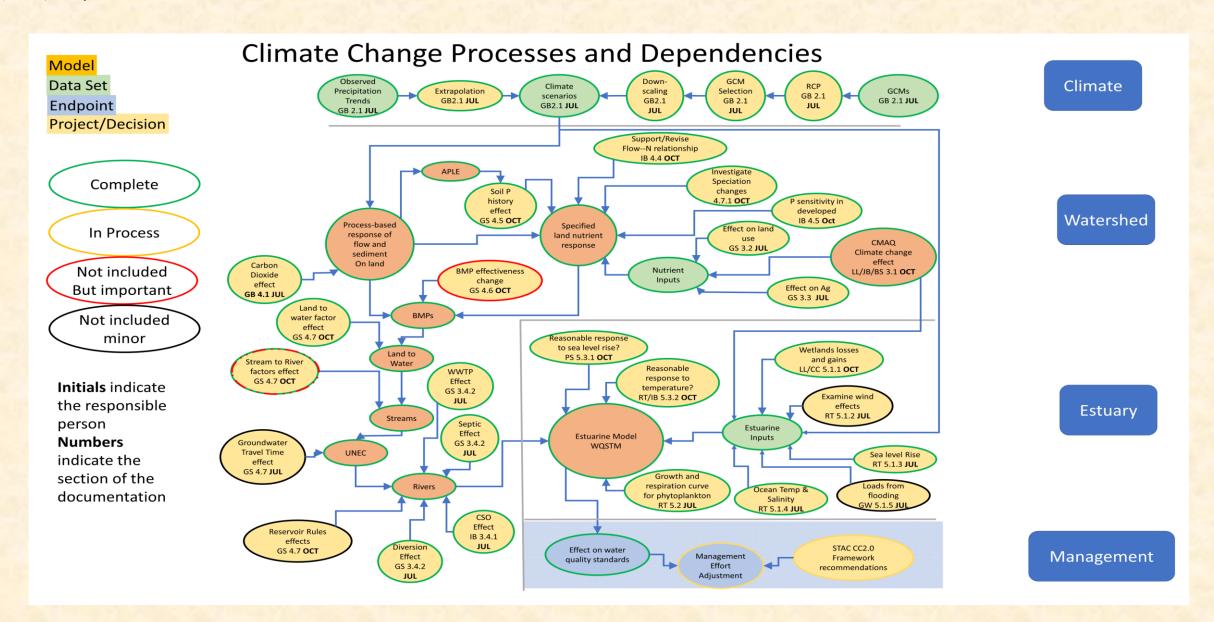
Hot, Wet, and Crowded: Phase 6 Climate Change Model Findings

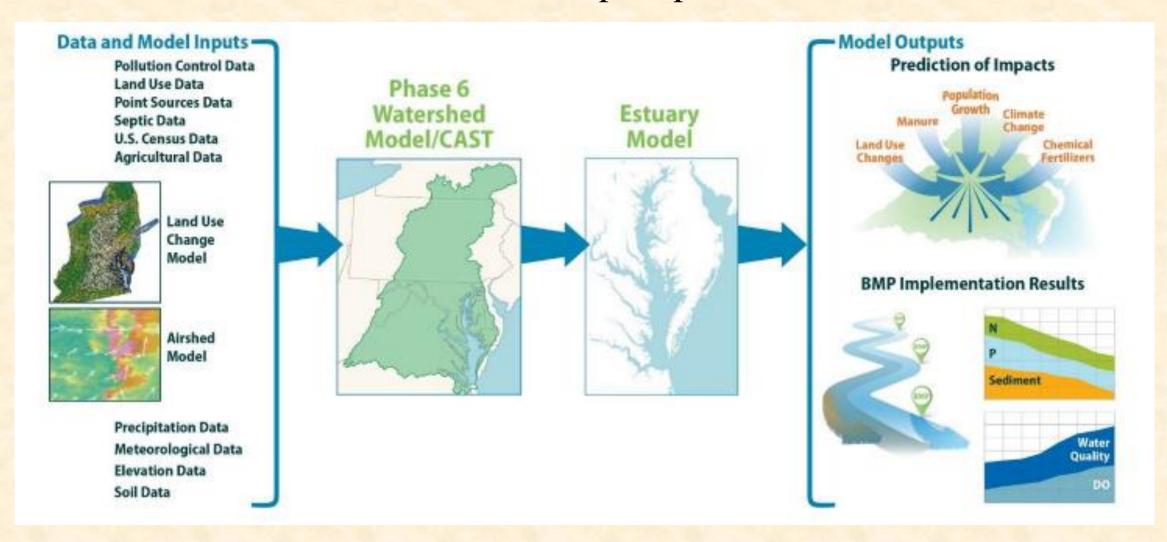
Climate Resiliency Workgroup
April 20, 2020

Lew Linker, EPA; Gary Shenk, USGS; Gopal Bhatt, Penn State; Richard Tian, UMCES; and the CBP Modeling Team llinker@chesapeakebay.net

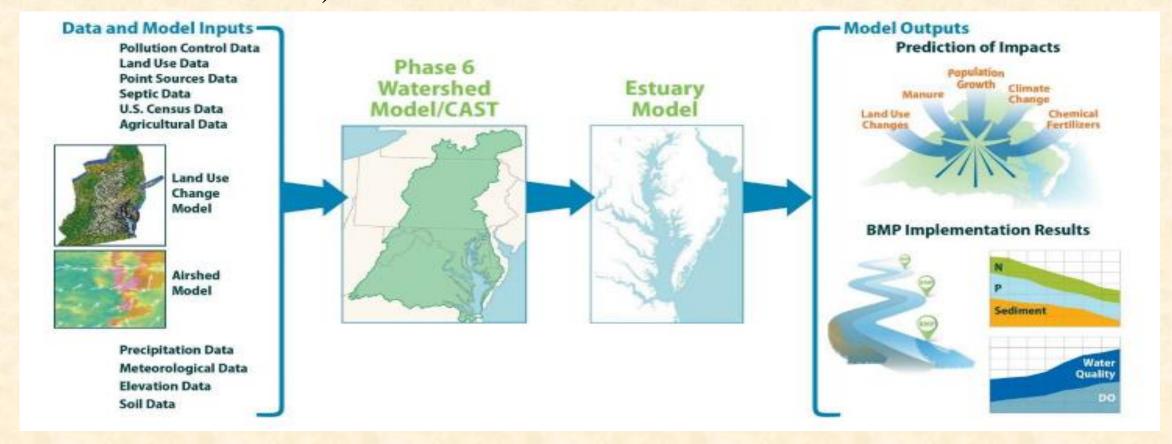

Key Points in Assessment of 2025 Climate Change Risk

- The new 2019 climate change assessment confirms the December 2017 climate change findings with a better model, providing better understanding of underlying processes, more specific findings on nutrient speciation, CSOs, wet deposition of nitrogen, etc.
- Consistent assessment of violation CB4MH Deep Channel and Deep Water nonattainment from December 2017 PSC meeting to today of about 1.4% and 1.0%, respectively, even though we've expanded our assessment to look at EVERYTHING in the CC analysis.

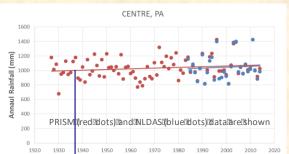
Elements of Chesapeake Water Quality Climate Risk Assessment


Chesapeake Bay Program
Science, Restoration, Partnership

Assessment of 2025 Climate Change in the Airshed


Airshed Key Finding: Increased wet deposition N loads under increased precipitation.

Assessment of 2025 Climate Change in the Watershed


Watershed Key Findings: Increased precipitation volume, precipitation intensity, and evapotranspiration are major determinates of changes in loads due to climate change. (Land use change beyond 2025 also increases nutrient and sediment loads.)

Precipitation Volume Increasing

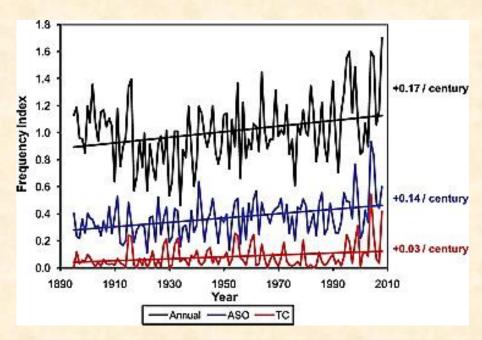
Projections of rainfall increase using trend in 88-years of annual PRISM^[1] data

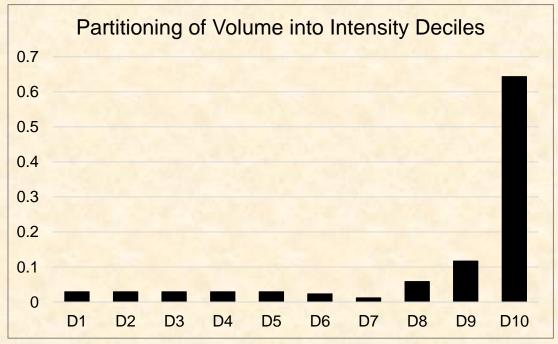
Change in Rainfall Volume 2021-2030 vs. 1991-2000

930	1940	1950	1960	1970	1980	1990	2000	2010	2020									
				2025	Rai	nfall	Pro	jecti	on (perc	ent d	hanç	ge)					
				i.	0.7	- 1.0							-					
					1.1	- 1.5	5					1						
					1.6	- 2.0)			-	44							
					2.1	- 2.5	5		1		1	AL.						
					2.6	- 3.0)			•								
					3.1					3				1				
					3.6				1					1				
					4.1							-1		5				
					4.6					<u>}</u>		3	Z					
					5.1			1	-{		10		7	Managar Ta				
					5.6				4	7 4								
					0.0	0.0			4					1				
									A					3				
					Ν				K		The !		40	1	1			
					Λ			M						1				
								7/					I	N. P.		K	1	
					, ,			4 3		1			AL Z		to { (4	}	
								AL'		4			2	No.	B			
							3	03	7	F			4		1	2		
							1		-				Many may	Met 10				
							0	F	9/0	A.			- Marrie			-		
								A.	and the second			3		Les !		100		
				0	25	50	50	100 N	Ailes			*		1	3/3	7		
								_										

	Major Basins	PRISM Trend							
	Youghiogheny River	2.1%							
	Patuxent River Basin	3.3%							
	Western Shore	4.1%							
	Rappahannock River Basin	3.2%							
	York River Basin	2.6%							
	Eastern Shore	2.5%							
	James River Basin	2.2%							
	Potomac River Basin	2.8%							
	Susquehanna River Basin	3.7%							
	Chesapeake Bay Watershed	3.1%							
[1	[1] Parameter-elevation Relationships on Independent Slopes Model								

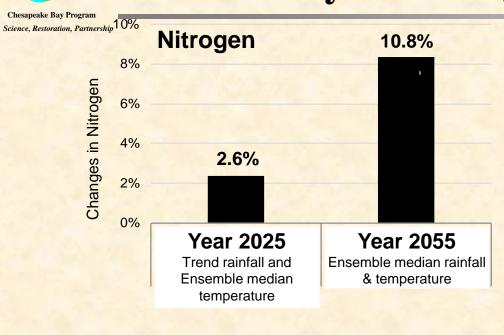
The 1991 – 2000 period of hydrology & nutrient loads is the basis of decisions in the Chesapeake TMDL.

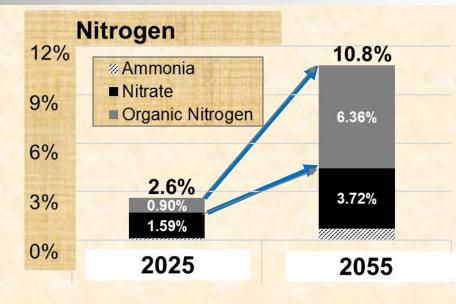

There are 30 years between 1995 and 2025.


Long term mean precipitation increased 3.1% and temperature by 1° C.

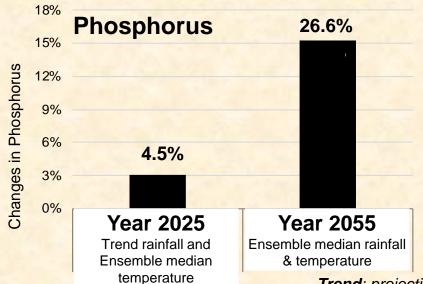
Rainfall Intensity Increasing

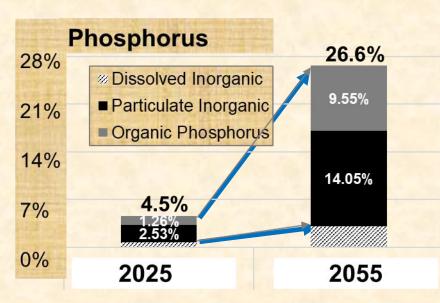
Observed trend of more precipitation volume in higher intensity events based on a century of observations.



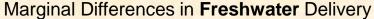

Source: Groisman et al., 2004

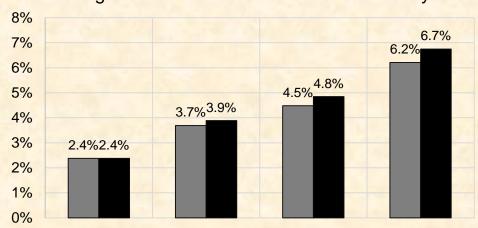
National average heavy precipitation event index (HPEI) for the entire year (annual, black), for August through October (ASO, blue), and for heavy events associated with tropical cyclones (TC, red). [Kunkel et al., 2010]



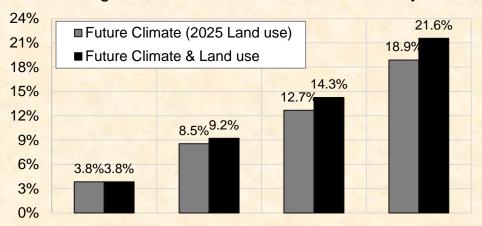

Summary of Changes in Nutrient Species Delivery

Arrows show relatively more increase in organic N & P or PIP compared to DIN or DIP.

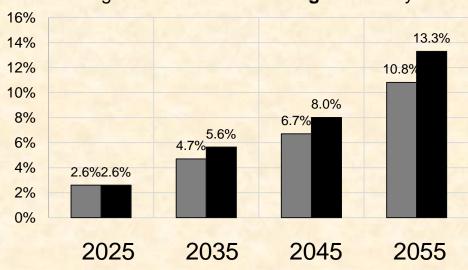


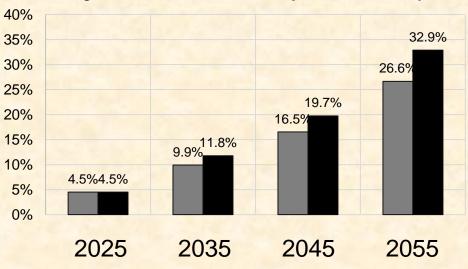


The TN & TP loads are steadily increasing from 2025 to 2055 under climate change but there is a greater proportion of refractory N and P in the total N & P going forward.

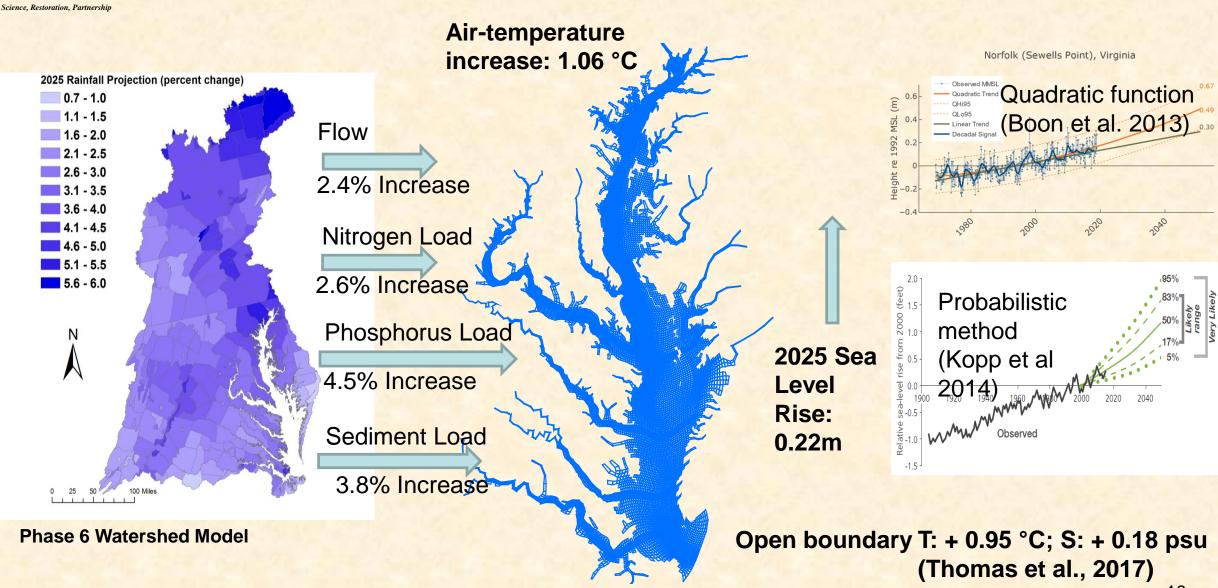


Estimates of Climate Only and Climate and Land Use




Marginal Differences in Sediment Delivery

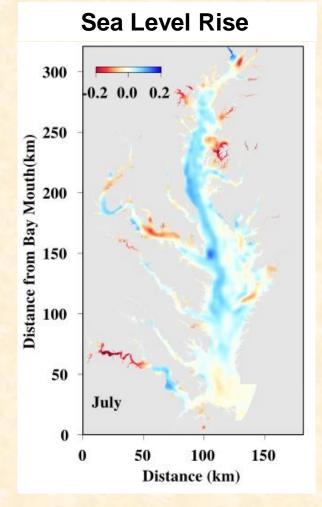
Marginal Differences in Nitrogen Delivery

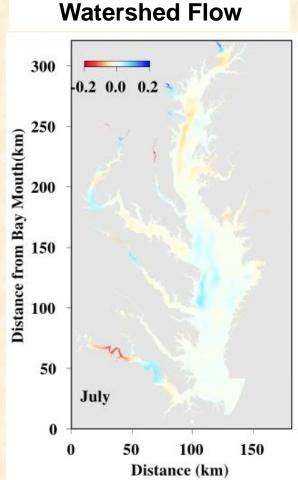

Marginal Differences in **Phosphorus** Delivery

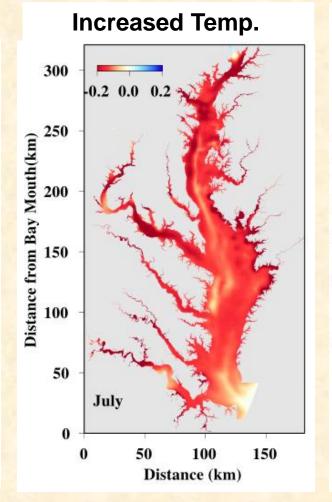
Grey bar = climate only Black bar = Climate and Land Use

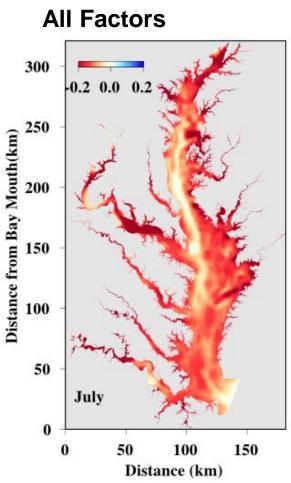
Elements of 2025 Climate Change in the Estuary

Model: CH3D-ICM

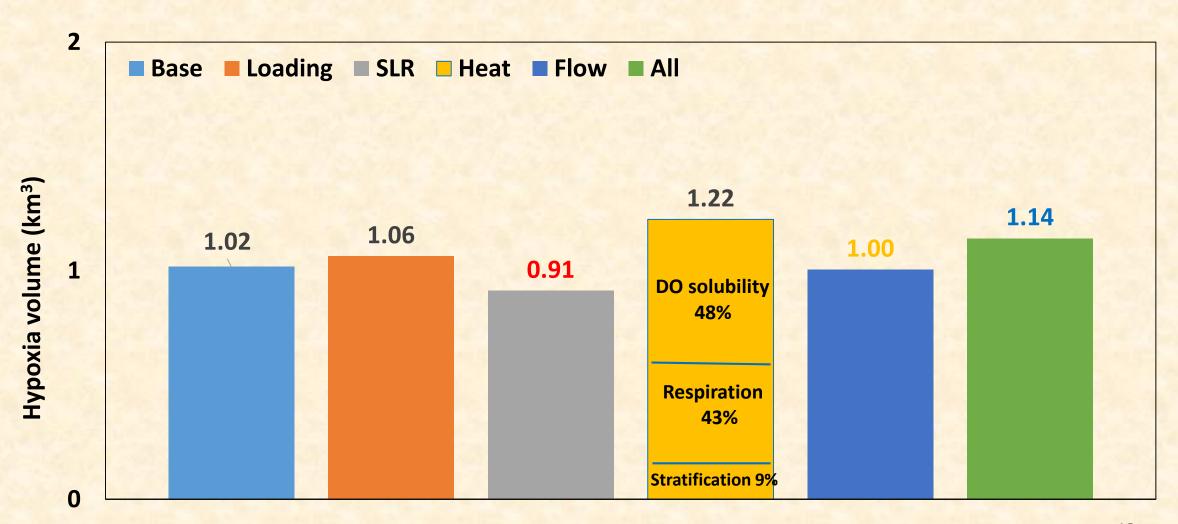

400m-1km Resolution

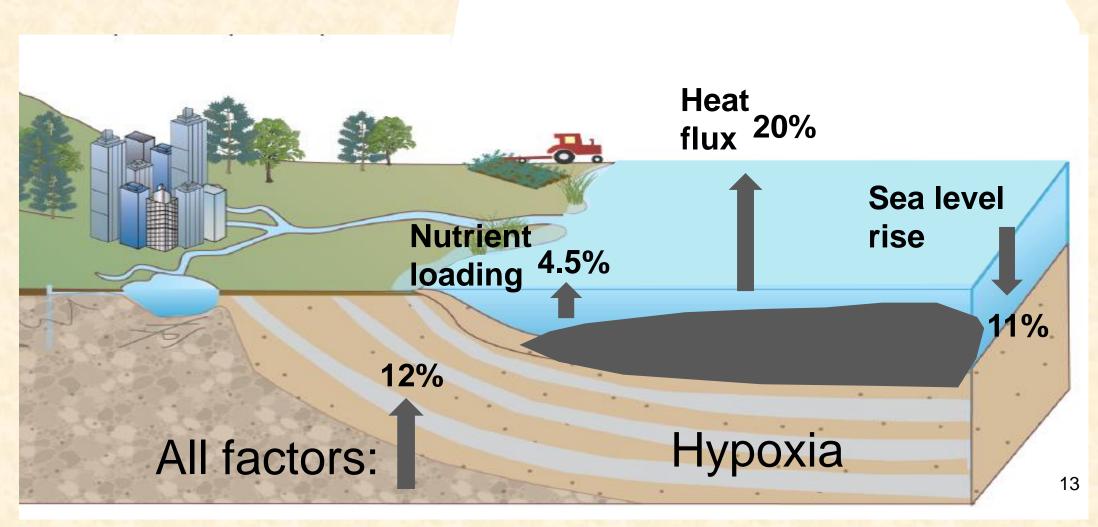

10



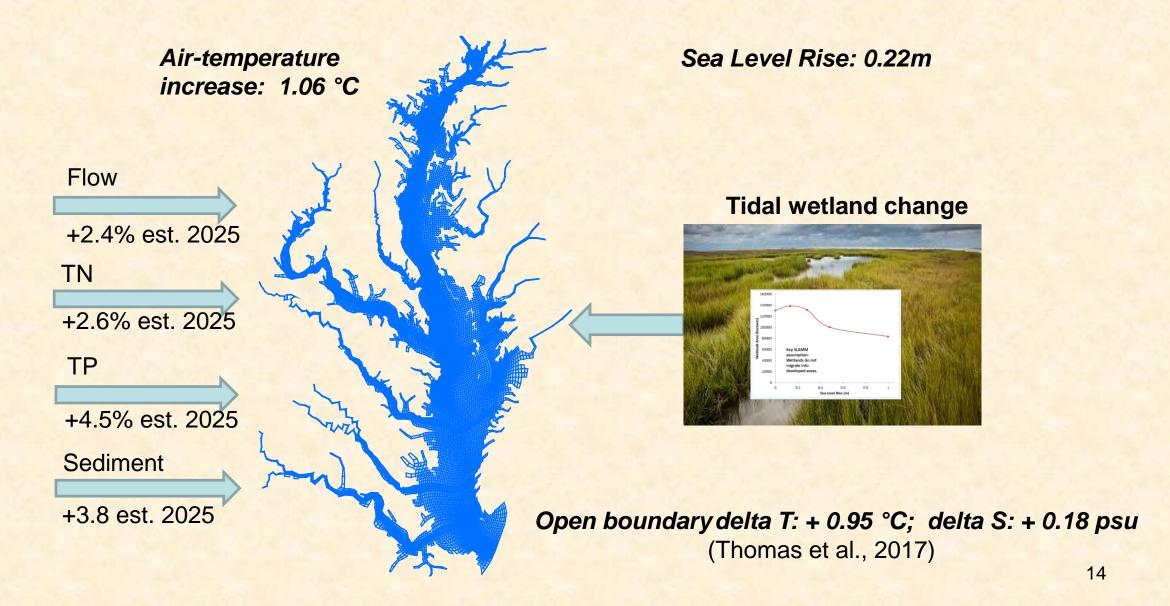

Bottom DO Change: 1995 to 2025

Keeping all other factors constant, sea level rise and increased watershed flow reduce hypoxia in the Bay, but the predominant influence are the negative impacts of increased water column temperature.

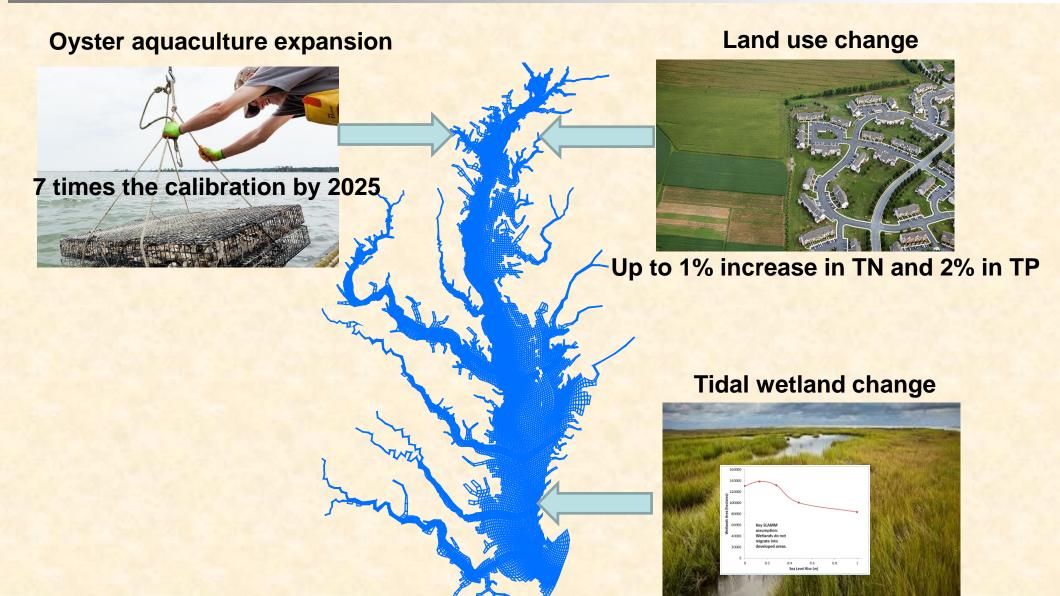




Summer (Jun.-Sep.) Hypoxia Volume (<1 mg/l) 1991-2000 in the Whole Bay Under 2025 WIP3 Condition


Elements of Hypoxia Volume Change: 1995 - 2025

Summary
Hypoxia volume change by 2025



Current Climate Change Only Scenarios

Scenarios for Estimated Future Land Use and Estuarine Practices for 2035, 2045, and 2055

The CBP Climate Change Assessment

Achievement of <u>Deep Channel DO</u> water quality standard expressed as a incremental increase over the PSC agreed to (December 2017; July 2018) 2025 nutrient targets for growth and Conowingo Infill

		2025 Climate	2035 Climate	2035 Climate	2045 Climate	2045 Climate	2055 Climate	2055 Climate
		2025 Land Use	2025 Land Use	2035 Land Use	2025 Land Use	2045 Land Use	2025 Land Use	2055 Land Use
		204TN	208TN	209TN	212TN	213TN	220TN	222TN
		14.0TP	14.6TP	14.7TP	15.4TP	15.7TP	16.7TP	17.1TP
		1993-1995	1993-1995	1993-1995	1993-1995	1993-1995	1993-1995	1993-1995
СВ		DO Deep						
Segment	State	Channel						
CB3MH	MD	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
CB4MH	MD	1.4%	2.9%	3.1%	4.5%	5.2%	6.9%	8.2%
CB5MH	MD	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
CB5MH	VA	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
POTMH	MD	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
RPPMH	VA	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
ELIPH	VA	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
CHSMH	MD	1.1%	1.6%	1.6%	2.2%	2.2%	3.3%	3.3%

Achievement of Deep Water DO Water Quality Standard

Chesapeake Bay Program Science, Restoration, Partnership

Achievement of <u>Deep Water DO</u> water quality standard expressed as a incremental increase over the PSC agreed to (December 2017; July 2018) 2025 nutrient targets for growth and Conowingo infill

		204TN 14.0TP	208TN 14.6TP	209TN 14.7TP	2045 Climate 2025 Land Use 212TN 15.4TP	213TN 15.7TP	220TN 16. <i>7</i> TP	2055 Climate 2055 Land Use 222TN 17.1TP
CD		1993-1995	1993-1995	1993-1995	1993-1995	1993-1995	1993-1995	1993-1995
CB	Ctata	DO Deep	DO Deep	DO Deep	DO Deep	DO Deep	DO Deep	DO Deep
Segment	State	Water	Water	Water	Water	Water	Water	Water
СВЗМН	MD	0.1%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%
CB4MH	MD	1.0%	1.6%	1.6%	2.0%	2.1%	2.6%	2.9%
CB5MH	MD	0.5%	0.9%	1.0%	1.3%	1.3%	1.6%	1.6%
СВ5МН	VA	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
СВ6РН	VA	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
СВ7РН	VA	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
PATMH	MD	0.0%	0.7%	0.7%	2.0%	2.2%	3.0%	3.0%
MAGMH	MD	0.0%	0.0%	0.0%	0.2%	0.2%	-0.2%	0.4%
SOUMH	MD	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
SEVMH	MD	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
PAXMH	MD	0.0%	0.0%	0.0%	0.0%	0.0%	0.1%	0.1%
POTMH	MD	0.1%	0.3%	0.4%	0.7%	0.7%	0.9%	1.0%
RPPMH	VA	0.2%	1.2%	1.4%	1.7%	1.8%	1.9%	1.9%
YRKPH	VA	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
ELIPH	VA	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
SBEMH	VA	0.0%	0.0%	0.0%	0.5%	0.6%	3.3%	4.0%
CHSMH	MD	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
EASMH	MD	0.1%	0.2%	0.2%	0.4%	0.5%	0.5%	0.5%

Achievement of Open Water DO Water Quality Standard

Chesapeake Bay Program Science, Restorati

oration, Partnership									
		2025 Climate	2035 Climate	2035 Climate	2045 Climate	2045 Climate	2055 Climate	2055 Climate	
			2025 Land Use	2035 Land Use	2025 Land Use			2055 Land Use	
		204TN	208TN	209TN	212TN	213TN	220TN	222TN	
		14.0TP	14.6TP	14.7TP	15.4TP	15.7TP	16.7TP	17.1TP	
		1993-1995	1993-1995	1993-1995	1993-1995	1993-1995	1993-1995	1993-1995	
СВ		DO Open	DO Open	DO Open	DO Open	DO Open	DO Open	DO Open	
Segment	State	Water	Water	Water	Water	Water	Water	Water	
CB1TF	MD	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
СВ2ОН	MD	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
СВЗМН	MD	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
СВ4МН	MD	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
CB5MH_ME	MD	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
CB5MH_VA	VA	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
СВ6РН	VA	0.4%	0.7%	0.8%	1.0%	1.1%	1.3%	1.4%	
СВ7РН	VA	1.1%	1.8%	1.9%	2.8%	2.9%	4.0%	4.1%	
СВ8РН	VA	0.0%	0.0%	0.0%	0.0%	0.0%	0.09		
BSHOH	MD	0.0%	0.0%	0.0%	0.0%	0.0%	0.09	0 - 1 - 1 - 11 6	41- 4
GUNOH	MD	0.0%	0.0%	0.0%	0.0%	0.0%	0.09	Solubility of oxygen wit	in temperatur
MIDOH	MD	0.0%	0.0%	0.0%	0.0%	0.0%	0.09		
васон	MD	0.0%	0.0%	0.0%	0.0%	0.0%	O. O9 15	1 .	
PATMH	MD	0.0%	0.0%	0.0%	0.0%	0.0%	0.09	1 3	
MAGMH	MD	0.0%	0.0%	0.0%	0.0%	0.0%	0.09	1 \	
SEVMH	MD	0.0%	0.0%	0.0%	0.0%	0.0%	0.09	1 2	
SOUMH	MD	0.0%	0.0%	0.0%	0.0%	0.0%	O.O9 (7) fb 12 0.O9	1 2	
RHDMH	MD	0.0%	0.0%	0.0%	0.0%	0.0%	O. O9 5 12	1 🔪	
WSTMH	MD	0.0%	0.0%	0.0%	0.0%	0.0%	0.09 5 11		*****
PAXTF	MD	3.3%	3.4%	3.3%	4.3%	4.3%	5.19	***	
WBRTF	MD	21.3%	28.6%	21.3%	43.6%	51.2%	58.85 \$ 10 12.95	7	
PAXOH	MD	6.1%	9.5%	11.0%	10.7%	12.0%			No.
PAXMH	MD	0.0%	0.0%	0.0%	0.0%	0.0%	0.19		
POTTF_DC	DC	1.8%	2.6%	2.7%	3.0%	3.2%	3.99	-	
POTTF_MD	MD	0.5%	0.6%	0.7%	2.0%	2.3%	2.9%	. 1	•
ANATF_DC	DC	5.1%	6.0%	6.4%	8.6%	9.2%	10.6		20 25 30
ANATF_MC		10.6%	16.4%	16.8%	24.7%	25.7%	29.89		
PISTF	MD	0.0%	0.0%	0.0%	0.0%	0.0%	0.09	Temperature ((°C)
MATTF	MD	0.0%	0.0%	0.0%	0.0%	0.0%	0.09		
POTOH1_M	MD	0.3%	0.5%	0.5%	0.9%	0.9%	1.49		
POTMH_MI		0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
RPPTF	VA	0.0%	0.0%	0.0%	0.0%	0.0%	1.7%	3.7%	
RPPOH	VA	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
RPPMH	VA	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
CRRMH	VA	4.2%	5.6%	5.6%	7.1%	7.1%	8.9%	9.7%	
PIAMH	VA	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
MPNTF	VA	16.6%	18.5%	18.1%	15.7%	16.2%	10.0%	11.0%	
MPNOH	VA	3.6%	0.3%	9.8%	0.0%	0.0%	0.0%	0.0%	
PMKTF	VA	8.9%	14.6%	10.0%	10.2%	10.2%	2.8%	3.3%	Y
РМКОН	VA	2.9%	1.8%	5.3%	-2.6%	-2.6%	-3.3%	-3.3%	
YRKMH	VA	2.3%	1.8%	4.5%	2.5%	3.2%	4.3%	5.3%	-
YRKPH	VA	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
МОВРН	VA	0.0%	0.0%	0.0%	0.1%	0.1%	0.2%	0.2%	
JMSTFL	VA	0.0%	0.6%	0.5%	1.1%	1.2%	1.2%	1.4%	Chesapeake Bay

Science, Restoration, Partnership

Chesapeake Partnership Accountability Framework

- December 2017 and updated July 2018 decisional model for tracking targets to 2025.
- 2019 CC Model for adjustment of July 2018 decisional model for CB watershed and Bay climate change risk.
- 7 Watershed Implementation Plans (WIPs) describe what amount, how, where, and when for all implementation required to achieve water quality standards by 2025.
 - o Phase I in 2010
 - o Phase II in 2012
 - o Phase III in 2019
- 2-Year Milestones ensure short term progress

By the 2022-2023 milestones there will be quantifiable reductions needed to defend water quality standards from future climate risk.

Climate Resiliency for Stormwater Management and Other BMPs

The PSC gave specific direction to the CBP Partnership at their December 2017 meeting to "... develop a better understanding of the BMP responses, including new or other emerging BMPs, to climate change conditions".

In 2019, the Management Board of the Chesapeake Bay Partnership following the direction of the PSC directed that:

- The design and accelerated adoption of stormwater management practices
 appropriately designed for increased rainfall volumes and intensities that are expected
 in the future for all counties in the Chesapeake watershed.
- Examination of the top tier ag and urban BMPs that are most vulnerable to future climate risk, with an emphasis on structural practices, that could be adapted to become more resilient to future climate conditions of increased rainfall intensities and volumes.
- A description of the co-benefits of BMPs that mitigate future climate risk, especially as they relate to the protection of local infrastructure and public health and safety, including green infrastructure, urban floodplain management, riparian buffers, tidal and non-tidal wetlands and other management actions.

Science, Restoration, Partnership

Climate Resiliency for Stormwater Management and Other BMPs

- In response to the direction the Urban Stormwater Workgroup and the Chesapeake Stormwater Network are working to maintain the resiliency of stormwater and restoration practices in the face of climate change in the Chesapeake watershed through an analysis of the vulnerability of urban stormwater BMPs to climate change and are leading the design of stormwater management practices that will maintain their performance despite increased rainfall and storm intensities under future climate conditions.
- In addition, under the Chesapeake Bay Trust GIT-funded projects the Urban Stormwater Workgroup will "Develop Probabilistic Intensity Duration Frequency (IDF) Curves" for the all counties of the Chesapeake Watershed by: 1) evaluation of downscaling methods and climate model combinations to assess their ability to replicate historical precipitation extremes, 2) downscaling of projected precipitation extremes for future periods, 3) quantification of methodological and climate model uncertainties for the projected precipitation extremes for future periods, 4) development of probabilistic intensity duration frequency (IDF) curves for all counties of Chesapeake Bay Watershed and the District of Columbia (DC), and 5) development of web-based tools and appropriate outreach to make results accessible to end-users.
- Finally, a STAC Science Synthesis Project will provide "A Systematic Review of Chesapeake Bay Climate Change Impacts and Uncertainty: Watershed Processes, Pollutant Delivery, and BMP Performance". The technical synthesis is designed to answer three specific questions:
 - 1. How do climate change and variability affect nutrient/sediment cycling in the watershed?
 - 2. How do climate change and variability affect BMP performance?
 - 3. Which BMPs will likely result in the best water quality outcomes under climate uncertainty?"

Key Points in Assessment of 2025 Climate Change Risk

- The new 2019 climate change assessment confirms the December 2017 climate change findings with a better model, providing better understanding of underlying processes, more specific findings on nutrient speciation, CSOs, wet deposition of nitrogen, etc.
- Loads have decreased by about half from the December 2017
 estimates of the load required to respond to climate risks and achieve
 2025 water quality standards. Now, depending on decisions to be
 made by the WQGIT, the additional load reduction estimated to be
 needed to respond to climate change risk are 5M lb TN (before was
 9M lb TN). However, the estimated load reduction to address climate
 risk for 2035 is about twice that of the estimated 2025 nitrogen load
 reduction.