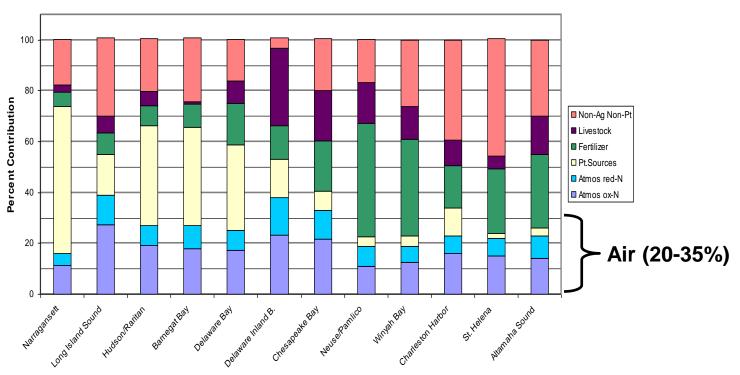


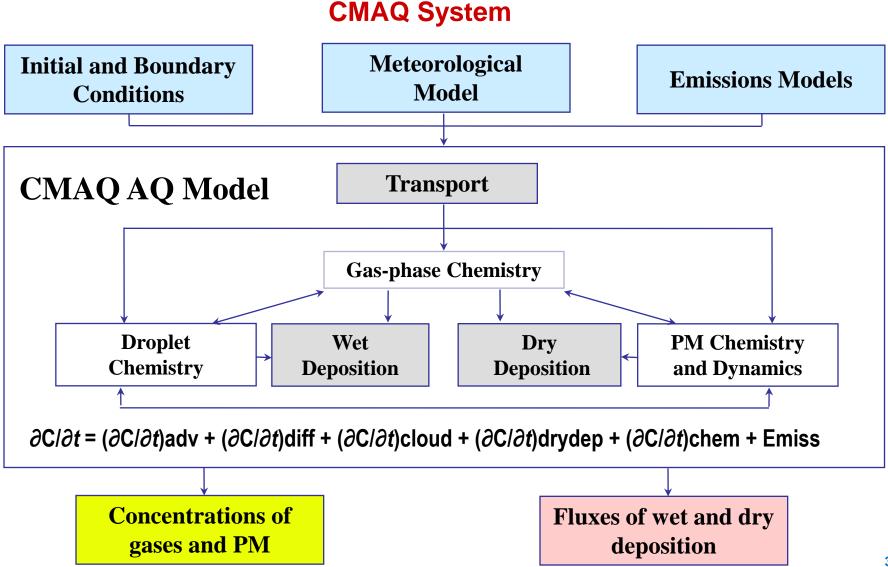
Atmospheric Deposition Fields and Source Attribution from CMAQ for the Chesapeake Bay TMDL Process

Robin L. Dennis, Sergey Napelenok
Atmospheric Modeling and Analysis Division
NERL, EPA
Lewis Linker
Chesapeake Bay Program, EPA

Quarterly Bay Modeling Meeting January 11, 2012 Annapolis, MD

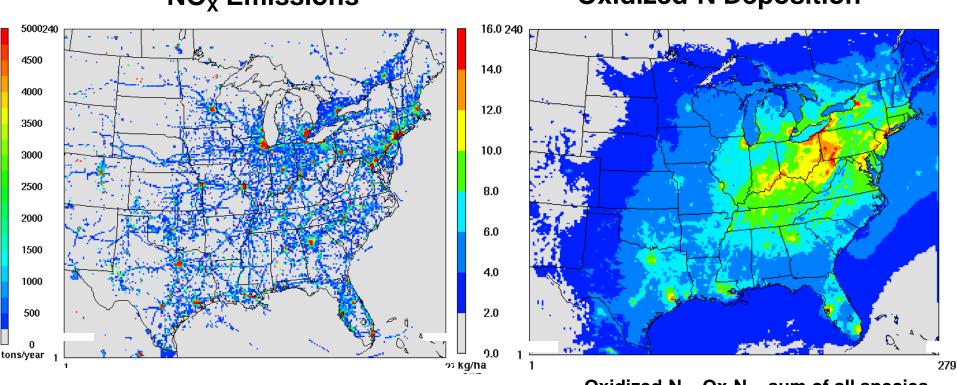

United States Environmental Prote

Atmospheric Deposition Fields and Source Attribution from CMAQ for the Chesapeake Bay TMDL Process


The atmospheric contribution to nutrient loading in estuaries is significant

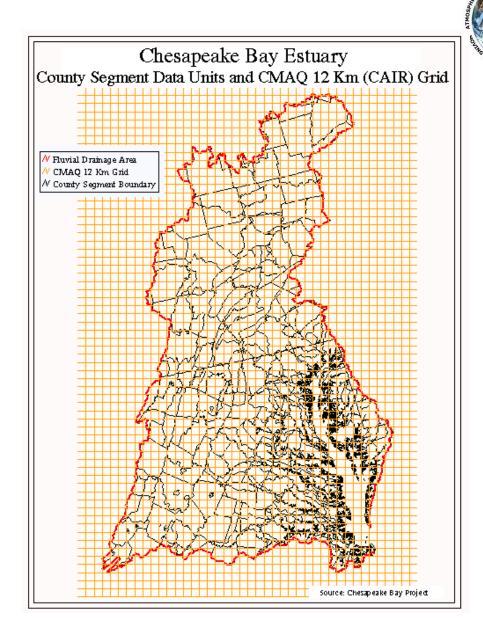
- Accounts for 20-35% of N loading to estuaries (both indirect and direct)
- Often ignored for watershed and TMDL (Total Maximum Daily Load) management

We use a regional air quality model, the Community Multiscale Air Quality (CMAQ) model, to convert air emissions of NO_x (oxidized nitrogen) and NH₃ (reduced nitrogen) to atmospheric deposition of oxidized and reduced N



Turning Emissions into Deposition

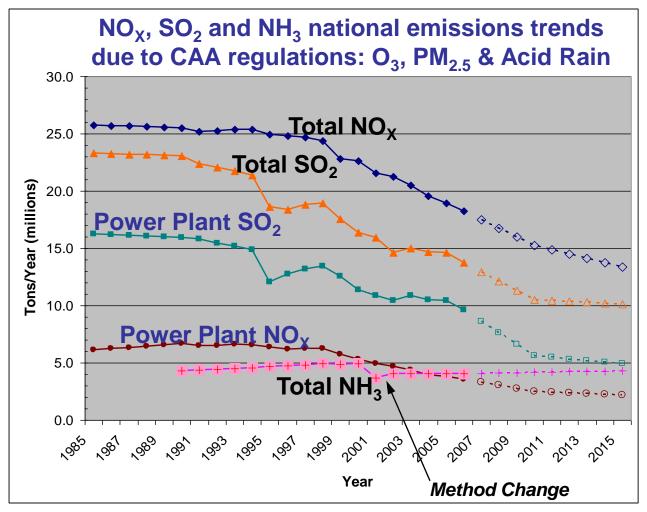
2002 CMAQ
Oxidized-N Deposition

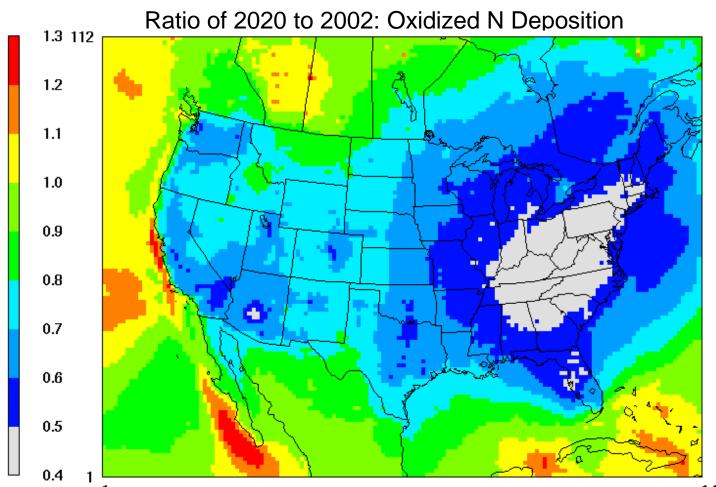


12km Grid

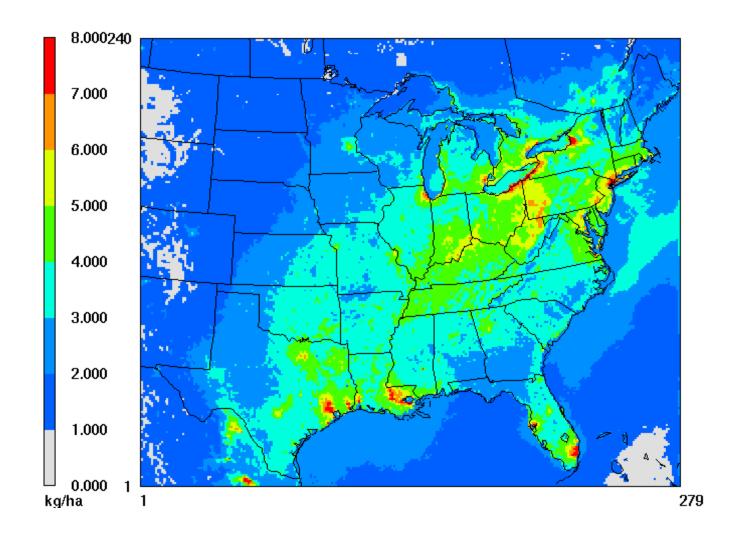
Oxidized-N = Ox-N = sum of all species in the oxidation of NO_X expressed as N (= $NO + NO_2 + HNO_3 + NO_3 + PAN +$ higher PAN's + $N_2O_5 + HONO +$ etc.)

We then pass these deposition estimates to the watershed and water quality model to compute the loading to the estuary using an overlay of the 12km grid onto the watershed and water quality model segments

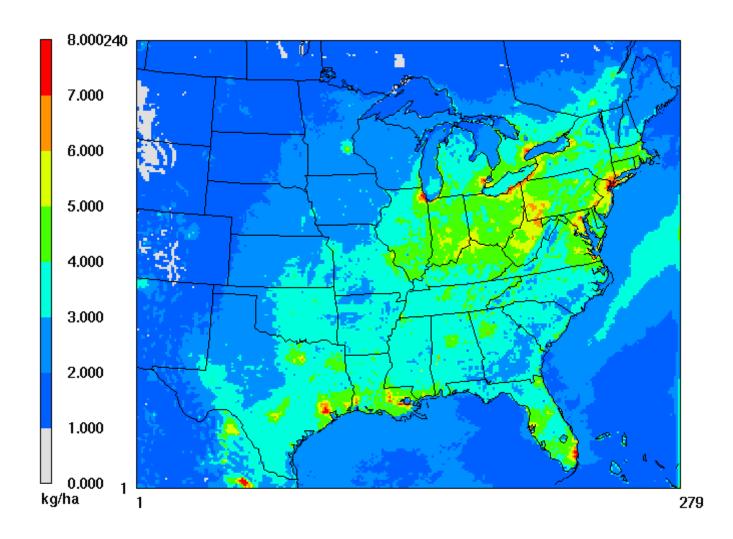



Due to regulations in the Clean Air Act, designed to protect the population from ozone and fine particulate health impacts, emissions of SO_X and NO_X are to be reduced now and in the future

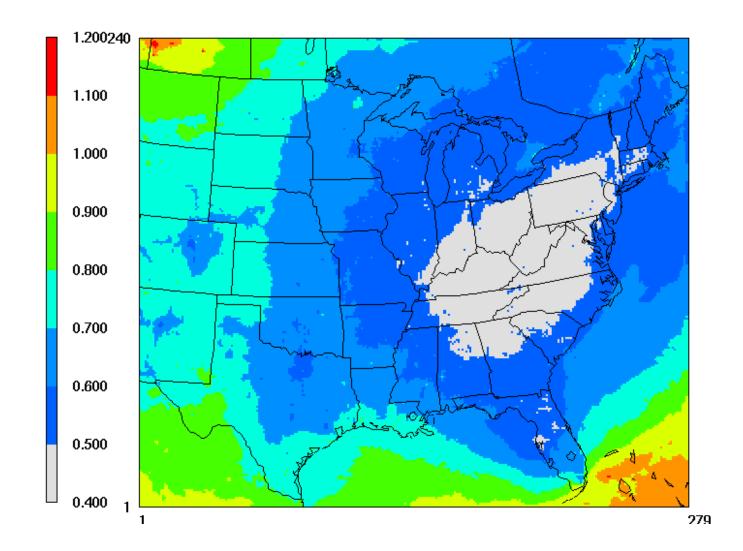
Estimated contribution of CAA regulations to trends in deposition using CMAQ passed to watershed model for TMDL analysis:


>50% Reduction in Oxidized-N Deposition for Ohio Valley and Mid-Atlantic Parts of US

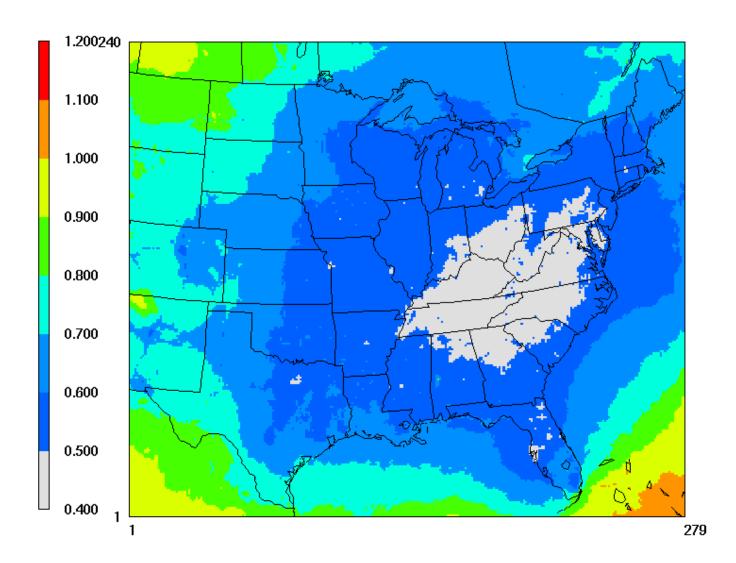
2020 CAIR



2030 CSAPR



2020 CAIR/2002 Base



2030 CSAPR/2005 Base

United States
Environmental Protection
Agency

Estimated contribution of CAA regulations to future deposition for older and newer estimates using CMAQ:

	Oxidized-N Deposition										
	Watershed		Bay								
	(kg-N)	% chg	(kg-N)	% chg							
2002 Base	141,988,028		7,571,386								
2005 Base	136,211,948		7,317,867								
2020 CAIR	66,569,100	-53.1%	3,936,401	-48.0%							
2030 CSAPR	67,697,372	-50.3% 2005	3,758,123	-48.6% 2005							
		-52.3% 2002		-50.4% 2002							
2020 LOT	58,626,590	-58.7%	3,484,176	-54.0%							

United States
Environmental Protection
Agency

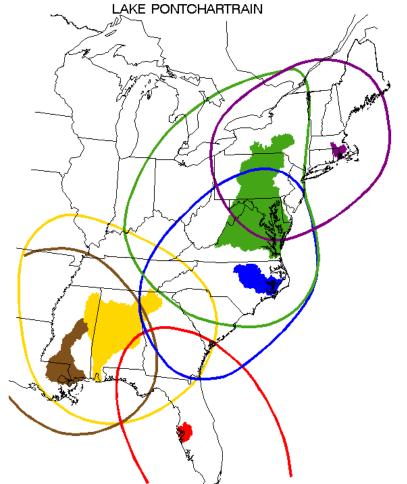
Estimated contribution of CAA regulations to future deposition for older and newer estimates using CMAQ:

Oxidized-N Deposition									
	Potomac		Susquehanna						
	(kg-N)	% chg	(kg-N)	% chg					
2002 Base	30,948,103		60,990,109						
2005 Base	30,486,722		55,428,736						
2020 CAIR	14,032,062	-54.7%	28,546,064	-53.2%					
2030 CSAPR	14,784,826	-51.5% 2005	28,266,549	-49.0% 2005					
		-52.2% 2002		-53.7% 2002					
2020 LOT	12,367,296	-60.0%	24,880,020	-59.2%					

United States
Environmental Protection
Agency

Estimated contribution of CAA regulations to future deposition for older and newer estimates using CMAQ:

	Oxidized-N Deposition									
	James		Rappahannock							
	(kg-N)	% chg	(kg-N)	% chg						
2002 Base	20,896,200		6,166,545							
2005 Base	21,610,649		6,019,845							
2020 CAIR	9,845,516	-52.9%	2,921,633	-52.6%						
2030 CSAPR	10,502,330	-51.4% 2005	2,948,364	-51.0% 2005						
		-49.7% 2002		-52.2% 2002						
2020 LOT	8,939,715	-57.2%	2,582,881	-58.1%						


Airsheds are much larger than watersheds

The emissions from watershed states account for a major portion of the deposition to the watershed, but not all of it

PRINCIPAL OXIDIZED NITROGEN AIRSHEDS FOR:

NARRAGANSETT BAY, CHESAPEAKE BAY, PAMLICO SOUND, TAMPA BAY, MOBILE BAY,

2020 State Attribution to						
2020 State Attribution to						
Chesapeake Bay Watershed	(12km)					
	1					
State	%					
New York	6.8					
Pennsylvania	19.1					
Maryland	10.5					
Virginia	18.1					
Delaware	1.4					
West Virginia	6.1					
D.C.	0.8					
States+DC Combined	62.8					

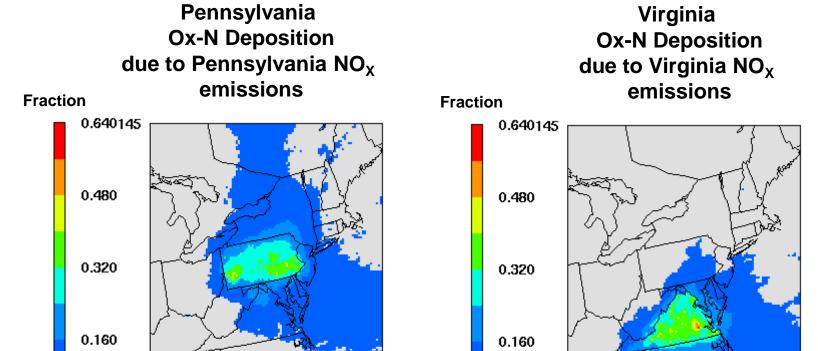
Atmospheric deposition reductions for the TMDL process are mainly associated with national CAA rules.

States may, however, go beyond national CAA rules to meet CAA air quality standards locally

It could be important to the TMDL process to take advantage of air emissions reductions that would occur for other reasons.

Because of the complex chemistry and transport and transformation we need to make a calculation of the incremental benefit with an air quality model. We would like to do this without having to run the regional air quality model many times over because it is computationally expensive.

There is a special source attribution version of CMAQ (DDM) that can track the individual contribution of emissions, that are labeled by source or region, to the total deposition.

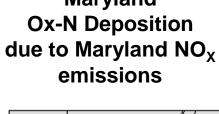

Our approach is to use this CMAQ version to set up simplified delta emissions to-delta atmospheric deposition transfer calculations by state, since air regulations are generally at the state level, for the states to use

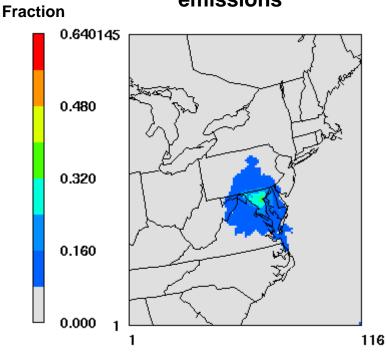
0.000

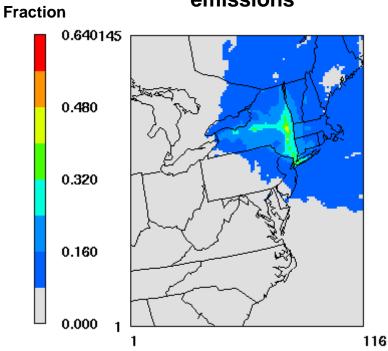
Example of the fraction of oxidized-N deposition from PA and VA 2020 NO_X emissions

116

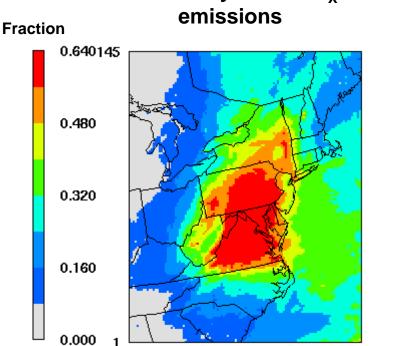
0.000

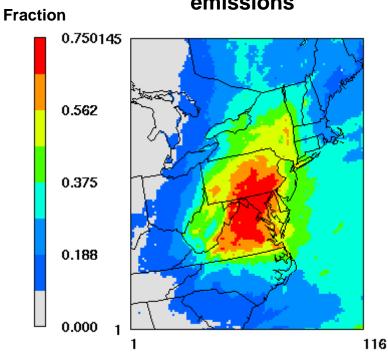

116


Example of the fraction of oxidized-N deposition from MD and NY 2020 NO_x emissions

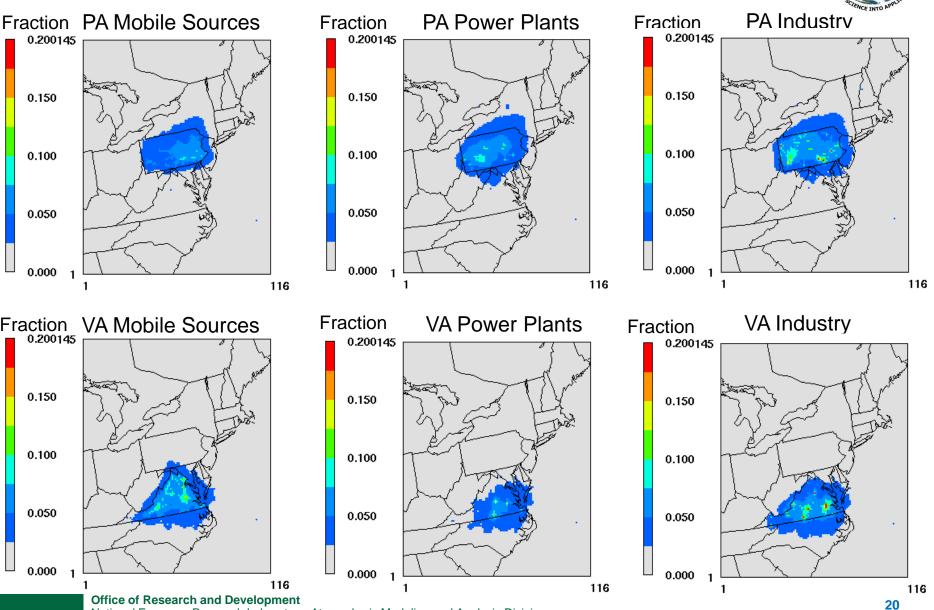


New York Ox-N Deposition due to New York NO_x emissions



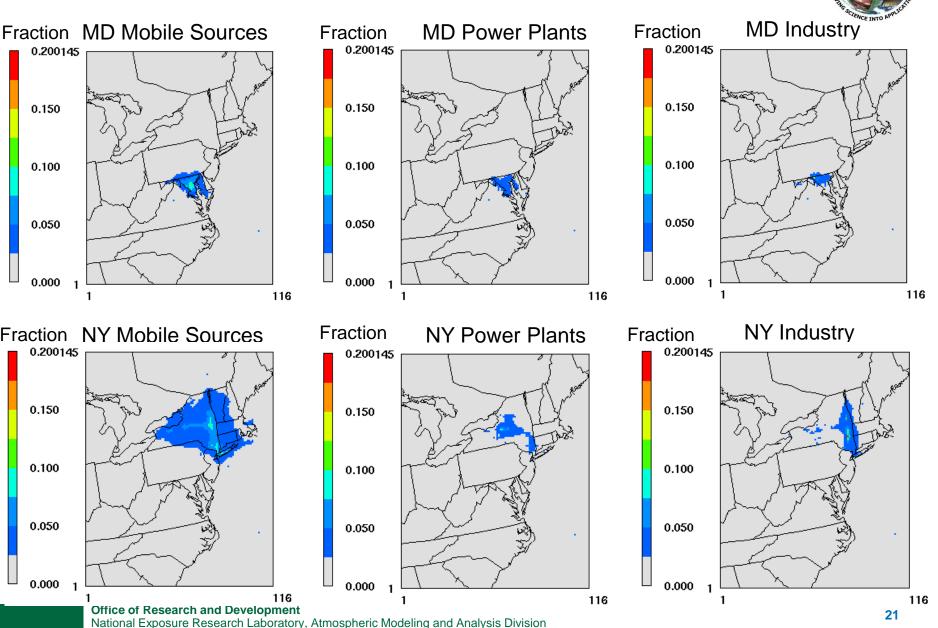

Example of the fraction of oxidized-N deposition from MD and NY 2020 NO_X emissions

6 Bay States+DC Ox-N Deposition due to Bay State NO_X emissions



116

The states will be interested in fraction of deposition by sectors since rules will be by sector



National Exposure Research Laboratory, Atmospheric Modeling and Analysis Division

The states will be interested in fraction of deposition by sectors since rules will be by sector

State Contribution

Fraction of kg-N contributed to tributary deposition by state

State	Potomac AFL	Susqueh annaAFL	James AFL	Potomac AFL		Susquehann a AFL	James AFL
	fraction	fraction	fraction		kg-N Dep	kg-N Dep	kg-N Dep
PA	0.171	0.263	0.106		1,792,102	7,615,474	762,538
VA	0.205	0.083	0.342		2,143,307	2,400,793	2,461,158
MD	0.132	0.077	0.072		1,378,989	2,233,529	519,321
NY	0.047	0.097	0.034		487,454	2,818,109	247,256
WV	0.114	0.050	0.079		1,194,541	1,461,434	567,682
Total Trib	utary N Dep	osition (kg-	N)		10,460,193	28,980,303	7,204,204

State Contribution

Fraction of kg-N contributed to Watershed and Bay deposition by state

State	Bay Watershed	Tidal Bay		Bay Watershed	Tidal Bay
	fraction	fraction		kg-N Dep	kg-N Dep
PA	0.191	0.124		12,717,344	482,323
VA	0.181	0.224		12,054,985	872,118
MD	0.105	0.122		6,959,515	476,543
NY	0.068	0.053		4,510,744	204,509
WV	0.061	0.038		4,071,651	148,115
Total N Deposition (kg-N)				66,469,574	3,895,624

Fraction of kg-N contributed to tributary deposition by state sector

Pennsylvania

PA	Potomac AFL	Susqueh annaAFL	James AFL	Potomac AFL	Susquehann a AFL	James AFL
Sector	fraction	fraction	fraction	kg-N Dep	kg-N Dep	kg-N Dep
Mobile	0.028	0.048	0.015	295,400.2	1,383,738.2	107,534.9
EGU's	0.036	0.052	0.020	374,779.4	1,506,042.4	143,851.4
Industry	0.034	0.059	0.018	350,391.5	1,693,951.4	131,531.9
Area	0.022	0.037	0.012	226,921.8	1,062,881.6	88,536.2
OffRoad	0.019	0.027	0.014	200,353.7	773,884.2	101,885.7
Total Trib	utary N Dep	osition (kg-	N)	10,460,193	28,980,303	7,204,204

EGU's = Electric Generating Units = Power Plants

Fraction of kg-N contributed to tributary deposition by state sector

Virginia

VA	Potomac AFL	Susqueh annaAFL	James AFL	Potomac AFL	Susquehann a AFL	James AFL
Sector	fraction	fraction	fraction	kg-N Dep	kg-N Dep	kg-N Dep
Mobile	0.049	0.018	0.072	515,887.9	508,008.3	516,367.3
EGU's	0.019	0.011	0.048	193,958.9	319,902.7	346,551.0
Industry	0.029	0.013	0.071	302,044.8	381,486.3	510,755.1
Area	0.047	0.016	0.071	487,630.3	475,105.8	507,732.0
OffRoad	0.026	0.010	0.030	273,818.9	278,885.4	218,050.4
Total Trib	utary N Dep	osition (kg-	N)	10,460,193	28,980,303	7,204,204

EGU's = Electric Generating Units = Power Plants

Fraction of kg-N contributed to tributary deposition by state sector

Maryland

MD	Potomac AFL	Susqueh annaAFL	James AFL	Potomac S AFL		Susquehann a AFL	James AFL
Sector	fraction	fraction	fraction		kg-N Dep	kg-N Dep	kg-N Dep
Mobile	0.027	0.016	0.013		284,977.6	458,184.5	93,867.4
EGU's	0.021	0.013	0.013		213,949.8	363,493.6	92,316.1
Industry	0.022	0.011	0.009		231,349.6	317,093.2	62,260.7
Area	0.022	0.014	0.010		228,270.8	392,020.4	75,143.7
OffRoad	0.017	0.010	0.012		181,268.3	290,786.9	87,631.5
Total Trib	utary N Dep	osition (kg-	N)		10,460,193	28,980,303	7,204,204

EGU's = Electric Generating Units = Power Plants

Fraction of kg-N contributed to tributary deposition by state sector

New York

NY	Potomac AFL	Susqueh annaAFL	James AFL	Potomac AFL	Susquehann a AFL	James AFL
Sector	fraction	fraction	fraction	kg-N Dep	kg-N Dep	kg-N Dep
Mobile	0.008	0.021	0.006	87,635.3	592,912.0	44,898.3
EGU's	0.005	0.012	0.003	46,866.2	343,671.7	22,086.4
Industry	0.005	0.011	0.003	48,158.9	307,149.6	23,864.9
Area	0.011	0.025	0.008	118,869.2	708,914.5	58,646.1
OffRoad	0.010	0.015	0.008	101,058.1	434,429.7	55,138.2
Total Trib	utary N Dep	osition (kg-	N)	10,460,193	28,980,303	7,204,204

EGU's = Electric Generating Units = Power Plants

Fraction of kg-N contributed to Watershed and Bay deposition by state sector

Pennsylvania

PA	Bay Watershed	Tidal Bay		Bay Watershed	Tidal Bay
Sector	fraction	fraction		kg-N Dep	kg-N Dep
Mobile	0.033	0.020		2,192,557.2	79,308.3
EGU's	0.038	0.022		2,503,433.2	86,774.9
Industry	0.041	0.025		2,700,287.9	98,621.0
Area	0.026	0.018		1,725,169.5	70,722.8
Off Road	0.021	0.015		1,376,781.7	57,181.5
Total N Deposition (kg-N)				66,469,574	3,895,624

Fraction of kg-N contributed to Watershed and Bay deposition by state sector

Virginia

VA	Bay Watershed	Tidal Bay	Bay Watershed	Tidal Bay
				,
Sector	fraction	fraction	kg-N Dep	kg-N Dep
Mobile	0.039	0.041	2,616,512.7	159,603.9
EGU's	0.023	0.034	1,538,412.9	131,589.0
Industry	0.032	0.040	2,111,705.2	157,564.5
Area	0.037	0.042	2,437,336.8	162,196.5
Off Road	0.020	0.024	1,317,063.5	93,794.3
Total N Deposition (kg-N)			66,469,574	3,895,624

Fraction of kg-N contributed to Watershed and Bay deposition by state sector

Maryland

MD	Bay	Tidal		Bay	Tidal
	Watershed	Bay		Watershed	Bay
Sector	fraction	fraction		kg-N Dep	kg-N Dep
Mobile	0.022	0.025		1,450,266.0	96,133.1
EGU's	0.017	0.021		1,114,444.6	80,985.3
Industry	0.014	0.013		913,109.6	51,227.0
Area	0.018	0.021		1,184,365.3	80,275.8
Off Road	0.015	0.020		999,284.2	76,491.8
Total N Deposition (kg-N)				66,469,574	3,895,624

Fraction of kg-N contributed to Watershed and Bay deposition by state sector

New York

NY	Bay Watershed	Tidal		Bay Watershed	Tidal
	Watersheu	Bay		vvalersneu	Bay
Sector	fraction	fraction		kg-N Dep	kg-N Dep
Mobile	0.014	0.010		904,979.3	39,151.5
EGU's	0.008	0.005		501,849.8	19,251.4
Industry	0.007	0.005		471,299.3	20,241.4
Area	0.017	0.015		1,141,701.2	57,287.6
Off Road	0.012	0.010		780,929.4	39,170.1
Total N Deposition (kg-N)				66,469,574	3,895,624

Divide by emissions to create a deposition transfer United States Environmental Protection function by state and sector which is then multiplied by a load transfer function from the watershed model

Pennsylvania

PA	Potomac AFL	Susqueh annaAFL	James AFL	Tidal Bay		State-Sector Emissions
Sector	Xfer Fn*	Xfer Fn*	Xfer Fn*	Xfer Fn*		tons-N
Mobile	16.65	77.99	6.06	4.47		17,742.0
EGU's	17.69	71.09	6.79	4.10		21,183.9
Industry	15.54	75.11	5.83	4.37		22,552.1
Area	14.03	65.73	5.48	4.37		16,170.5
Off Road	21.38	82.56	10.87	6.10		9,373.2
*Xfer Fn = kg-N deposition/tons-N emissions						

Divide by emissions to create a deposition transfer United States Environmental Protection function by state and sector which is then multiplied by a load transfer function from the watershed model

Virginia

VA	Potomac AFL	Susqueh annaAFL	James AFL	Tidal Bay	State-Sector Emissions
Sector	Xfer Fn*	Xfer Fn*	Xfer Fn*	Xfer Fn*	tons-N
Mobile	31.65	31.17	31.68	9.79	16,299.4
EGU's	16.04	26.45	28.65	10.88	12,094.5
Industry	21.46	27.11	36.30	11.20	14,071.9
Area	30.05	29.27	31.28	9.99	16,229.5
Off Road	42.94	43.73	34.19	14.71	6,377.5
*Xfer Fn =					

Divide by emissions to create a deposition transfer United States Protection function by state and sector which is then multiplied by a load transfer function from the watershed model

Maryland

MD	Potomac AFL	Susqueh annaAFL	James AFL	Tidal Bay	State-Sector Emissions
Sector	Xfer Fn*	Xfer Fn*	Xfer Fn*	Xfer Fn*	tons-N
Mobile	36.24	58.27	11.94	12.23	7,862.6
EGU's	31.02	52.70	13.38	11.74	6,897.7
Industry	42.64	58.44	11.48	9.44	5,425.8
Area	34.76	59.70	11.44	12.22	6,566.5
Off Road	40.69	65.28	19.67	17.17	4,454.6
*Xfer Fn =					

Divide by emissions to create a deposition transfer United States Protection function by state and sector which is then multiplied by a load transfer function from the watershed model

New York

NY	Potomac AFL	Susqueh annaAFL	James AFL	Tidal Bay	State-Sector Emissions
Sector	Xfer Fn*	Xfer Fn*	Xfer Fn*	Xfer Fn*	tons-N
Mobile	4.63	31.35	2.37	2.07	18,910.0
EGU's	4.56	33.46	2.15	1.87	10,272.1
Industry	4.93	31.43	2.44	2.07	9,771.3
Area	4.45	26.52	2.19	2.14	26,730.0
Off Road	7.42	31.89	4.05	2.87	13,624.5
*Xfer Fn =					

For Perspective: What impact would Pennsylvania Diesel Rule NO_x emission reductions have?

Estimated reduction: 736 tons $NO_X = 224.1$ tons-N (0.3045 conversion)

Impact of PA State-wide Diesel Rule NO_x Emission Reduction PA Δ Kg-N % Trib. Δkg-N load Δlb-N load Mobile Deposition Deposition Delivered **Delivered** (x 224.1) Xfer Fn (x0.1107) (x 2.2)3,731 Potomac AFL 16.65 0.036% 413 909 Susquehanna 77.99 17,478 0.060% 1,935 4,257 AFL James AFL 6.06 1,358 0.019% 150 331 111 Tidal Bay 4.47 1,002 0.026% 244

Summary

- There is not a simple relationship between air emission reductions and reductions of deposition to different tributaries because the deposition comes from many sources and only a fraction comes from emissions from within (each of) the Bay states
- A sophisticated air quality model can be used to create realistic, simplified equations approximating the complex relationship of an incremental emissions change in a state (or specified geographic region) to an incremental deposition change in designated tributaries
- These simplified equations can be used in the TMDL process to facilitate air-water trading and open up the possibility to take credit for additional air reductions required to meet human health standards and enhance efficiency and cost-effectiveness of the TMDL process
- The same approach taken here for NO_X can be taken for ammonia if so desired