

Preliminary Evaluation Feasibility of Aeration for Reducing the Chesapeake Bay Dead Zone

Dan Sheer, HydroLogics Inc.
Xiaoting Chen, JHU EHE
Richard Tian, CBP
October 17, 2018
CBP Modeling Workgroup Meeting
Annapolis, Maryland

Here's the Basic Idea

- Do what you oughta, add O2 to water
- Do this by pumping air into the dead zone
- The O2 will dissolve into the water as the bubbles rise
- Tide will disperse the O2 North/South
- East/West pipes will disperse O2 E/W
- Figure out if it's feasible to add enough O2 to offset the imbalance between respiration and natural aeration

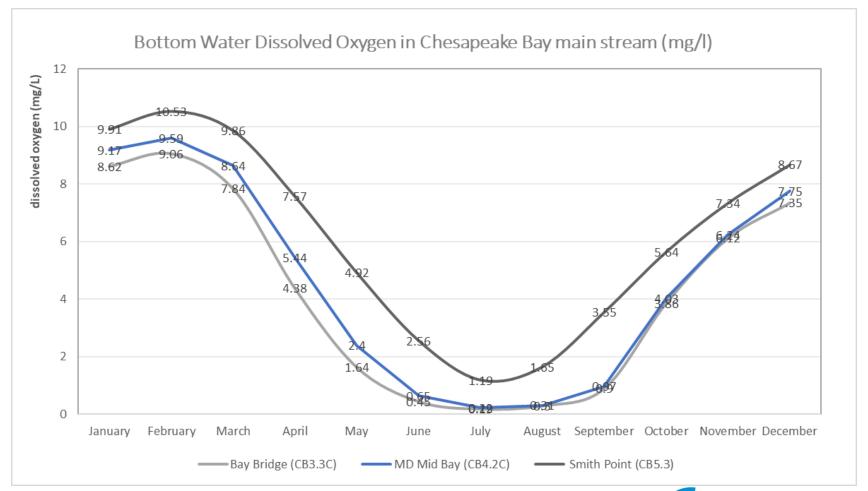
Here's NOT the Basic Idea

- Use bubbles to break up the pynchocline
 - Thus increase natural aeration
- Choose a method for pumping air
- Choose an energy source
- Use pure O2
- Design a system (yet)
- Promote an agenda (yet)

Objections

- Too much air required
- Too much energy to pump air to the bottom
- Very high cost
- No way to get that much O₂ into the water bubbles rise too fast
- STAC review of wind power said 1000 barges with 11,000 turbines
- Fixing the symptoms, not the problem

BOE Calculations


- What size pipes?
- What size pumps?
- How much energy?
- What's it gonna cost?
- It all starts with "How much air?"

Data! Data! Who Got the Data?

- BOD levels
- Respiration levels
- Aeration rates
- Sediment O₂ demand rates
- Can I get this stuff from the models?
- What a mess! I'll never get this done!
- There is a real need for additional monitoring compared to other estuaries, particularly continuous monitoring

How Much O₂ is Needed?

Observations

- DO decline takes months there is a reservoir of O₂
- The decline is about 3mg/I/MONTH
- That's THE ANSWER!! Net of everything
- That might be manageable
- Not so fast, don't know what's happening in the critical late summer period – but the big bloom is late spring.

O₂ Dispersion is a 1D Problem

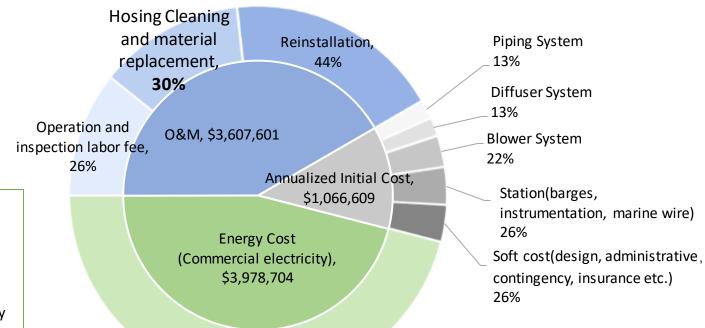
- Bubbles rise vertical dispersion is not an issue
- In the Bay, tides move water N/S
 - Tidal excursion is ~3-5km
 - N/S dispersion is not a big issue
- One E/W lateral will likely serve ~5km of Bay
- Laterals will solve the 1D E/W dispersion problem

How Much Air Is Needed? 10x More Air than O2

- Tiny bubbles what's the dissolution rate?
 - 10% in STPs
 - Deep Bay is not N₂ saturated, and dissolving gas keeps bubbles from expanding as they rise and thus limits the rate of rise
- ~50% of O₂ in bubble dissolves below the pynchocline
 - Dirty bubble formula, numerically integrated
 - .5 x .2 = 10% of pumped air dissolves as $O_2 N_2$ dissolves as well

Cost Estimation Assumptions

- 1.5 mi³ of anoxic volume
- 5 mg/l/month O₂ for anoxic volume
- 60' depth (compress to 3 atm for energy calcs)
- 50% energy efficiency for O₂ delivery
- 90 days operation/yr.
- 16 pumping stations


Several Numbers:

- 1. \$1,982.6 M: State and Federal partners invested in Watershed restoration in fiscal year 2017 [1];
- 2. \$47 M: directed to help meet the goals of the Chesapeake Bay Total Maximum Daily Load by CBP Funds^[1];
- According to EPA officials, it may take a significant number of Years for changes to occur in water quality after implementation of TMDLs^[2];
- 4. \$80 M: Welfare effect (equivalent to 80 Millions dollars) with 25% increase of DO levels across the region^[3];

Reference:

- www.chesapeakeprogress.com/funding:
- https://www.epa.gov/tmdl/impaired-waters-restoration-process-recovery;
- 3. Massey, D. M., S. C. Newbold, and B. Gentner. 2006. Valuing water quality changes using a bioeconomic model of a coastal recreational fishery. Journal of Environmental Economics and Management 52: 482–500.

Engineering Cost Analysis:

Total Annual Cost:

\$8,652,914

On the order of **0.5%** of current combined Federal and State Bay Program expenditures on an annual basis (4)

Reference:

- 1. Boyle, William C. (1990). Fine pore aeration for wastewater treatment. Park Ridge, N.J., U.S.A: Noyes Data Corp;
- 2. W. Harris, Roy & John, Jr, Cullinane, M & Sun, Paul. (1982). Process Design and Cost Estimating Algorithms for the Computer Assisted Procedure for Design and Evaluation of Wastewater Treatment Systems (CAPDET). 1706.;
- 3. Web Price:
- 4. www.chesapeakeprogress.com/funding

Bottom-up Initial Cost Estimation:

Category	Cost, \$	Note
Material Cost	5,325,108	
1. Piping System	960,640	
DownpipeAirflow transmission pipeDiffusers System	922,658	D=1.5 feet, price for per meter, aluminum transmission pipe for distributed diffusers, a verage 6km for each station market price
DiffusersAnchoring		D=3.5", price \$/ ft, 0-50 cfm, cost of diffusers, the below-water air piping 20% of piping system
3. Blowers System	1,565,238	
BlowersAir infiltration system		Capacity @ B45 s cfm, s ourcing from Madison, WI, 7/scfm \$3000 for 27500s cfm blower
4. Station Construction	1,876,571	
• Instrumentation & Control		Auto-control system, 30% of blower
• Used Barge		Draft= 15 ft, deck ength 25 ft, http://www.maritimesales.com/ETT10.htm
Marine Wire		Cost per meter, low vol tage
Mobilization, Insurance	426,009	8% of material cost
Contigency	213,004	4% of material cost
Design & Engineering	894,618	15% of construction cost
Legal & Administrative	298,206	5% of construction cost

Total Initial Cost	7,156,945
Equivalent Annual	1,066,609
Cost ^[1]	

^{1.} Assumption: interested rate: 8%; Operation duration: 10 years.

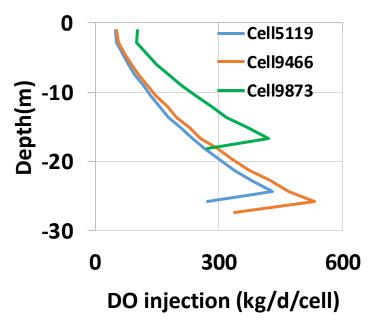
Energy Cost Estimation:

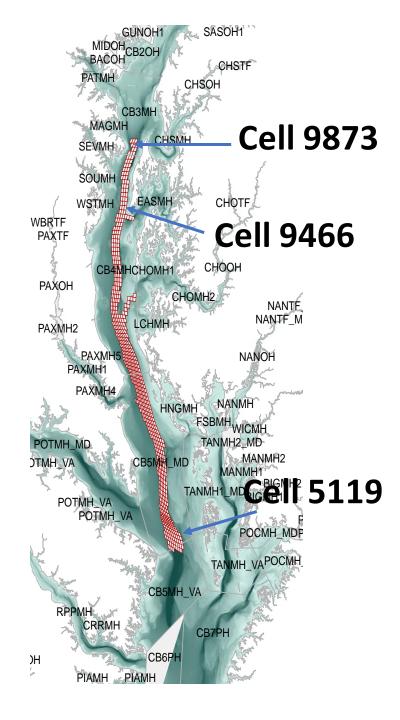
Table 1- Energy Demand

Name	Value	Demand
Air needed	8.19E+09	I/day
Work Required	9.95E+11	J/day
Energy Needed (50% efficiency)	5.53E+05	kWh/day

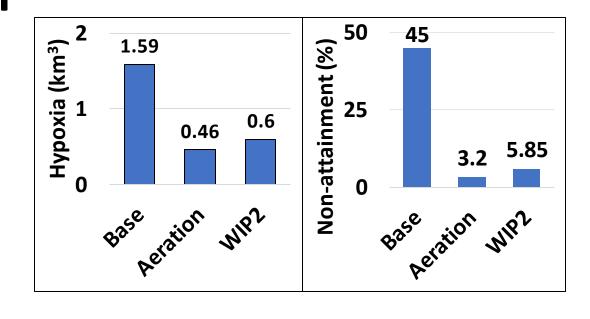
❖ Table 2- Energy Options

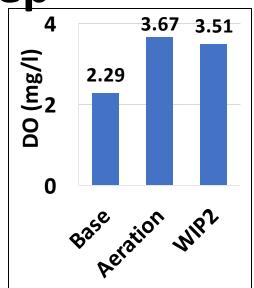
	1. Commercial electricity	2. Solar generation	3. Source From Marine
Strategy	Connected by marine wires	Connected by marine wires; 2256 KW solar panels with \$1.95/W ^[1] can cover full demand considering renewable energy incentives.	 Wave with average height 1.5 ft and period 4s is likely to produce an integrated volumetric air flow of about 1E+09 liter per day with 5 barges.
Levelized cost	\$0.08 /Kwh	\$0.092 /Kwh	(Unfinished, Need check!)
	\$5.4 E-03/ml Air	\$6.2 E-03/ml Air	
Co-benefits	-	Green Energy; Likely to be more cost-effective in 2-3 years.	Green Energy;Reduce wave impact on navigation and bank erosion.

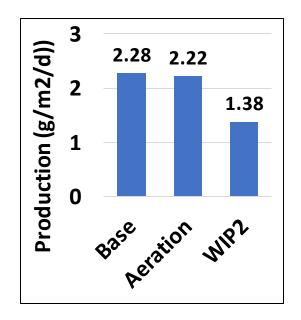

^{1.} Fu, Ran, Feldman, David J., Margolis, Robert M., Woodhouse, Michael A., & Ardani, Kristen B. U.S. Solar Photovoltaic System Cost Benchmark: Q1 2017. United States. doi:10.2172/1390776.

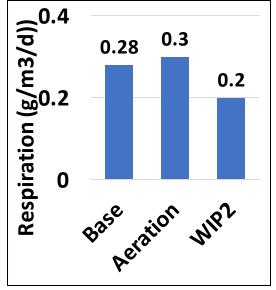

But, Will It Work??

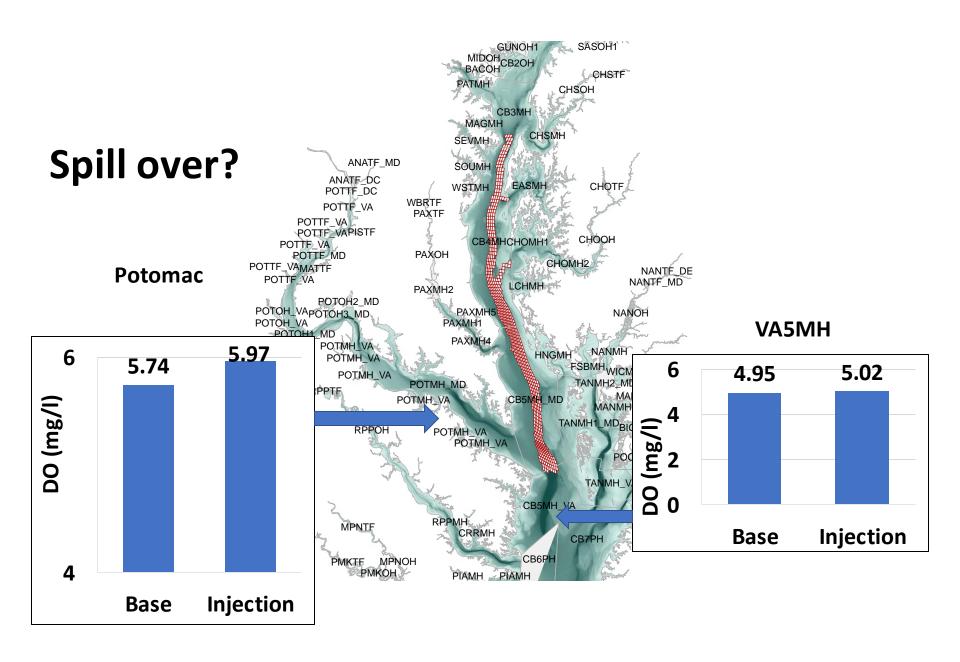
- Testing with CBWQSTM
- Adding O₂ to model
 - Vertical distribution of O₂ injection per calculations from dirty bubble formula
 - Assume uniform distribution of O₂
 injection in all model columns > 50' deep
 between Smith Point and Bay Bridge in main channel
 - Total O₂ addition consistent with cost estimate


Simulation and comparison


- Aeration Base + O2 addition, Apr. 1 Sep. 30.
- 585 surface cells receive DO injection in the water column, 8481 cells in total.
- 3 millions pounds of DO per day and 539 million pounds per year.
- Base Calibration 1991-2000.
- WIP2 Nutrient reduction of Watershed Implementation Plan Phase II.






Comparison of water quality variables in CB4 deep channel Apr-Sep

Conclusions and Next Steps

- This MIGHT actually provide rapid and substantial reductions in dead zone
 - Model results say DO performance in main channel is comparable to Bay Program – but that's only one parameter
 - Costs seem attractive relative to the problem being addressed
- The model results are model results, not real world – we need experiments
- Costs and performance will depend on design

EXPERIMENTS!!!

- Model runs, model runs, model runs
 - diffuser optimization,
 - O2 distribution,
 - Current loadings, etc.
- Confirm dissolution rates
- Test diffuser designs, particularly for fouling
- Identify other implications e.g.
 - Nutrient cycling
 - N₂ concentration impacts
 - Destratification impacts, etc.
- Use the CBWQSTM to design the physical experiments

Design Challenges

- Location of pump stations shore or barges
- Power source
 - Grid, waves, wind, solar, combinations
 - Interruptible power, ancillary services
- Navigation impacts and system stability
 - Dredging, anchoring, prop wash, drunks
- Pipe and diffuser materials and anchoring
- O&M
 - Fouling, R&R, Service
- Student competition?

Thank You

Discussion,
Comments and Suggestions?

Animation of Bay Bridge (CB3/CB4) Base Run (Top) – Infusion (Bottom)

