▶ p: No information (50%), Good (70%), Excellent (85%)
 - ▶ ±d: 5%, 10%, and 15%
 - ► X%: 90% and 95%

Work Example—Sample Size (n)

				•					
95% Confidence Level									
р ±		±d	Large N	100	200	600	1000	1,500	2,000
No	50%	5%	385	80	132	235	278	307	323
Information	50%	10%	97	50	66	84	89	92	93
IIIOIIIauoii	50%	15%	43	31	36	41	42	42	
Good	70%	5%	323	77	124	210	245	266	279
Maintenance	70%	10%	81	45	58		75		78
Mamichance	70%	15%	36	_	31	34	35		
	85%	5%	196	67	99		164	174	
Excellent	85%	10%	49	_		_	_	48	_
	85%	15%	22	19	20	22	22	22	22
90% Confidence Level									
p ±c		±d	Large N	100	200	600	1000	1,500	2,000
No	50%	5%	271	74	116	187	214	230	239
Information	50%	10%	68	41	51	62	64	66	66
IIIOIIIatioii	50%	15%	31	24	27	30	31	31	31
Good	70%	5%	228	70	107	166	186	198	205
Maintenance	70%	10%	57	37	45	53	54	5 5	56
Manitenance	70%	15%	26	21	24	25	26	26	26
	85%	5%	138	58	82	113	122	127	130
Excellent	85%	10%	35	26	30	34	34	35	35
	85%	15%	16	14	15	16	16	16	16

Work Example—Sample Level (n/N)

>20% • 10-20% • 5-10% • <5% • •

95% Confid	lence l	Level
------------	---------	-------

р		±d	Large N	100	200	600	1	1000	1,500	2,000
No Information	50%	5%	385	80%	66%	39%		28%	20%	16%
	50%	10%	97	50%	33%	14 %		9%	6%	5%
	50%	15%	43	31%	18%	7%		4%	3%	2%
Good Maintenance	70%	5%	323	77%	62%	35%		25%	18%	14%
	70%	10%	81	45%	29%	12%		8%	5%	4%
	70%	15%	36	27%	16%	6%		4%	2 %	2%
Excellent	85%	5%	196	67%	50%	25 %		16%	12%	9%
	85%	10%	49	33%	20%	8%		5%	3%	2 %
	85%	15%	22	19%	0 10%	4%		2%	1%	1%

90% Confidence Level

р		±d	Large N	100	200	600	1000	1,500	2,000
No Information	50%	5%	271	74 %	58%	31 %	21%	0 15%	0 12%
	50%	10%	68	41%	26%	10%	6%	4 %	3%
	50%	15%	31	24%	14%	5 %	3%	2 %	2 %
Good Maintenance	70%	5%	228	70%	54%	28%	9 19%	0 13%	0 10%
	70%	10%	57	37%	23%	9%	5%	4 %	3%
	70%	15%	26	21%	12%	4 %	3%	2 %	1%
Excellent	85%	5%	138	58%	41%	9 19%	12%	0 8%	0 7%
	85%	10%	35	26%	○ ★15%	○★ 6%	3%	2 %	2 %
	85%	15%	16	14%	8%	3 %	2%	1%	1%