Update on retrospective and future CMAQ Atmospheric Deposition Scenarios

Overview

- 2011 Base year
 - Emission and observations
 - Discover AQ special observations
- 2002-2012 model evaluation
- Updates on 2017, 2025 and 2030 simulations
 - Updates on emissions
- Updates on 2050 future climate and land use simulations
 - First simulation estimate (March 2017)
 - Refinements (Dec 2017)

2011 Base Year

- 2017, 2025 and 2030 emissions are built on the 2011 National Emissions Inventory and meteorological simulations
- Why 2011?
- Represents our latest evaluated model platform
- Base year for most OAQPS applications
- 2011 DISCOVER AQ measurement platform
 - Multi agency measurement campaign
 - Provides a unique data set to evaluate CMAQ simulations
 - Currently developing CMAQ modeling manuscript

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-226, 2016 Manuscript under review for journal Geosci. Model Dev. Published: 7 September 2016 ② Author(s) 2016. CC-BY 3.0 License.

Overview and evaluation of the Community Multiscale Air Quality (CMAO) model version 5.1

K. Wyat Appel¹, Sergey L. Napelenok¹, Kristen M. Foley¹, Havala O. T. Pye¹, Christian Hogrefe¹, Deborah J. Luecken¹, Jesse O. Bash¹, Shawn J. Roselle¹, Jonathan E. Pleim¹, Hosein Foroutan¹, William T. Hutzell¹, George A. Pouliot¹, Golam Sarwar¹, Kathleen M. Fahey¹, Brett Gantt³, Robert C. Gilliam¹, Daiwen Kang¹, Rohit Mathur¹, Donna B. Schwede¹, Tanva L. Spero², David C. Wone¹, Jeffrey O. Young¹

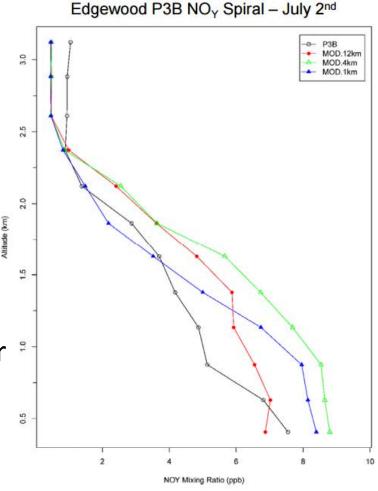
¹Computational Exposure Division, National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, RTP, NC

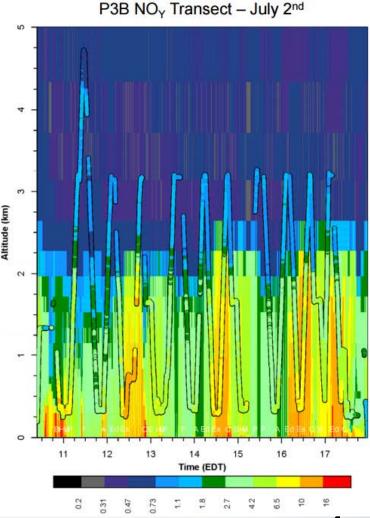
2Systems Exposure Division, National Exposure Research Laboratory, Office of Research and Development, U.S. Environmer Protection Agency, RTP, NC

³Air Quality Analysis Division, Office of Air Quality Planning and Standards, Office of Air and Radiation, U.S. Environmenta Protection Agency, RTP, NC

Correspondence to: K.Wyat Appel (appel.wyat@epa.gov)

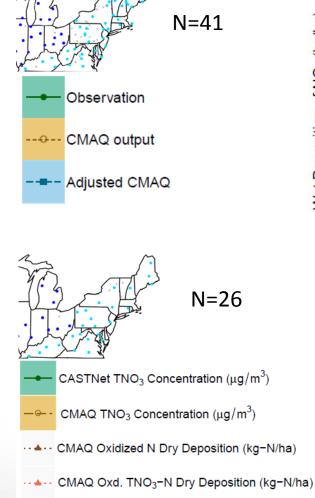
September 2014 EM Magazine

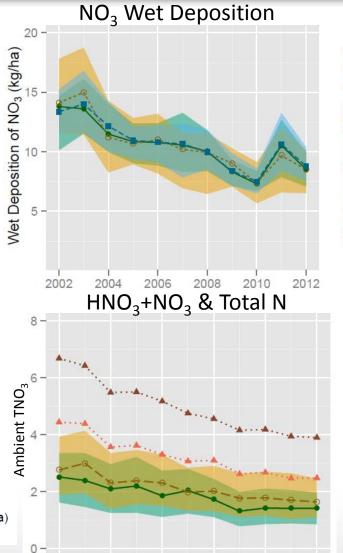


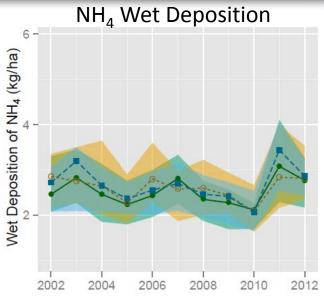

Figure 1. DISCOVER-AQ observing strategy employed during the Baltimore-Washington study.

2011 Discover AQ

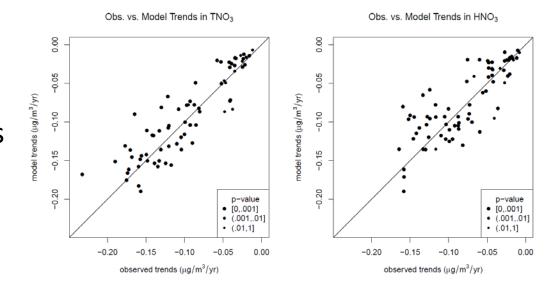
- Special surface, satellite and aircraft observations
 - Allows the evaluation of model species and processes not typically examined
- NO_y contains most of the oxidized
 N species that are deposited
- Ambient concentrations of oxidized species are generally over estimated
- Evaluation of model grid resolution on results



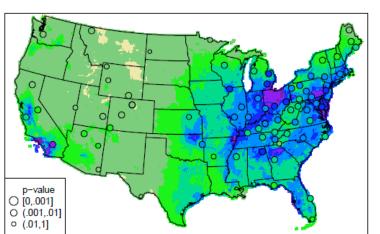

2002 - 2012 Model evaluation


- Evaluation of ambient concentrations
 - Confidence in dry deposition estimates
 - These species comprise the bulk of the dry deposition to the watershed
- Evaluation of trends in deposition and concentrations
 - How well are we capturing the response to emission changes
 - Critical to provide confidence in future emission projections

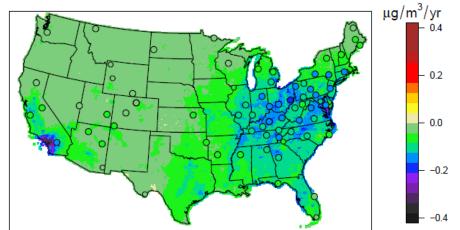
Model Evaluation



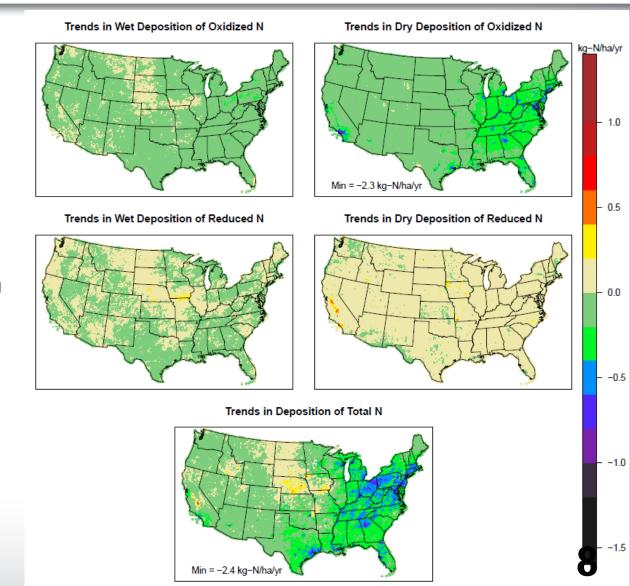
Captures the trends and magnitude in deposition and ambient concentrations well - (approximately 14% and 17% error for NO₃ and NH₄ respectively)



2002 - 2012 Model evaluation

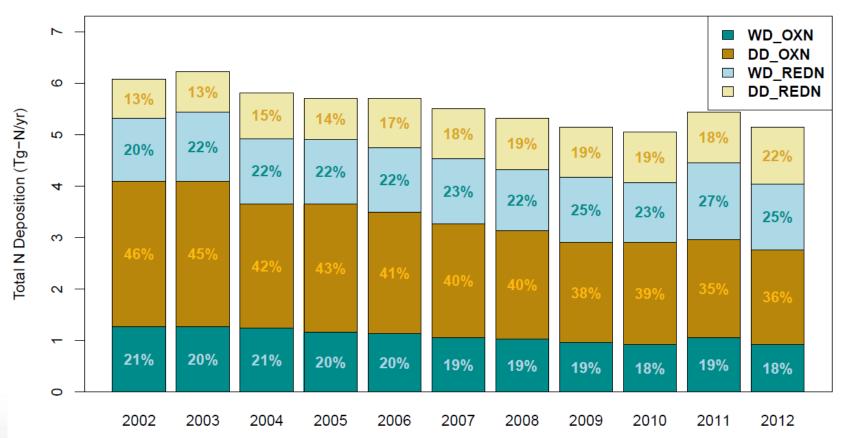

- Theil-Sen trends (i.e. slopes) for the 2002-2012
- Trends in observed ambient concentrations are captured well
- TNO3 accounts for approximately half the N deposition to the Chesapeake Bay Watershed

Modeled and Observed Trends in TNO₃


Modeled and Observed Trends in HNO₃

2002-2012 Trends

- Trends in dry deposition are larger than in wet deposition
 - Driving trends in total deposition
- Decreasing trend in dry and wet oxidized N deposition
- Increasing trend in reduced N dry deposition
- Trend in oxidized N deposition is driving the overall deposition trends

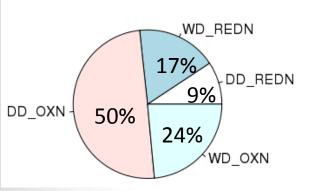


Composition of Total N deposition

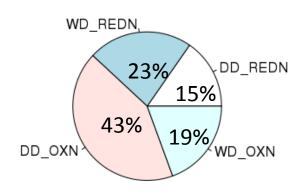
- Total N deposition is decreasing
- Reductions in oxidized N deposition dominates the increases in reduced N deposition
- Total N deposition is increasingly shifting to reduced N species (ammonia and ammonium)

Annual total N deposition over the CONUS

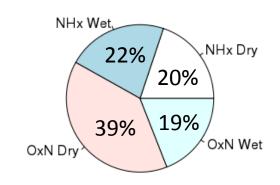
2017, 2025 and 2030 Simulations


- 2011 base year from meteorology and emissions based on a CONUS 12 km grid spacing
- Includes current emission reductions on the books, e.g. TIER 3 mobile, CSAPR updates, CAFÉ standards, etc.
- Includes bidirectional NH₃ and lightning generated NO_x
- 2011, 2017, 2025 and 2030 will all be simulated using the latest update to the 2011 NEI
 - Should be completed in late February, 2017
- An earlier 2025 simulation using an older version of the 2011 NEI should provide a good first cut at the deposition to the Chesapeake Bay Watershed

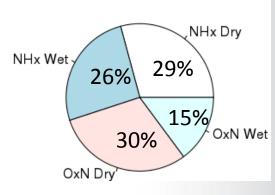
Preliminary 2025 results


2002-2004

Mean: 12.9 kg N/ha


2010-2012

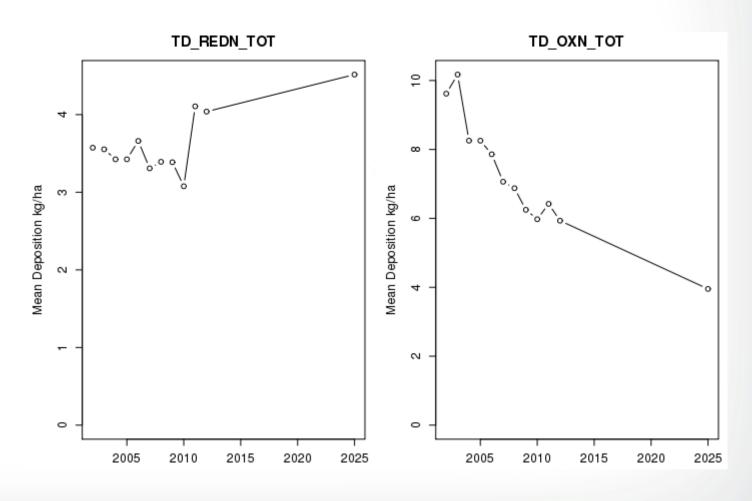
Mean: 9.9 kg N/ha


2011

Mean: 10.0 kg N/ha

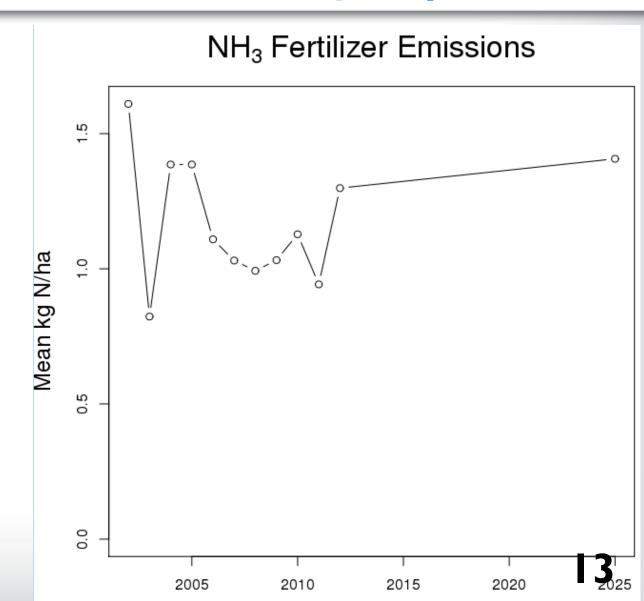
2025

Mean: 8.5 kg N/ha



- Emission reductions on the books for 2025 lower estimated total N deposition by approximately 14%
- Total N deposition to the Chesapeake Bay dominated by reduced N species

Total N and Reduced N Dry Deposition


- Trend in reduced N deposition is driven by increases in NH₃ dry deposition
- Oxidized N deposition is projected to be half of the 2002 estimates

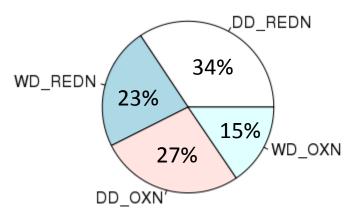
Total N and Reduced N Dry Deposition

- Total N deposition decreases due to projected NOx reductions
- Reduced N deposition increases due to atmospheric chemistry and NOx reductions
 - Lower NO_x and SO_x concentrations reduced aerosol NH₄
 - Results in higher NH₃ concentrations
 - NH₃ dry deposited faster than NH₄
- Emissions have remained largely constent

Climate scenario simulations

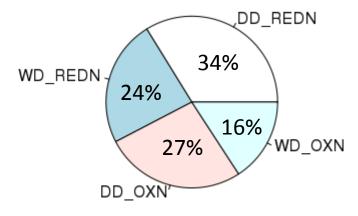
- Based on Community Earth System Model v1.0 (CESM) GCM simulations
- Dynamically downscaled using Weather Research and Forecasting (WRF)
 v3.8.1 model using spectral nudging
 - Preserves large scale atmospheric motions from CESM and allows WRF to provide the more detailed regional scale dynamics
- 2050 land use change data to be used for meteorology and air quality simulations
- Modifications to WRF to work more consistently with CMAQ
- EPIC agricultural simulations based on downscaled CESM data
- 36 km grid spacing output by end of March 2017
- Refined emissions with growth to energy sector and mobile emissions by end of 2017

Climate Air Quality Modeling


- Meteorological models must be run differently for future applications
 - Retrospective studies are heavily reliant on observational assimilation
 - Meteorological models must use more comprehensive physics packages
 - Represents a departure from traditional CMAQ applications
 - Updates required to accommodate land use change in the modeling system
- We have made modifications to the WRF meteorological model to better support CMAQ applications
 - Currently being evaluated
- 2011 base year will be rerun with modified WRF to establish model performance and provide a basis for relative changes in deposition
- Typical climate simulations have been conducted on coarser grid resolution
 - Fine resolution (12km and 4km) simulations will be explored

N Deposition Budget

1995-2005


Mean: 8 kg N/ha

- Climate downscaling in WRF requires different configuration of CMAQ
 - Likely overestimates NH₃ dry deposition
- All Representative Concentration Pathways (RPC) scenarios result in increased N deposition

RCP 6.0 2025-2035

Mean: 9 kg N/ha

Scenario	Precipitation Change (%)	N Deposition Change (%)
RCP 4.5	+3.9%	+2.2%
RCP 6.0	+8.9%	+2.9%
RCP 8.5	+1.0%	+3.3%

2050 Greenhouse Gas Phase 2 Final Rule

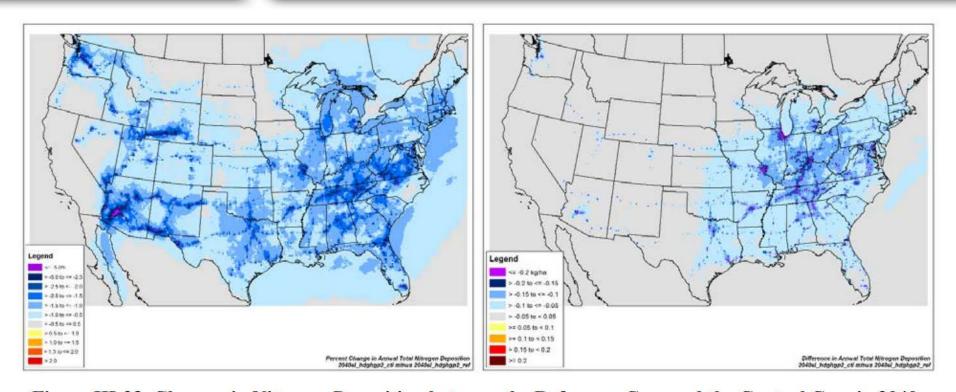


Figure III-23. Changes in Nitrogen Deposition between the Reference Case and the Control Case in 2040 using Air Quality Modeling Inventories: Percent Changes (left) and Absolute Changes in kg/ha (right)

- Approximately 2% (0.15 kg/ha) reduction in total N atmospheric deposition to Chesapeake Bay Watershed
- These emission are being processed for 2050 weather
- Can reallocate emissions due to land use change

Review

- 2002-2012 model simulations capture ambient THNO₃ and NH₃concentrations well
 - Confidence in dry deposition estimates
 - These species comprise the bulk of the dry deposition to the watershed
- 2011 base year has advantages due to the measurements in the area and developments by the OAQPS emissions team
- Progress is being made on the 2017, 2025 and 2030 simulations
- Meteorological and air quality updates for the 2050 simulations are being evaluated
 - Working on 2050 emissions

Acknowledgments

Kristen Foley - Model evaluation

Wyat Appel – Discover AQ modeling

Patrick Campbell - WRF and CMAQ modifications

Norm Possiel – Emissions processing and CMAQ model simulations

Pat Dolwick – 2050 emissions

Barron Henderson – 2050 emission projections

Tanya Spero – 2050 Climate downscaling

Chris Nolte – 2050 CMAQ modeling scenarios