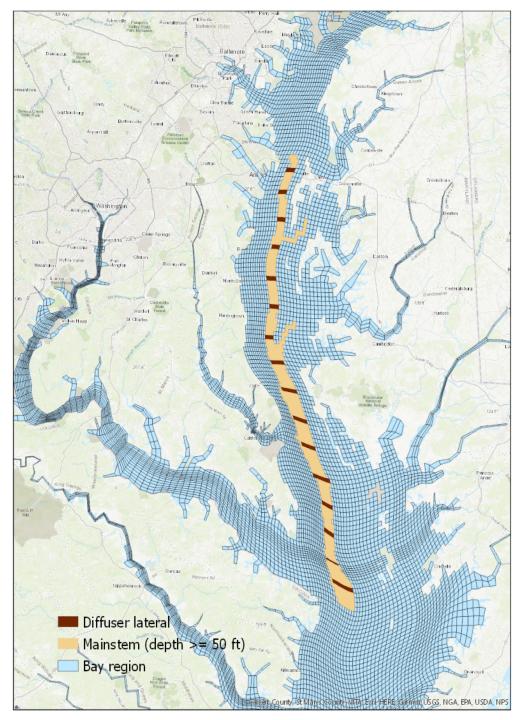


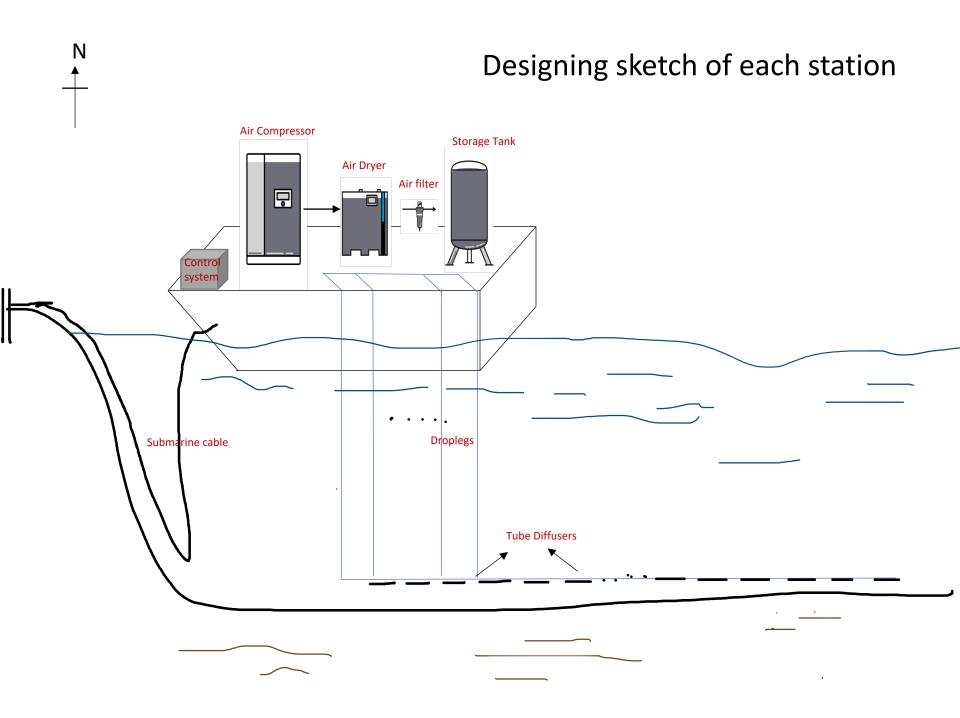
Preliminary Evaluation
Feasibility of Aeration for
Reducing the
Chesapeake Bay
Dead Zone
Update 2/20/2019

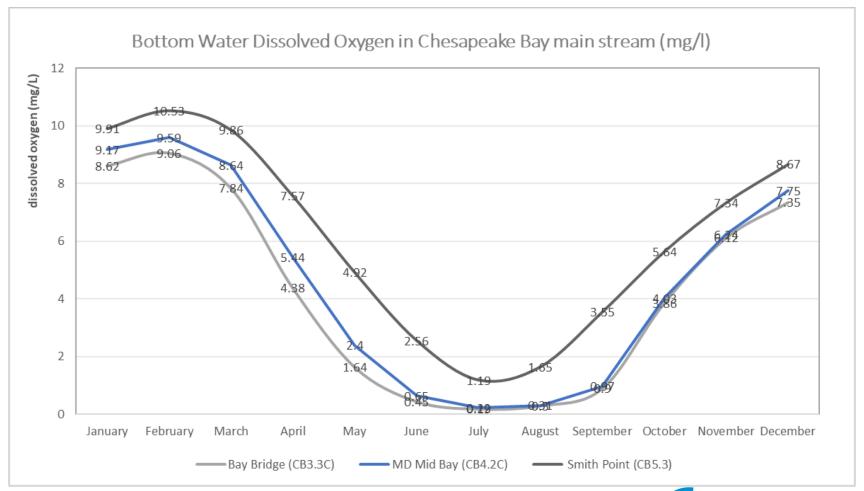
Dan Sheer, HydroLogics Inc.
Xiaoting Chen, JHU EHE
October 17, 2018
CBP Modeling Workgroup Meeting
Annapolis, Maryland


Here's the Basic Idea

- Do what you oughta, add O2 to water
- Do this by pumping air into the dead zone
- The O2 will dissolve into the water as the bubbles rise
- Tide will disperse the O2 North/South
- East/West pipes will disperse O2 E/W
- Figure out if it's feasible to add enough O2 to offset the imbalance between respiration and natural aeration

Here's NOT the Basic Idea


- Use bubbles to break up the pynchocline
 - Thus increase natural aeration
- Choose a method for pumping air
- Choose an energy source
- Use pure O2
- Design a system (yet)
- Promote an agenda (yet)



Diffuser lateral distribution Diagram

- Air distribution lateral laid east/west across the Bay's north/south axis with 5 miles interval (approximately same distance as tidal excursion);
- Total 16 laterals, barges parking at the margin of dead zone as off-shore platform;

How Much O₂ is Needed?

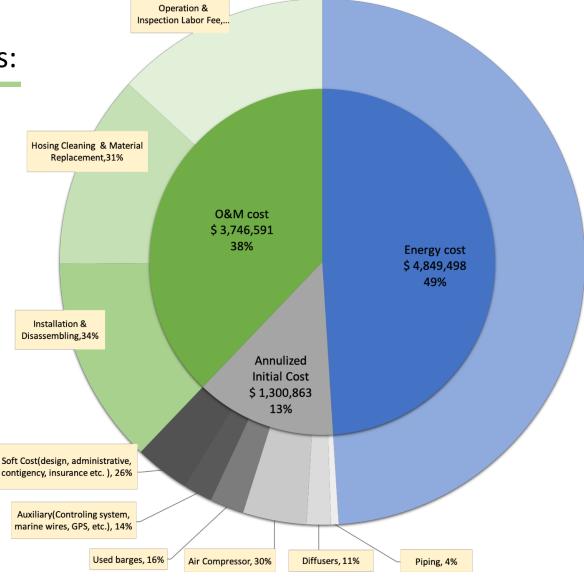
Several Numbers:

- 1. \$1,982.6 M: State and Federal partners invested in Watershed restoration in fiscal year 2017 [1];
- 2. \$47 M: directed to help meet the goals of the Chesapeake Bay Total Maximum Daily Load by CBP Funds^[1];
- According to EPA officials, it may take a significant number of Years for changes to occur in water quality after implementation of TMDLs^[2];
- 4. \$80 M: Welfare effect (equivalent to 80 Millions dollars) with 25% increase of DO levels across the region^[3];

Reference:

- 1. www.chesapeakeprogress.com/funding;
- https://www.epa.gov/tmdl/impaired-waters-restoration-process-recovery;
- 3. Massey, D. M., S. C. Newbold, and B. Gentner. 2006. Valuing water quality changes using a bioeconomic model of a coastal recreational fishery. Journal of Environmental Economics and Management 52: 482–500.

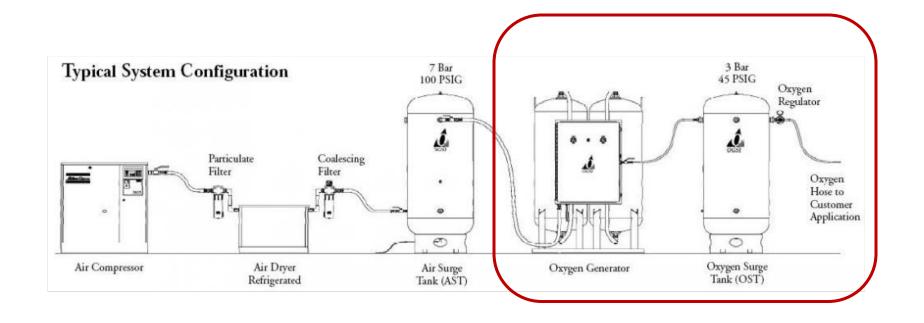
Engineering Cost Analysis:


Total Annual Cost:

\$9,896,952;

Assumption:

- 1. 5% interest rate for aeration project;
- 2. 10 years projected life


On the order of **0.5%** of current combined Federal and State Bay Program expenditures on an annual basis (4)

Reference:

- 1. Boyle, William C. (1990). Fine pore aeration for wastewater treatment. Park Ridge, N.J., U.S.A: Noyes Data Corp;
- 2. W. Harris, Roy & John , Jr, Cullinane, M & Sun, Paul. (1982). Process Design and Cost Estimating Algorithms for the Computer Assisted Procedure for Design and Evaluation of Wastewater Treatment Systems (CAPDET). 1706.;
- 3. Web Price;
- 4. www.chesapeakeprogress.com/funding

How about using Concentrated O2?

Piping System	\$ 358,400	3%
Diffusers System	\$ 1,139,409	10%
Air Compressor System	\$ 2,274,233	19%
90% Oxygen Generator System	\$ 2,226,272	19%
Used Barge	\$ 1,600,000	14%
Auxiliary	\$ 1,150,881	10%
Soft Cost	\$ 3,009,723	26%
Total Estimated Initial Cost	\$ 11,758,918	

Table-2 Cost Estimation of using Concentrated Oxygen

Annualized Initial Cost	\$ 1,522,834	12%
Energy cost	\$ 7,465,355	58%
Annual O&M cost	\$ 3,900,167	30%
Operation & Inspection	\$ 1,528,071	
Hosing cleaning & Material		
replacement	\$ 1,179,409	
Installation and Disassembling	\$ 1,192,687	
Equivalent annual cost	\$ 12,888,356	

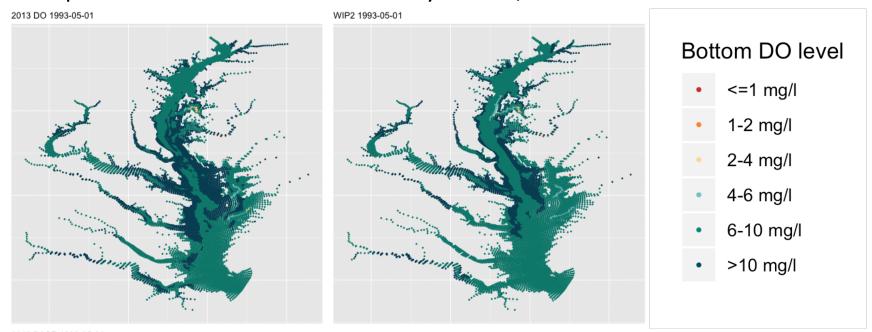
Energy Cost Estimation:

❖ Table-3: Energy Demand Comparison

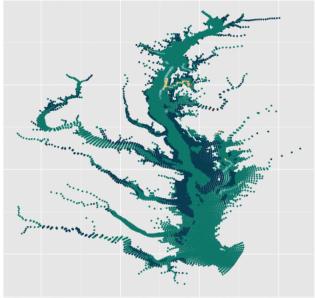
		1: Using Air	2: Using 90% Oxygen
Oxygen Needed	mg/day	3.10E+12	2.39E+12
Concerntrated Oxygen Requirment	I/day		1.98E+09
Air Requirement	I/day	1.20E+10	9.27E+09
work Required	J/day	1.46E+12	2.26E+12
Energy Requirement	KWh/day	5.08E+05	7.82E+05
Annual Energy Cost (50% efficiency)	\$	4.85E+06	7.46E+06

❖ Table-4: Energy Options

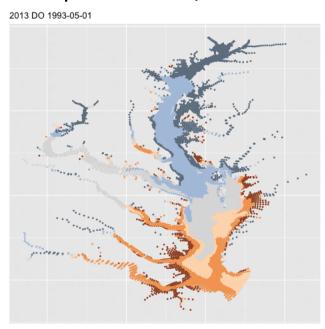
	1. Commercial electricity	2. Solar generation	3. Source From Marine
Strategy	Connected by marine wires	Connected by marine wires; 2256 KW solar panels with \$1.95/W ^[1] can cover full demand considering renewable energy incentives.	 Wave with average height 1.5 ft and period 4s is likely to produce an integrated volumetric air flow of about 1E+09 liter per day with 5 barges.
Levelized cost	\$0.11 /KWh \$4.47 E-06/l Air	\$0.092 /KWh \$6.2 E-06/ml Air	(Unfinished, Need check!)
Co-benefits	- -	Green Energy; Likely to be more cost-effective in 2-3 years.	Green Energy;Reduce wave impact on navigation and bank erosion.

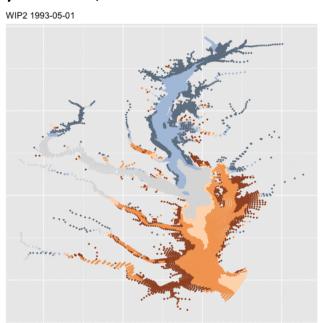

^{1.} Fu, Ran, Feldman, David J., Margolis, Robert M., Woodhouse, Michael A., & Ardani, Kristen B. U.S. Solar Photovoltaic System Cost Benchmark: Q1 2017. United States. doi:10.2172/1390776.

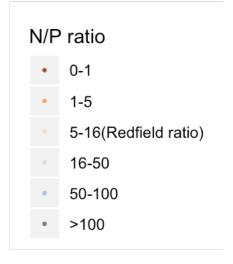
But, Will It Work??


- Testing with CBWQSTM
- Adding O₂ to model
 - Vertical distribution of O₂ injection per calculations from dirty bubble formula
 - Assume uniform distribution of O₂ proportional to depth injection in all model columns > 50' deep between Smith Point and Bay Bridge in main channel
 - Total O₂ addition consistent with cost estimate
 - Correct 2' error in depths from first run

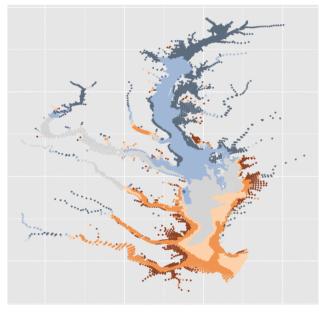
Comparison of Bottom DO level in May to Oct., 1993-1996

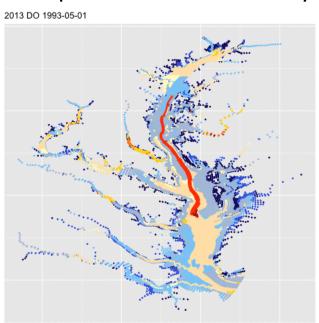

2013 BASE 1993-05-01

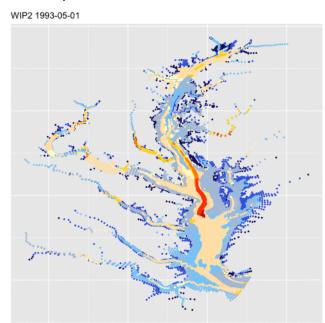


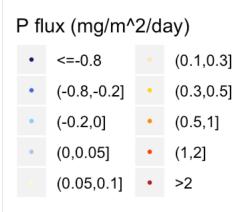

Click the links below to see full animations of simulated DO level:

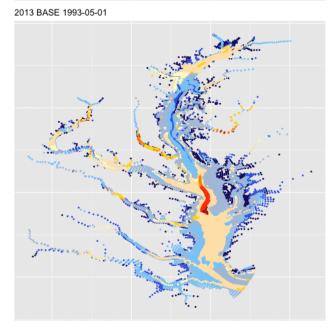
- Based on 2013 loadings;
- Based on 2013 loadings with aeration;
- Full implementation of WIP2 State loading allocations;


Comparison of N/P ratio in May to Oct., 1993-1996

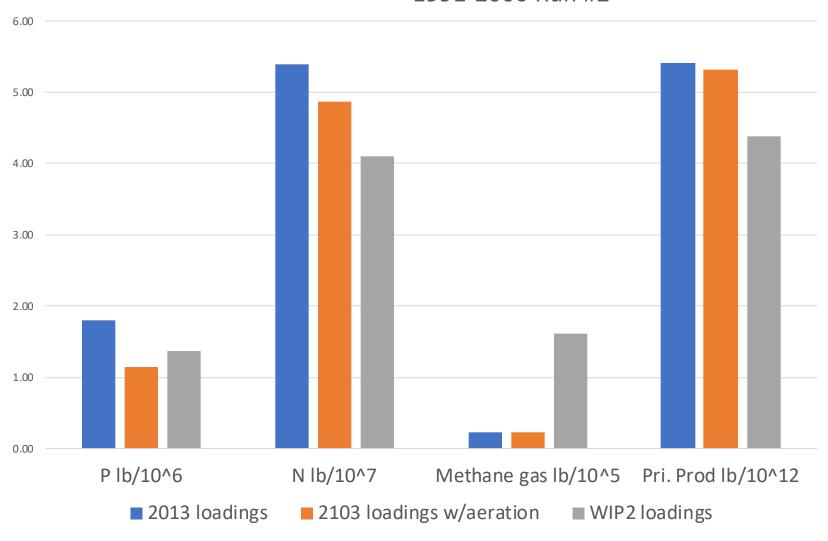





Click the links below to see full animations of simulated N/P ratio:


- Based on 2013 loadings;
- Based on 2013 loadings with aeration;
- Full implementation of WIP2 State loading allocations;

Comparison of P flux in May to Oct., 1993-1996



Click the links below to see full animations of simulated P flux:

- Based on 2013 loadings;
- Based on 2013 loadings with aeration;
- Full implementation of WIP2 State loading allocations;

Annual Fluxes and Primary Productivity 1991-2000 Run #2

A Model Simulation and Exploration of Engineered Aeration in the Chesapeake Bay

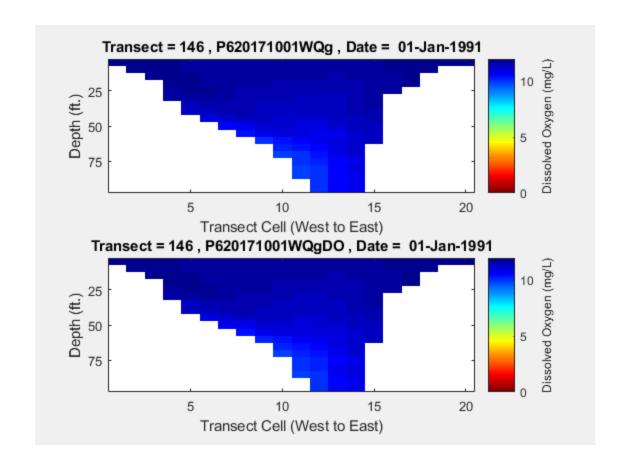
- Collaborating with Lora Harris and Jeremy Testa and Bill Ball on a paper with this title
- Would like additional collaborators to help describe potential ecological impacts, positive and negative
- Target submission late spring

Panel at NAEP Conference in Baltimore in May

- Short presentation on concept and potential for benefits and negative impacts
- Open discussion with responses by panelists

Research Opportunities and Proof of Concept

- Pilot Station with monitoring
- Comparison of Model results and data (similar to Rock Creek)
- Intensive monitoring for potential negative impacts
- Fish Behavior in vicinity of diffusers
- Preliminary design and costing
- Others?



Thank You

Discussion, Comments and Suggestions?

Animation of Central Bay (CB4/CB5) Base Run (Top) – Infusion (Bottom)

