# Information Supporting the Development of and Options for a Tidal Bay Water Temperature Change Indicator(s)





Breck Sullivan (CRC) & Julie Reichert-Nguyen (NOAA)

dullon

Contributors: Ron Vogel (UMD/ESSIC @ NOAA) and Anissa Foster and Shalom Fadullon (CRC)

# CBP: Climate Resiliency Workgroup

Goal: Increase the resiliency of the Chesapeake Bay watershed, including its living resources, habitats, public infrastructure and communities, to withstand adverse impacts from changing environmental and climate conditions.

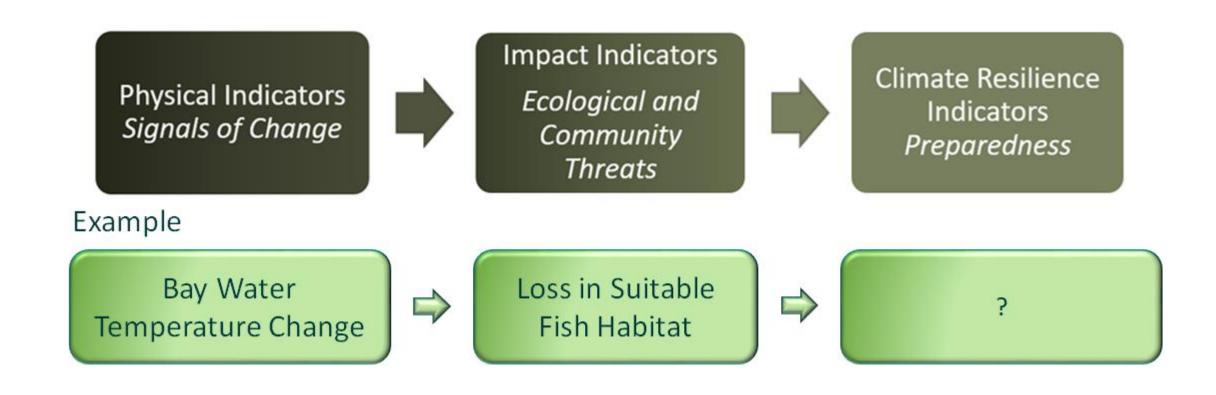




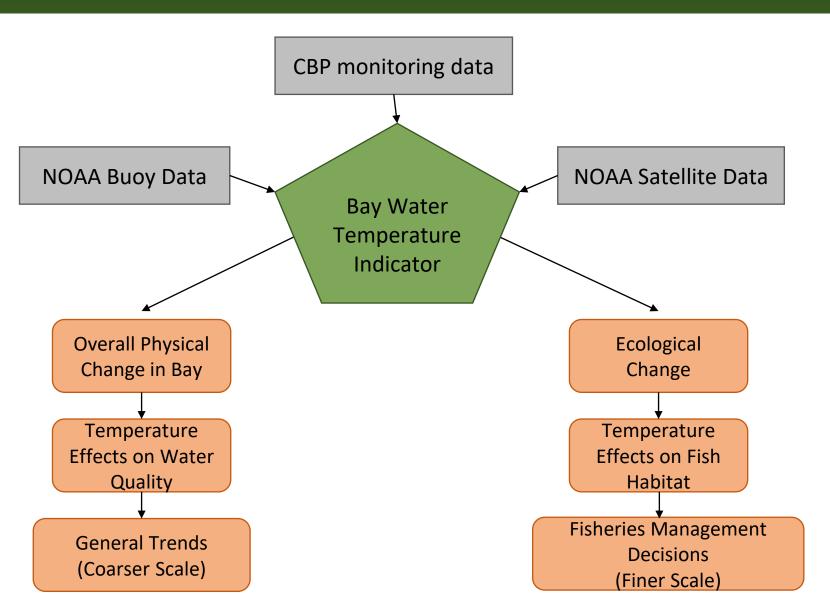
## Climate Monitoring & Assessment

 Track changes in sea level, precipitation, water temperature and the resulting ecosystem response

## Climate Adaptation


 Pursue, design, and implement restoration and protection management practices that enhance climate resilience of aquatic ecosystems

# Connecting Change to Restoration Goals

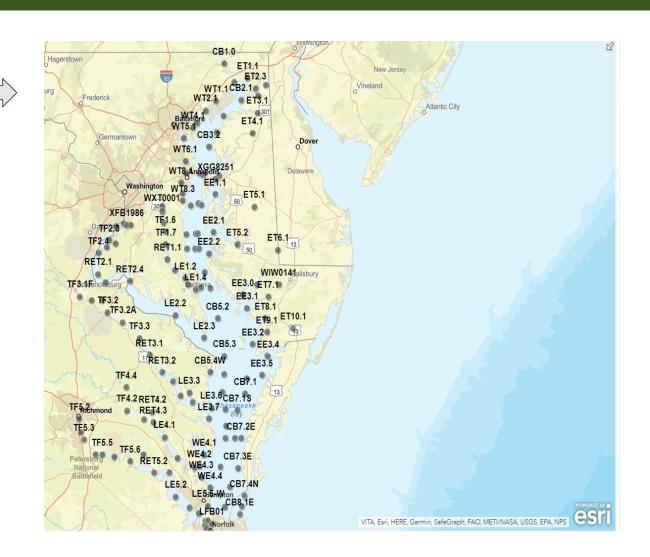



- Climate Change is going to impact the trajectory and scale of reaching key restoration goals
- Multi-disciplinary indicators
   can improve the monitoring
   and assessment of physical
   changes and their effect on
   habitats and living
   resources.

# Climate Change Indicator Framework



# Indicator Utility - What is the Management Need?




- Indicators can be applied in multiple ways
- Indicator purpose defines data needs and spatial and temporal scales

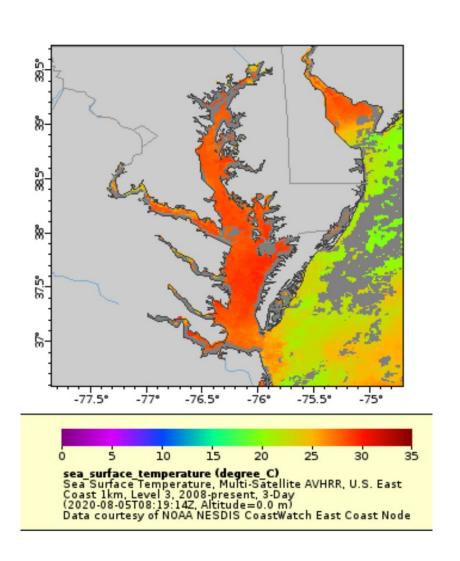
# Bay Water Temperature Indicator: Data Sources

## In-Situ Data Sources

- CBP Long-term Monitoring
   Stations: 1985-present, Monthly
- CBIBS buoys: 2008-present, 5 buoys, 10-60 minute intervals
- CBL pier: 1938-present
- Thomas Pt. Lighthouse C-MAN station: 1985-present, hourly
- Citizen Monitoring Data



# Bay Water Temperature Indicator: Data Sources


## Satellite Data Sources

- Multi-Satellite AVHRR:
   2008-present, Daily, 1km shorter record
- Geo-Polar Blended:
   2002-present, Daily, 5km coarser spatial res
- Landsat:
   1982-present, Daily, 30m less accurate
- European Climate Change Initiative: 1981-2016, Daily, 5km only avail to 2016
- and more data sources! to be included in synthesis report

#### NO DATA SET MEETS ALL CRITERIA

(temporal extent, temporal interval, spatial interval, accuracy, ongoing record, institutional support, etc.)

NOAA has plans for best-of-all data set - availability TBD



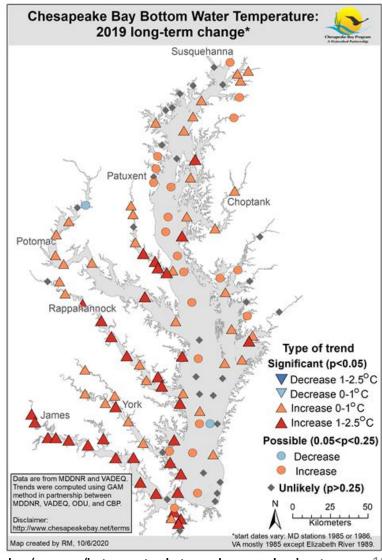
# Bay Water Temperature Indicator: Data Sources

|             | <u>SHIP</u>                                                                            | <b>BUOY/MOORING</b>                                                                              | SATELLITE                                                                                                        |
|-------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Advantages  | <ul><li>bay-wide</li><li>vertical profile</li></ul>                                    | <ul> <li>highest temporal sampling interval</li> <li>surface-only or vertical profile</li> </ul> | <ul> <li>bay-wide</li> <li>highest spatial sampling interval</li> <li>high temporal sampling interval</li> </ul> |
| Limitations | <ul><li>low temporal sampling interval</li><li>low spatial sampling interval</li></ul> | lowest spatial sampling interval                                                                 | • surface only                                                                                                   |

All Data Sources have Advantages and Limitations

# Water Temperature Indicator Examples

## Physical Change


- 1) Integrated trends analysis of Bay water temperature change (R. Murphy, UMCES, and J. Keisman, USGS)
- 2) Indicator for National Estuary Program extended to Chesapeake Bay (R. Vogel, NOAA, M. Craghan, USEPA, and M. Tomlinson, NOAA)

## Connecting Water Temperature Change to Ecological Impacts

3) Fish spawning habitat (S. Fadullon, NOAA-CRC Internship)

# Integrated Trends (Murphy et al.)

- MDDNR, VADEQ, DC and others have been sampling at 150+ stations since the 1980s, 1-2 times/month
- Water Temperature available for surface & bottom and long-term & short-term
- Long-standing coordinated effort to analyze trends using GAMs in these data between the partners
- Maps of 2019 available on CBP ITAT page



## U.S. EPA National Estuary Program (Vogel et al.)

- Developed for U.S. EPA National Estuary Program—extended to Chesapeake Bay
- Satellite data only—many estuaries nationwide have no monitoring programs
- Available at NOAA CoastWatch: eastcoast.coastwatch.noaa.gov/time\_series\_sst\_regions.php

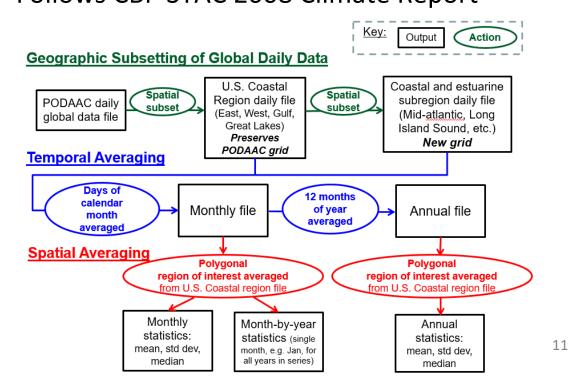
#### Monthly averages, all years

Seasonal difference in rate of change

FEB

Februrary Monthly Average Temperature Chesapeake Bay (southern portion), NASA MUR SST

August Monthly Average Temperature Chesapeake Bay (southern portion), NASA MUR SST


August Monthly Average Temperature Chesapeake Bay (southern portion), NASA MUR SST

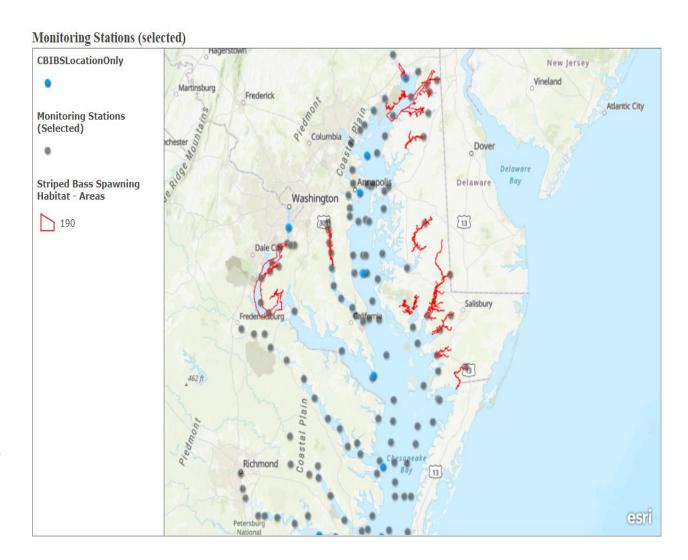
August Monthly Average Temperature Chesapeake Bay (southern portion), NASA MUR SST

Y = 0.0229x + 26.715

vear

# Methodology: temporal & spatial averaging Follows CBP STAC 2008 Climate Report




## Scale Considerations: Fish Spawning Habitat (S. Fadullon)

#### **Spatial Considerations:**

- Evaluated satellite daily data not available for narrow tributary areas—other sources still to be explored
- Long-term monthly monitoring data available far up in narrow tributaries.

### **Temporal considerations:**

- For spawning habitat, fisheries managers are interested in daily data for certain seasonal timeframes
- Long-term monthly averages may not be suited for management decisions related to spawning habitat—may suffice for tracking general adult distribution changes



# Findings and Gaps (So Far)

## Findings:

- 1) There exists physical water temperature change indicators from other sources
- Working towards an ecological impact indicator needs to consider potential management applications to eventually connect with resilience progress
- 3) Given data limitations, a multi-source data approach could allow for a more robust indicator

## Gaps:

- 1) Scientific understanding of management needs
- 2) Synthesis of indicator methodologies
- 3) Linkage between physical change and ecological impacts
- 4) Incorporation of climate change projections